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EXISTENCE OF SOLUTIONS TO NONLINEAR FRACTIONAL
SCHRÖDINGER EQUATIONS WITH SINGULAR POTENTIALS

QINGXUAN WANG, DUN ZHAO, KAI WANG

Abstract. We study the eigenvalue problem

(−∆)su(x) + V (x)u(x)−K(x)|u|p−2u(x) = λu(x) in RN ,

where s ∈ (0, 1), N > 2s, 2 < p < 2∗ = 2N
N−2s

, V (x) is indefinite and allowed

to be unbounded from below, and K(x) is nonnegative and allowed to be

unbounded from above. When λ < λ0 = inf σ((−∆)s + V (x)) (the lowest
spectrum of the operator (−∆)s + V (x)), we obtain a positive ground state

solution by using the constrained minimization method. Also we discuss the

regularity of solutions.

1. Introduction and statement of main results

In this article, we consider standing waves of the nonlinear fractional Schrödinger
equation

iψt = (−∆)sψ + V (x)ψ −K(x)|ψ|p−2ψ in RN , (1.1)
where (x, t) ∈ RN × (0,∞), 0 < s < 1, V (x) and K(x) are some real functions. The
operator (−∆)s is the fractional Laplacian of order s.

This equation was introduced by Laskin [8, 9], and comes from fractional quan-
tum mechanics for the study of particles on stochastic fields modelled by Lévy
process. The Lévy process is widely used to model a variety of processes, such as
turbulence, financial dynamics, biology and physiology, see [7, 11, 19]. When s = 1,
the Lévy process becomes the Brownian motion, and the equation (1.1) reduces to
the classical Schrödinger equation

iψt = −∆ψ + V (x)ψ −K(x)|ψ|p−2ψ in RN . (1.2)

Standing wave solutions to this equation are solutions of the form ψ(x, t) = e−iλtu(x)
where u(x) satisfies the equation

−∆u+ (V (x)− λ)u−K(x)|ψ|p−2u = 0 in RN , (1.3)

which has been extensively studied in the past 20 years. We mention some earlier
work here. Oh [12] studied positive multi-lump bound states, and it was assumed
that K(x) ≡ γ for some γ > 0, and V (x) belongs to a class of potentials (V )a for
some a and λ < a (V ∈ (V )a if either V (x) ≡ a or V (x) > a for all x ∈ RN and
(V (x)−a)−1/2 ∈ Lip(RN )). Rabinowitz [15] investigated the ground state solutions
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of the problem (1.3) under the condition infRN V (x) > λ and after this Byeon and
Wang [1] considered the case infRN V (x) = λ which they call it critical frequency
case.

Our goal is to look for standing wave solutions of the form ψ(x, t) = e−iλtu(x)
to equation (1.1) for fractional order s ∈ (0, 1). Precisely, we will investigate the
problem.

(−∆)su(x) + (V (x)− λ)u(x)−K(x)|u|p−2u(x) = 0 in RN ,

u(x) ∈ Hs(RN ).
(1.4)

Where s ∈ (0, 1), 2 < p < 2∗ = 2N
N−2s , N > 2s, λ ∈ R, V (x) and K(x) are real

functions satisfying the following conditions:

(A1) V (x) : RN → R, V (x) ∈ L N
2s (RN ) + L∞(RN );

(A2) for any ε > 0, the Lebesgue measure |{x : |V (x)| > ε}| <∞.
(A3) K(x) ≥ 0, K(x) 6≡ 0, K(x) ∈ L

2∗
2∗−p (RN ) + L∞(RN );

(A4) for any ε > 0, the Lebesgue measure |{x : |K(x)| > ε}| <∞.
(A5) V (x) ∈ Lq̃(RN ) + L∞(RN ), K(x) ∈ Lr̃(RN ) + L∞(RN ) for q̃ > N

2s and
r̃ > 2∗

2∗−p .

We remark that in [9], Laskin investigated the fractional Hydrogen-like atom
where V (x) = −Ze

2

|x| (for N = 3 and 1/2 < s < 1), and evaluated the corresponding
energy spectrum. It is easy to check that such potential satisfies condition (A1).

In recent years, there have been a few results for nonlinear fractional Schrödinger
equations like (1.4). Teng [18] investigated multiple solutions of the equation

(−∆)su+ V (x)u = f(x, u), (1.5)

for V (x) ∈ C(RN ), ess inf V (x) > 0, and f ∈ C(RN × R). Secchi [16] studied
the ground state solutions of (1.5) for the case that V ∈ C1(RN ), infx∈RN V (x) =
V0 > 0, and f ∈ C1(RN × R) satisfying Ambrosetti-Rabinowitz condition. In [3],
ground states and bound states of (1.5) are obtained by assuming that V (x) > 1
and lim|x|→+∞ V (x) = +∞, and the nonlinearity is f(t) = |t|p−1t. Chang [2] inves-
tigated the ground state solutions for asymptotically linear fractional Schrödinger
equations. In particular, Felmer [6] studied the existence of positive solutions of
(1.5) for V (x) ≡ 1 and f(x, u) is superlinear and has subcritical growth with respect
to u such that there exist 1 < p < (N + 2s)/(N − 2s), so that

f(x, ξ) ≤ C(1 + |ξ|)p for all ξ ∈ R and a.e. x ∈ RN . (1.6)

Furthermore, they discuss the regularity, decay and symmetry properties of solu-
tions.

The nonlinearity K(x)|u|p−2u(x) in this paper is quite different from (1.6), since
K(x) may not be bounded by a constant C. For example, K(x) = 1

|x−x0|α for

0 < α < (2∗−p)N
2∗ , satisfies (A3), (A4), and has singular point x0 ∈ RN . On the

other hand, since V (x) is indefinite, it is hard to use usual mountain pass argu-
ments to obtain ground state solutions([6, 16, 2]), here we will use the constrained
minimization method to obtain the ground state solutions.

We say that u ∈ Hs(RN ) is a weak solution of (1.4), if for any φ ∈ Hs(RN ),∫
RN

(−∆)s/2u · (−∆)s/2φdx+
∫

RN
(V (x)− λ)u · φdx =

∫
RN

K(x)|u|p−2u · φdx,
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where u(x) is conjugation of u(x) in the complex space Hs(RN ).
Solutions of (1.4) correspond to the critical points of the energy functional

I(u) =
1
2

[
∫

RN
|(−∆)s/2u|2 dx+

∫
RN

(V (x)− λ)|u|2 dx]− 1
p

∫
RN

K(x)|u|p dx. (1.7)

And a ground state of (1.4) is a solution that minimizes the energy functional on
the Nehari manifold

N =
{
u ∈ Hs(RN ) \ {0} :

∫
RN
|(−∆)s/2u|2 + (V (x)− λ)|u|2 dx =

∫
RN

K(x)|u|p dx
}
.

(1.8)
Now we state our main result.

Theorem 1.1. Let s ∈ (0, 1), 2 < p < 2∗ (2∗ = 2N
N−2s), N > 2s. Assume that

(A1)–(A4) are satisfied. Let

λ0 = inf σ((−∆)s + V (x))

= inf{
∫

RN
|(−∆)s/2ψ|2 + V (x)|ψ|2 dx : ψ ∈ Hs(RN ), ‖ψ‖L2 = 1},

and assume that λ ≤ 0 and λ < λ0. Then (1.4) admits at least one nonnegative
weak solution such that this solution is a ground state.

To prove the positive property of nonnegative weak solutions, we need to take
advantage of the representation formula

u = Kµ ∗ f =
∫

RN
K(x− ξ)f(ξ) dξ,

for some µ > 0, and that u satisfies the equation

(−∆)su+ µu = f in RN ,
where Kµ is the Bessel kernel

Kµ = F−1
( 1
µ+ |ξ|2s

)
.

We have the following positive property.

Theorem 1.2. Under the assumptions of Theorem 1.1, let w(x) be a nonnegative
ground state solution obtain in Theorem 1.1. If we further assume that V (x) is
bound from above, then w(x) can be chosen positive in RN .

The next step is to prove regularity of the weak solutions. Inspired by ideas in
[6], We also use the representation formula above to discuss the regularity. We have
the following result.

Theorem 1.3. Let u(x) ∈ Hs(RN ) be a solution of (1.4), assume that λ < 0 and
(A5) holds, i.e., V (x) ∈ Lq̃(RN ) +L∞(RN ), K(x) ∈ Lr̃(RN ) +L∞(RN ) for q̃ > N

2s

and r̃ > 2∗

2∗−p . Then u ∈ C0,α(RN ) for some α ∈ (0, 1). Moreover, u(x) → 0 as
|x| → ∞.

We remark that having the regularities above, by the same arguments as in [6,
Theorem 1.5], it is easy to show that the positive ground state solutions u(x) behave
at infinity like 1

|x|N+2s .
The rest of the article is originated as follows. In section 2 we give some pre-

liminary and show some properties of the operator (−∆)s + V (x). In section 3 we
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will show that weak convergence in Hs(RN ) implies strong convergence on finite
measure sets, which is important to prove our result. In section 4 we prove that
weak continuity of the potential energies. In section 5 we prove the Theorem 1.1.
In section 6 we give the proof of Theorem 1.2 and 1.3.

Notation. To coincide with the book [10], the Banach spaces Lp(RN ), Hs(RN )
used here are complex Banach spaces. And the inner product is defined by

(f(x), g(x)) =
∫

RN
f(x)g(x) dx, for any f(x), g(x) ∈ L2(RN ), (1.9)

where f denotes conjugation of f(x).
û denotes the Fourier transform of u ∈ L2(RN ).

Lq(RN ) + L∞(RN ) := {u = u0 + u1 : u0 ∈ Lq(RN ), u1 ∈ L∞(RN )}.

⇀ denotes weakly converge. C0,α(RN ) denotes Hölder continuous with exponent
α ∈ (0, 1).

2. Preliminaries

The fractional Laplacian (−∆)s of a rapidly decaying test function u is defined
as

(−∆)su(x) = CN,s P.V.
∫
u(x)− u(y)
|x− y|N+2s

dx dy, (2.1)

where P.V. denotes the principal value of the singular integral, and CN,s is a con-
stant.

We recall that the fractional Sobolev space W s,p(RN ) (e.g., see [16]) is defined
for any p ∈ [1,∞) and s ∈ (0, 1) as

W s,p(RN ) =
{
u ∈ Lp(RN ) :

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|s p+N
dxdy <∞

}
,

endowed with the norm

‖u‖s,pW =
(∫

RN
|u|pdx+

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|s p+N
dxdy

)1/p

.

When p = 2, these spaces are also denoted by Hs(RN ).
When p = 2, there is an equivalent definition of fractional Sobolev spaces based

on Fourier analysis that

Hs(RN ) =
{
u ∈ L2(RN ) :

∫
(1 + |ξ|2s)|û(ξ)|2dξ <∞

}
,

̂(−∆)su = |ξ|2sû, for u ∈ Hs(RN ),

and the norm can be equivalently written

‖u‖Hs =
(
‖u‖2L2 +

∫
|ξ|2s|û(ξ)|2dξ

)1/2

=
(
‖u‖2L2 + ‖(−∆)s/2u‖2L2

)1/2

Therefore, we see that Hs(RN ) is just L2(RN , dµ), where µ is a measure defined
by

µ(dx) = (1 + |x|2s)dx.
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A sequence f j(x) converges weakly to f(x) (we write f j ⇀ f) in Hs(RN ) in the
following sense (see [10, §7.18 ] or [4]): for any g(x) ∈ Hs(RN ), when j → ∞, one
has

1
(2π)N/2

∫
RN

[f̂ j(ξ)− f̂(ξ)]ĝ(ξ)(1 + |ξ|2s) dξ → 0. (2.2)

The following lemma is obvious. There are more details about H1/2(RN ) in [10],
so the case for general s ∈ (0, 1) is just the same arguments to H1/2(RN ).

Lemma 2.1. If a sequence f j converges weakly to f in Hs(RN ). Then, there exists
a constant M independent of number j, such that

‖f j‖Hs ≤M, ‖f‖Hs ≤M . (2.3)

Proof. Since Hs(RN ) is just L2(RN , dµ), thus by uniform boundedness principle
and Lower semicontinuity of Lp-norm respectively, we obtain (2.3). �

Now we review the Sobolev inequality and Sobolev-Gagliardo-Nirenberg inequal-
ity for fractional Sobolev spaces, we only show the case for Hs(RN ).

Lemma 2.2 (Sobolev inequality [17]). Let s ∈ (0, 1) be such that N > 2s. Then

‖u‖L2∗ ≤ SN,s‖(−∆)s/2u‖L2

for every u ∈ Hs(RN ), where SN,s is sharp constants depending only on N ,s, and

2∗ =
2N

N − 2s
is the factional critical exponent.

Lemma 2.3 (Sobolev-Gagliardo-Nirenberg inequality [16]). Let q ∈ (2, 2∗). Then
there exists a constant C > 0 such that

‖u‖qLq ≤ C‖u‖
(q−2)N

2s
Hs ‖u‖q−

(q−2)N
2s

L2

for every u ∈ Hs(RN ).

Next we show some properties of fractional Schrödinger operator (−∆)s +V (x).
For any ψ(x) ∈ Hs(RN ), let λ0 be defined in Theorem 1.1, define

E(ψ) := ‖(−∆)s/2ψ‖2L2 +
∫

RN
V (x)|ψ|2 dx. (2.4)

then λ0 = inf{E(ψ) : ψ ∈ Hs(RN ), ‖ψ‖L2 = 1}. We have the following theorem.

Theorem 2.4. For s ∈ (0, 1), N > 2s, if V (x) ∈ L N
2s (RN ) + L∞(RN ), then

(i) λ0 is finite.
(ii) ‖(−∆)s/2ψ‖2L2 ≤ CE(ψ) +D‖ψ‖2L2 for ψ ∈ Hs(RN ) and suitable constants

C and D.

Proof. Since V (x) ∈ L N
2s (RN ) + L∞(RN ), we can write V (x) = v(x) + w(x) with

v(x) ∈ L N
2s (RN ) and w(x) ∈ L∞(RN ).

First we claim that we can choose v(x) satisfying ‖v(x)‖
L
N
2s
≤ 1

2 (SN,s)−2. In
fact, for M > 0, define Sv(M) by

Sv(M) = {x ∈ RN : |v(x)| > M},
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then by Chebyshev inequality (see [5])

|Sv(M)| ≤
(C‖v‖

L
N
2s

M

)N/(2s)
. (2.5)

Let χA be the characteristic function on subset A ⊂ RN . Decompose v(x) into

v(x) = χSv(M)v(x) + (1− χSv(M))v(x).

Let v1 = χSv(M)v(x), v2 = (1 − χSv(M))v(x), then v1 ∈ L
N
2s (RN ), v2 ∈ L∞(RN ),

and by (2.5) we have ‖v1‖
L
N
2s
< 1

2 (SN,s)−2 for large enough M . Replace v(x) by
v1, then the claim holds.

For any function ψ ∈ Hs(RN ), combing with ‖v(x)‖
L
N
2s
≤ 1

2 (SN,s)−2 and using
Hölder inequality and Sobolev inequality (Lemma 2.2), we have∣∣∣ ∫

RN
v(x)|ψ|2 dx

∣∣∣ ≤ ‖v(x)‖
L
N
2s
‖ψ‖2L2∗

≤ S2
N,s‖v(x)‖

L
N
2s
‖(−∆)s/2ψ‖2L2

≤ 1
2
‖(−∆)s/2ψ‖2L2 ,

it follows that

E(ψ) = ‖(−∆)s/2ψ‖2L2 +
∫

RN
v(x)|ψ|2 dx+

∫
RN

w(x)|ψ|2 dx

≥ 1
2
‖(−∆)s/2ψ‖2L2 − ‖w(x)‖L∞‖ψ‖2L2 ≥ −‖w(x)‖L∞‖ψ‖2L2 ,

(2.6)

and we see that −‖w(x)‖L∞ is a lower bound to λ0, i.e., (i) holds. Furthermore,
the first inequality of (2.6) implies

‖(−∆)s/2ψ‖2L2 ≤ 2(E(ψ) + ‖w(x)‖L∞‖ψ‖2L2),

i.e., (ii) holds. �

3. Weak convergence implies strong convergence on small sets

Consider the semigroup {e−(−∆)st}t>0. We know that, for any function f(x) ∈
Hs(RN ),

̂e−(−∆)stf(ξ) = e−|ξ|
2stf̂(ξ).

Now we define the heat kernel for s ∈ (0, 1), t > 0, and x ∈ RN as

H(x, t) =
1

(2π)N/2

∫
RN

ei x·ξ−t|ξ|
2s
dξ, (3.1)

and we know that

e−(−∆)stf(x) =
∫

RN
H(x− y, t)f(y) dy. (3.2)

It is well known that H(x, t) has the following properties, see [6, Appendix A] and
references therein.

Lemma 3.1. H(x, t) is radially symmetric in x, and there exists two constants c1
and c2 such that

c1 min
{
t−

N
2s , t|x|−N−2s

}
≤ H(x, t) ≤ c2 min

{
t−

N
2s , t|x|−N−2s

}
. (3.3)
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Now we use the properties of semigroup with respect to (−∆)s to prove that
weak convergence in Hs(RN ) implies strong convergence on any finite measure set
(not just on a bounded domain Ω ∈ RN , see compact embeddings in [13, 14] ).
This result can also be found in [4], here we give a different proof along the ideas
in [10, Theorem8.6].

Theorem 3.2. Let {f j} ⊂ Hs(RN ) such that f j converges weakly to f in Hs(RN ).
Let A ⊂ RN be any set of finite Lebesgue measure, i.e., |A| <∞, and let χA be its
characteristic function. Then

χAf
j → χAf strongly in Lq(RN )

for 1 ≤ q < 2∗ = 2N
N−2s , when N > 2s.

Proof. We take three steps to prove the theorem.
Step 1. We claim that, for any f ∈ Hs(RN ),

‖f − e−(−∆)stf‖L2 ≤ ‖(−∆)s/2f‖L2

√
t. (3.4)

In fact, we know that

1− exp[−(|ξ|)2st] ≤ min
{

1, (|ξ|)2st
}
≤ |ξ|s

√
t,

and it follows that

‖f − e−(−∆)stf‖2L2 =
∫

RN
|f̂(ξ)|2(1− exp[−(|ξ|)2st])2 dξ

≤
∫

RN
|f̂(ξ)|2(|ξ|s

√
t)2 dξ = ‖(−∆)s/2f‖2L2 t,

this proves (3.4).
Step 2. We first prove that χAf

j → χAf strongly in L2(RN ). Let gj :=
e−(−∆)stf j , by Lemma 2.1, we note that

‖(−∆)s/2f j‖L2 ≤ ‖f j‖Hs ≤M, (3.5)

‖(−∆)s/2f‖L2 ≤ ‖f‖Hs ≤M, (3.6)

where M is a constant independent of j. Then by (3.4) we have

‖f j − gj‖L2 = ‖f j − e−(−∆)stf j‖L2 ≤M
√
t,

‖f − g‖L2 = ‖f − e−(−∆)stf‖L2 ≤M
√
t.

Simply note that

‖χA(f j − f)‖L2 ≤ ‖χA(f j − gj)‖L2 + ‖χA(gj − g)‖L2 + ‖χA(g − f)‖L2

≤ 2M
√
t+ ‖χA(gj − g)‖L2 .

For ε > 0 given, first choose t > 0 (depending on ε) such that 2M
√
t < ε/2 and if for

j (depending on ε) we have ‖χA(gj−g)‖L2 < ε/2, then we have ‖χA(f j−f)‖L2 < ε.
Therefore, it remains to prove that χAgj → χAg strongly in L2(RN ).

To prove χAgj → χAg strongly in L2(RN ), first we note that, if |y − x| ≥ t
1
2s ,

we have t|x− y|−N−2s ≤ t− N
2s , and then by Lemma 3.1, we have

H(x− y, t) ≤ c2 t|x− y|−N−2s = 2c2
t

2|x− y|N+2s

≤ 2c2
t

t
N+2s

2s + |x− y|N+2s
.

(3.7)
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Then, for every fix x, we have H(x−y, t) ∈ L(2∗)′(RN ), where (2∗)′ = 2N/(N+2s),
is dual index to 2∗. In fact, let B(x, t

1
2s ) denote a ball center at x and has radius

t
1
2s , ∫

RN
(H(x− y, t))(2∗)′ dy

=
∫
B(x,t

1
2s )

(H(x− y, t))(2∗)′ dy +
∫

RN\B(x,t
1
2s )

(H(x− y, t))(2∗)′ dy

≤
∫
B(x,t

1
2s )

(c2 t−
N
2s )(2∗)′dy +

∫
RN\B(x,t

1
2s )

(c2t|x− y|−N−2s)(2∗)′ dy

≤M1 +
∫

RN
(2c2

t

t
N+2s

2s + |x− y|N+2s
)(2∗)′ dy

≤M1 +
∫

RN
(2c2

t

t
N+2s

2s + |y|N+2s
)(2∗)′ dy ≤M2,

where M2 is a constant independent of x.
Since for every x, we have H(x− y, t) ∈ L(2∗)′(RN ), by Hölder inequality

χA|gj(x)| ≤ ‖H(x− y, t)‖(2∗)′‖f j‖2∗χA(x).

Using Lemma 2.2 and (3.5), ‖f j‖2∗ ≤ SN,s‖(−∆)s/2f j‖L2 ≤ SN,sM . Hence χAgj

is dominated by a constant multiple of the square integrable function χA(x). On
the other hand, if gj(x) converges pointwise to g(x) for every x ∈ RN , Then by
general dominated convergence theorem, we have χAgj → χAg strongly in L2(RN ).
Next we shall prove gj(x) converges pointwise for every x ∈ RN . We note that, for
fixed x,

̂H(x− y, t)(ξ) = (e−ix·ξ)e−t|ξ|
2s
,

and

gj(x) = e−(−∆)stf j(x) =
∫

RN
H(x− y, t)f j(y) dy

=
∫

RN
̂H(x− y, t)(ξ)f̂ j(ξ) dξ =

∫
RN

(e−ix·ξ)e−t|ξ|
2s
f̂ j(ξ) dξ

=
∫

RN

(e−ix·ξ)e−t|ξ|
2s

1 + |ξ|2s
f̂ j(ξ)(1 + |ξ|2s) dξ.

Let h(y) be a function satisfying ĥ(ξ) = (e−ix·ξ)e−t|ξ|
2s

1+|ξ|2s , it is easy to see that h(y) ∈
Hs(RN ). Since f j converges weakly to f in Hs(RN ), by (2.2), then we have gj(x)
converges pointwise to g(x) for every x ∈ RN . Hence we complete the proof of Step
2.
Step 3. The inequality

‖χA(f j − f)‖Lq ≤ ‖χA‖Lr‖χA(f − f j)‖L2

for 1/q = 1/r + 1/2 proves the theorem for 1 ≤ q ≤ 2. Again by Hölder inequality,
Lemma 2.2,

‖χA(f j − f)‖Lq ≤ ‖χA(f j − f)‖αL2‖χA(f − f j)‖1−α
L2∗

≤ ‖χA(f j − f)‖αL2‖f − f j‖1−αL2∗

≤ ‖χA(f j − f)‖αL2(SN,s)1−α‖(−∆)s/2(f − f j)‖1−αL2
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≤ ‖χA(f j − f)‖αL2(2M SN,s)1−α,

where α = (1/q − 1/2∗)(1/2 − 1/2∗), and this proves the theorem for 2 ≤ q < 2∗.
The proof is complete. �

4. Weak continuity of the potential energies

Lemma 4.1. Let 2 ≤ q < 2∗, Fψ :=
∫

RN F (x)|ψ|q dx, F (x) be a real function on

RN such that F (x) ∈ L
2∗

2∗−q (RN ) + L∞(RN ) and |{x : |F (x)| > ε}| < ∞ for any
ε > 0. Then Fψ is weakly continuous in Hs(RN ), i.e., if ψj ⇀ ψ as j → ∞ in
Hs(RN ), then Fψj → Fψ as j →∞.

Proof. Note that by assumption, ‖ψj‖Hs is uniformly bounded, i.e., there is a
constant M > 0 independent of j such that ‖ψj‖Hs ≤ M for all j. For any δ > 0,
define

F δ(x) =

{
F (x) if |F (x)| ≤ 1

δ ,

0 if |F (x)| > 1
δ .

First we claim that F − F δ ∈ L
2∗

2∗−q (RN ). Indeed, let Ω = {x : |F (x)| > 1
δ },

by assumption above we know |Ω| < ∞. Writing F (x) = f1(x) + f2(x) with
f1 ∈ L

2∗
2∗−q (RN ) and f2(x) ∈ L∞(RN ), then we have

F − F δ = χΩF (x) = χΩf1(x) + χΩf2(x) ,

where χΩ be the characteristic function on Ω. Since |Ω| <∞, by Hölder inequality,
we have χΩf2(x) ∈ L

2∗
2∗−q (Ω). It follows that χΩf2(x) ∈ L

2∗
2∗−q (RN ), thus the claim

holds.
Moreover, F − F δ → 0 in L

2∗
2∗−q (RN ) as δ → 0(by dominated convergence).

Since ‖ψj‖Hs ≤M , by Sobolev inequality (Lemma 2.2)

‖ψj‖L2∗ ≤ SN,s‖(−∆)s/2ψj‖L2 ≤ SN,s‖ψj‖Hs ≤ C1. (4.1)

By Hölder inequality, we have∫
(F − F δ)|ψj |q ≤ ‖F − F δ‖ 2∗

2∗−q
‖ψj‖q2∗ ≤ C1‖F − F δ‖ 2∗

2∗−q
= Cδ,

with Cδ independent of j, moreover, Cδ → 0 as δ → 0. Thus, our goal of showing
that Fψj → Fψ as j → ∞ would be achieved if we can prove that F δψj → F δψ as
j →∞ for each δ > 0.

To prove that F δψj → F δψ as j →∞, now fix δ and define the set

Aε = {x : |F δ(x)| > ε}
for ε > 0. By assumption, |Aε| <∞. Then

F δψj =
∫
Aε

F δ|ψj |q +
∫
Acε

F δ|ψj |q. (4.2)

Since 2 ≤ q < 2∗, ‖ψj‖2 ≤ ‖ψj‖Hs ≤M , by Lemma 2.3, we have

‖ψj‖Lq ≤ C‖ψj‖
(k−2)N

2sq
Hs ‖ψj‖1−

(q−2)N
2sq

L2 ≤ CM , (4.3)

by weak lower semicontinuity of the norm, we also have

‖ψ‖Lq ≤ lim inf
j→∞

‖ψj‖Lq ≤ CM. (4.4)
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Then ∫
Acε

F δ|ψj |q ≤ ε
∫

RN
|ψj |q ≤ ε(CM)q ,

i.e., the last term of (4.2) tend to zero as ε→ 0, and hence it suffices to show that
the first term of (4.2) converges to

∫
Aε
F δ|ψ|q.

This is accomplished as follows. By Theorem 3.2 (in the Appendix below), on
any finite measure set (that we take to be Aε) ψj → ψ strongly in Lr(Aε), for
r ∈ [1, 2∗). Here we can choose r = q. Since q ≥ 2, using the inequality∣∣|ψj |q − |ψ|q∣∣ ≤ Cq(|ψj |q−1 + |ψ|q−1)|ψj − ψ|,

where Cq is a constant only dependent of q, and by (4.3), (4.4) and Hölder inequality,
we have ∫

Aε

∣∣|ψj |q − |ψ|q∣∣ ≤ ∫
Aε

Cq(|ψj |q−1 + |ψ|q−1)|ψj − ψ|

≤ Cq‖|ψj |q−1 + |ψ|q−1‖
L

q
q−1 (Aε)

‖ψj − ψ‖Lq(Aε)

≤ C3‖ψj − ψ‖Lq(Aε),

so |ψj |q → |ψ|q strongly in L1(Aε). Since F δ ∈ L∞(RN ) (see the definition above),
we conclude that ∫

Aε

F δ|ψj |q →
∫
Aε

F δ|ψ|q, as j →∞.

This completes the proof. �

5. Proof of Theorem 1.1

We will give the proof by a series of lemmas. Firstly, for any β > 0, we set

Σβ :=
{
u ∈ Hs(RN ) :

∫
RN

K(x)|u|p dx = β
}
.

Lemma 5.1. Assume that K(x) satisfies (A3), then Σβ is not empty.

Proof. Since K(x) ≥ 0 and K(x) 6≡ 0, for any fixed u ∈ Hs(RN ) \ {0}, we have∫
RN

K(x)|u|p dx > 0.

Write K(x) = K1 + K2 with K1 ∈ L
2∗

2∗−p (RN ) and K2 ∈ L∞(RN ). For any fixed
u ∈ Hs(RN )\{0}, Since 2 < p < 2∗, by Hölder inequality, Lemma 2.2, Lemma 2.3
we have∫

RN
K(x)|u|p dx ≤ ‖K1‖

L
2∗

2∗−p
‖u‖p

L2∗ + ‖K2‖L∞‖u‖pLp

≤ C1‖(−∆)s/2u‖pL2 + C2‖u‖
(p−2)N

2s
Hs ‖u‖p−

(p−2)N
2s

L2 <∞,

where C1 and C2 are some constants. Then we can choose t > 0 such that tu(x) ∈
Σβ , where

t =
( β∫

RN K(x)|u|p dx

)1/p

.

�
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Let I(u) be the energy functional defined by (1.7), we want to consider the
minimizing problem

inf
Σβ
I(u) =

1
2

inf
Σβ

{∫
RN

(|(−∆)s/2u|2 + (V (x)− λ)|u|2) dx
}
− 1
p
β.

Let
J (u) =

∫
RN

(|(−∆)s/2u|2 + (V (x)− λ)|u|2) dx, (5.1)

with mβ = infu∈Σβ J (u), so we have

inf
u∈Σβ

I(u) =
1
2
mβ −

1
p
β.

Thus minimizing I(u) on Σβ is equivalent to considering just mβ .

Lemma 5.2. With the assumptions of Theorem 1.1, let {uk}k ⊂ Σβ be a minimiz-
ing sequence for mβ. Then {uk} is bounded in Hs(RN ).

Proof. Since {uk}k is a minimizer sequence for mβ , it follows that

lim
k→∞

J (uk) = mβ .

Then, J (uk) is bounded by a constant independent of k, i.e., J (uk) ≤ M . Since
V (x) ∈ L

N
2s (RN ) + L∞(RN ) by Theorem 2.4, we know that λ0 is finite. By the

assumption λ < λ0 in Theorem 1.1, we have

J (uk) ≥ λ0

∫
RN
|uk|2 dx− λ

∫
RN
|uk|2 dx = (λ0 − λ)‖uk‖22 ,

it follows that ‖uk‖2 ≤M/(λ0 − λ). i.e., {uk}k is bounded in L2(RN ).
Since λ ≤ 0, by (ii) of Theorem 2.4, we have

‖(−∆)s/2uk‖2L2 ≤ CE(uk) +D‖uk‖2L2

≤ C(E(uk)− λ‖uk‖2L2) +D‖uk‖2L2

= CJ (uk) +D‖uk‖2L2

≤ CM +DM/(λ0 − λ).

Therefore, {uk}k is bounded in Hs(RN ). �

Lemma 5.3. With the assumptions of Theorem 1.1, for every β > 0, mβ is attained
by a nonnegative function, namely there exists u0 ∈ Σβ, u0(x) ≥ 0 a.e. in RN , such
that

mβ = J (u0).
Moreover, mβ > 0.

Proof. Let {uk}k ⊂ Σβ be a minimizing sequence for mβ . In Section 2, we know
that ‖(−∆)s/2uk‖2L2 is equivalent to∫

RN

∫
RN

|uk(x)− uk(y)|2

|x− y|2s+N
dx dy,

it follows that ‖(−∆)s/2|uk|‖2L2 ≤ ‖(−∆)s/2uk‖2L2 , hence the sequence {|uk|}k is
still a minimizing sequence and we can assume from the beginning that uk ≥ 0 a.e.
in RN for all k. By Lemma 5.2, this minimizing sequence is bounded in Hs(RN ),
so up to subsequences,

uk ⇀ u0 in Hs(RN ),
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by Lemma 4.1, we have∫
RN

K(x)|uk|p dx→
∫

RN
K(x)|u0|p dx,

and then ∫
RN

K(x)|u0|p dx =
∫

RN
K(x)|uk|p dx = β,

thus u0 ∈ Σβ .
Applying Lemma 4.1 for p = 2, we have∫

RN
V (x)|uk|2 dx→

∫
RN

V (x)|u0|2 dx.

Since λ ≤ 0, by weak lower semicontinuity of the norm, it follows that∫
RN
|(−∆)s/2u0|2 dx+

∫
RN

V (x)|u0|2 dx− λ
∫

RN
|u0|2 dx

= ‖(−∆)s/2u0‖2L2 + (−λ)‖u0‖2L2 +
∫

RN
V (x)|u0|2 dx

≤ lim inf
k→∞

[ ‖(−∆)s/2uk‖2L2 + (−λ)‖uk‖2L2 +
∫

RN
V (x)|uk|2 dx] = mβ ,

together with u0 ∈ Σβ , this shows that

mβ =
∫

RN
|(−∆)s/2u0|2 dx+

∫
RN

V (x)|u0|2 dx− λ
∫

RN
|u0|2 dx = J (u0).

Note that u0 ∈ Σβ implies that u0 6≡ 0, then from the definition of λ0 given in
Theorem 1.1 it follows that

mβ = J (u0) ≥ (λ0 − λ)‖u0‖2L2 > 0.

This completes the proof. �

Lemma 5.4. With the assumptions of Theorem 1.1, let u0 be a minimizer for mβ.
Then u0 satisfies∫

RN
(−∆)s/2u0 · (−∆)s/2v dx+

∫
RN

(V (x)− λ)u0 · v dx

=
mβ

β

∫
RN

K(x)|u0|p−2u0 · v dx
(5.2)

for all v ∈ Hs(RN ).

Proof. Let J (u0) be energy functional defined by (5.1). Fix v(x) ∈ Hs(RN ), for
ε ∈ R small enough, when r ∈ (−ε, ε), the function u0 + rv is not identically zero.
Therefore there exists a function t(r) : (−ε, ε)→ (0,∞) such that∫

RN
|K(x)t(r)(u0 + rv)|p dx = β.

Precisely,

t(r) =
( β∫

RN |K(x)(u0 + rv)|p dx

)1/p

.

Note that the map r 7→ t(r)(u0 + rv) defines a curve on Σβ that passes through u0

when r = 0. The function t(r) is differentiable on (−ε, ε),

t′(r) = −β1/p
(∫

RN
|K(x)(u0 + rv)|p dx

)− 1
p−1

Re(K(x)|u0 + rv|p−2(u0 + rv), v),
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where Re denotes real part of inner product (·, ·) (defined in (1.9)), and

Re(|u0 + rv|p−2(u0 + rv), v) = Re
∫

RN
K(x)|(u0 + rv)|p−2(u0 + rv) · v dx.

Then we have

t(0) = 1 and t′(0) = −β−1 Re(K(x)|u0|p−2u0, v). (5.3)

We define γ : (−ε, ε)→ R as

γ(r) = J (t(r)(u0 + rv)) = t2(r)J (u0 + rv)

= t2(r)((−∆)s/2(u0 + rv), (−∆)s/2(u0 + rv))

+ t2(r)((V (x)− λ)(u0 + rv), (u0 + rv)).

Since t(r)(u0 + rv) ∈ Σβ for every r ∈ (−ε, ε), the point r = 0 is a local minimum
for γ, such that

γ(0) = J (u0) = mβ . (5.4)

The function γ is differentiable and

γ′(r) =2t(r)t′(r)J (u0 + rv)

+ 2t2(r) Re[((−∆)s/2(u0 + rv), (−∆)s/2v) + ((V (x)− λ)(u0 + rv), v)].

by (5.3), (5.4), then

0 = γ′(0) = 2t(0)t′(0)J (u0) + 2t2(0) Re
[
((−∆)s/2u0, (−∆)s/2v)

+ ((V (x)− λ)u0, v)
]

= −2β−1 Re(K(x)|u0|p−2u0, v)mβ

+ 2 Re[((−∆)s/2u0, (−∆)s/2v) + ((V (x)− λ)u0, v)].

(5.5)

Since v is an arbitrary complex function in Hs(RN ), it follows that

−β−1(K(x)|u0|p−2u0, v)mβ + [((−∆)s/2u0, (−∆)s/2v) + ((V (x)− λ)u0, v)] = 0,

i.e. (5.2) holds. �

Let u0 be a minimizer for mβ . Set u0(x) = cw(x), where c ∈ R will be deter-
mined later. By Lemma 5.4, w(x) satisfies

c[((−∆)s/2w, (−∆)s/2v) + ((V (x)− λ)w, v)] =
mβ

β
cp−1(K(x)|w|p−2w, v)

for all v ∈ Hs(RN ). Choosing c = ( β
mβ

)
1
p−2 , we see that w(x) is nonnegative by

Lemma 5.3 and satisfies(
(−∆)s/2w, (−∆)s/2v

)
+
(
(V (x)− λ)w, v

)
=
(
K(x)|w|p−2w, v

)
∀v ∈ Hs(RN ),

namely w(x) is a weak (nonzero) solution of (1.4), such that

u0(x) = (
β

mβ
)

1
p−2w(x). (5.6)

Thus we obtain the existence of the solution.
Let N be the Nehari manifold defined by (1.8), note that w(x) ∈ N . We mention

in Section 1 that a ground state of (1.4) is a solution that minimizes the energy
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functional I(u) on the Nehari manifold N , next we will prove that w(x) is a ground
state, that is, we need to prove that

I(w) ≤ I(φ), for any φ ∈ N . (5.7)

For any function φ ∈ N , then by the definition of N we have

I(φ) =
(1

2
− 1
p

)
J (φ), (5.8)

where J (φ) is energy functional defined in (5.1).
Fix any φ ∈ N and let θ :=

∫
RN K(x)|φ|p dx, then φ ∈ Σθ. Let v0 = c̃w(x) with

c̃ = ( θ
mθ

)
1
p−2 , we claim that v0 is a minimizer for mθ. Indeed, for any u ∈ Σβ , the

scaling v = ( θβ )1/pu ∈ Σθ, then J (v) = ( θβ )2/pJ (u), it follows that
mβ

β2/p
=

mθ

θ2/p
, for any θ > 0 such that θ 6= β. (5.9)

Note that, by (5.6) we know w(x) = (mββ )
1
p−2u0, then by (5.9) we have

v0 = c̃w(x) = (
θ

mθ
)

1
p−2 (

mβ

β
)

1
p−2u0 = (

θ

β
)1/pu0. (5.10)

Since u0 is the minimizer for mβ , it follows that u0 ∈ Σβ , and that that v0 ∈ Σθ.
Moreover, using (5.9) again,

J (v0) = (
θ

β
)2/pJ (u0) = (

θ

β
)2/pmβ = mθ,

thus v0 is the minimizer for mθ.
Since w ∈ N , v0, φ ∈ Σθ and v0 is the minimizer for mθ, by (5.8) we have

I(w) = (
1
2
− 1
p

)J (w) = (
1
2
− 1
p

)J (c̃−1v0)

= (
1
2
− 1
p

)c̃−2J (v0) = (
1
2
− 1
p

)(
mθ

θ
)

2
p−2J (v0)

≤ (
1
2
− 1
p

)(
mθ

θ
)

2
p−2J (φ) = (

mθ

θ
)

2
p−2 I(φ),

hence to prove I(w) ≤ I(φ), it is sufficient to show that mθ
θ ≤ 1. Since φ ∈ N ∩Σθ,

we obtain

J (φ) =
∫

RN
|(−∆)s/2φ|2 dx+

∫
RN

(V (x)− λ)|φ|2 dx =
∫

RN
K(x)|φ|p dx = θ.

Thus
mθ = inf

u∈Σθ
J (u) ≤ J (φ) = θ,

i.e., mθ
θ ≤ 1. Thus w(x) is a ground state of (1.4). This completes the proof of

Theorem 1.1.

6. Proof of Theorems 1.2 and 1.3

In this section we prove that weak solutions of (1.4) are of class C0,α(RN ) for
some α ∈ (0, 1). First we give some properties of Lq(RN ) +L∞(RN ) which will be
used below.

Proposition 6.1. The space Lq(RN ) + L∞(RN ) has following properties.
(i) Lr(RN ) ⊂ Lq(RN ) + L∞(RN ) for any 1 ≤ q ≤ r ≤ ∞.
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(ii) Lr(RN ) + L∞(RN ) ⊂ Lq(RN ) + L∞(RN ) for any 1 ≤ q ≤ r ≤ ∞.

Proof. (i) Let f(x) ∈ Lr(RN ), for a given constant M > 0 we have f(x) = f0 + f1,
where

f0 = χ{x:|f(x)|>M}f(x), f1 = χ{x:|f(x)|≤M}f(x).

by the Chebyshev inequality [5]

|{x : |f(x)| > M}| ≤
(
C‖f‖Lr
M

)r
<∞.

Since q ≤ r, then Lr({x : |f(x)| > M}) ⊂ Lq({x : |f(x)| > M}), then f0 ∈ Lq(RN ).
It is obvious to see that f1 ∈ L∞(RN ). Then f(x) ∈ Lq(RN )+L∞(RN ). Therefore,
the case (i) holds.

The case (ii) is easy to obtain from case (i). �

Recall that the definition of fractional Sobolev spaces (e.g. see [6]) for p ≥ 1 and
β > 0:

Lβ,p = {u ∈ Lp(RN )|F−1[(1 + |ξ|2)β/2û] ∈ Lp(RN )},
and associated to the fractional Laplacian, the space

Wβ,p = {∈ Lp(RN )|F−1[(1 + |ξ|β)û] ∈ Lp(RN )}.
The following two theorems are basic results for these spaces which can be found
in [6].

Theorem 6.2 ([6]). Assume that p ≥ 1 and β > 0. The following hold:
(i) Lβ,p =Wβ,p, and Ln,p = Wn,p(RN ) for all n ∈ N, where Wn,p is the usual

Sobolev space.
(ii) For α ∈ (0, 1) and 2α < β, we have (−∆)α : W β,p →W β−2α,p.
(iii) For α, γ ∈ (0, 1) and 0 < µ ≤ γ − 2α, we have

(−∆)α : C0,γ(RN )→ C0,µ(RN ) if 2α < γ,

and, for 0 ≤ µ ≤ 1 + γ − 2α,

(−∆)α : C1,γ(RN )→ C0,µ(RN ) if 2α > γ.

Theorem 6.3 ([6]). (i) If 0 ≤ α, and either 1 < p ≤ q ≤ Np/(N − αp) < ∞
or p = 1 and 1 ≤ q < N/(N − α), then Lα,p is continuously embedded in
Lq(RN ).

(ii) Assume that 0 ≤ α ≤ 2 and α > N/p. If α − N/p > 1 and 0 < µ ≤
α−N/p−1, then Lα,p is continuously embedded in C1,µ(RN ). If α−N/p < 1
and 0 < µ ≤ α−N/p, then Lα,p is continuously embedded in C0,µ(RN ).

Let H(x, t) be defined in (3.1) (in the Appendix below), then we define the kernel
K, Kµ with µ > 0 as

K(x) =
∫ ∞

0

e−tH(x, t) dt, Kµ(x) =
∫ ∞

0

e−µtH(x, t) dt. (6.1)

By the rescaling property of H(x, t),

H(x,
t

µ
) = µ

N
2sH(µ

1
2s x, t),

we have
Kµ(x) = µ

N
2s−1K(µ

1
2sx). (6.2)
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On the other hand, In the Appendix of [6], we know that K(x) = F−1
(

1
1+|ξ|2s

)
,

then in the same way, we have

Kµ(x) = F−1
( 1
µ+ |ξ|2s

)
. (6.3)

The following theorem can be found in [6].

Theorem 6.4 ([6]). Let N ≥ 2 and s ∈ (0, 1). Then we have the following:
(i) K is positive, radically symmetric and smooth in RN \ {0}. Moreover, it is

nonincreasing as a function of r = |x|.
(ii) For appropriate constants C1 and C2,

K(x) ≤ C1

|x|N+2s
if |x| ≥ 1,

K(x) ≤ C2

|x|N−2s
if |x| ≤ 1.

(6.4)

Corollary 6.5. For N ≥ 2 and s ∈ (0, 1), we have µ > 0 and Kµ satisfies Theorem
6.4 (i)-(ii).

Since (6.2) holds, then it is easy to verify the above corollary.

Proof of Theorem 1.2. Since V (x) is bound from above, then there exists a constant
M > 0 such that V (x) ≤ M . Note that u(x) ∈ Hs(RN ) is a nonnegative solution
of (1.4) satisfying

(−∆)su(x) + V (x)u(x)−K(x)|u|p−2u(x) = λu(x),

then

(−∆)su(x) + (M − λ)u(x) = (M − V (x))u(x) +K(x)|u|p−2u(x).

Let µ0 = M − λ, since λ ≤ 0, we have µ0 > 0. Let h(x) = (M − V (x))u(x) +
K(x)|u|p−2u(x), then we have

u(x) = Kµ0 ∗ h(x).

Note that u(x) is nonnegative and nontrivial, V (x) ≤ M , K(x) 6= 0, we have
h(x) ≥ 0 such that h(x) 6= 0. By the corollary 6.5, we know that Kµ0 is positive,
it follows that u(x) is positive in RN . The proof is complete. �

To discuss the regularity of the weak solution (1.4), first we discuss the following
result about liner equations.

Theorem 6.6. Let s ∈ (0, 1), assume that u ∈ Hs(RN ), N > 2s such that

(−∆)su(x) + µu(x) = V (x)u(x) in RN , (6.5)

for µ > 0, V (x) ∈ Lq(RN ) + L∞(RN ) with q > N
2s . Then u ∈ C0,α(RN ) for some

α ∈ (0, 1). Moreover, u(x)→ 0 as |x| → ∞.

Proof. First we know that u ∈ Hs(RN ) = Ws,2. Let 1 = r0 > r1 > r2 > · · · , and
consider Bi = B(0, ri), the ball of radius ri and centered at the origin. We define
h(x) = V (x)u(x), since V (x) ∈ Lq(RN ) + L∞(RN ), we have V (x) = V1 + V2 such
that V1 ∈ Lq(RN ) and V2 ∈ L∞(RN ), then h(x) = h1 + h2 with h1 = V1u(x) and
h2 = V2u(x). Since u ∈ Hs(RN ), by Sobolev inequality we have u ∈ L2∗(RN ) with
2∗ = 2N/(N − 2s). Since V1 ∈ Lq(RN ), by Hölder inequality, then we have h1 ∈
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Lk0(RN ) with k0 = (1/q + 1/2∗)−1. Therefore, h(x) = h1 + h2 with h1 ∈ Lk0(RN )
and h2 ∈ L2∗(RN ).

Now let η1 ∈ C∞ with 0 ≤ η1 ≤ 1, with support in B0 and such that η1 ≡ 1 in
B1/2, where B1/2 = B(0, r1/2) with r1 < r1/2 < r0. Let u1 be the solution of the
equation

(−∆)su1 + µu1 = η1h(x) in RN , (6.6)

then
(−∆)s(u− u1) + µ(u− u1) = (1− η1)h(x) in RN , (6.7)

so that
u− u1 = Kµ ∗ {(1− η1)h}. (6.8)

Using the Hölder inequality and (6.4) we have

|u(x)− u1(x)|
≤ C

{
‖Kµ‖Ll0 (Bc1/2)‖(1− η1)h1‖Lk0 + ‖Kµ‖Ll1 (Bc1/2)‖(1− η1)h2‖L2∗

}
,

(6.9)

for all x ∈ B1, where l0 = k0/(k0 − 1), k0 is given above, and l1 = 2∗/(2∗ − 1). In
view of this inequality we have to concentrate our attention in u1(x).

Since B0 is bound and V (x) ∈ Lq(RN ) + L∞(RN ), we obtain that η1V (x) ∈
Lq(B0). With the assumption q > N

2s , we have η1V (x) ∈ Lq0(B0) for N
2s < q0 ≤

min{q, Ns }. Since u ∈ L2∗(RN ), by Hölder inequality, we have η1V (x)u ∈ Lk1(RN ),
for k1 = (1/q0 + 1/2∗)−1 such that k1 > 1. Since η1 has support in B0, we have
η1V (x)u ∈ Lp1(RN ), for any 1 < p1 < min{k1, N/(2s)}. Note that u1 satisfies
(6.6), thus by the definition of the space W2s,p1 , we have u1 ∈ W2s,p1 . Then, using
Sobolev embedding of the Theorem 6.3 (i) and (6.9), we have u ∈ Lq1(B1) for
q1 = p1N/(N − 2s p1).

Now we repeat the procedure, but consider a smooth function η2 such that
0 ≤ η2 ≤ 1, with support in B1 and η2 ≡ 1 in B3/2, where B3/2 = B(0, r3/2) with
r2 < r3/2 < r1. We also have η2V (x) ∈ Lq0(B1) for any N

2s < q0 ≤ min{q, Ns },
we can set 1

q0
= 2s

N − ε with 0 < ε ≤ s
N . By Hölder inequality again, we have

η2V (x)u ∈ Lp2(B2) for any

1 ≤ p2 < p1/(1− ε) where p2 = (1/q0 + 1/q1)−1.

Proceeding as above, with the obvious changes we obtain that

u2 = Kµ ∗ (η2h(x)),

satisfying u2 ∈ W2s,p2 . Then we have u ∈ Lq2(B2) for q2 = p2N/(N − 2s p2).
Repeating the argument, for sequences ηj , pj and qj = pjN/(N−2s pj), we have

ηjV (x)u ∈ Lpj (Bj) for any

1 ≤ pj < pj−1/(1− ε) where pj = (1/q0 + 1/qj)−1.

It follows that for some finite j, ηjV (x)u ∈ Lpj (Bj) such that pj > N/(2s). Then
by Theorem 6.3(ii), we have uj ∈ C0,α(RN ) for some α ∈ (0, 1). Since uj satisfies
the inequality that similar to (6.9), we have u ∈ C0,α(Bj+1).

The ball Bj is centered at the origin, but we may arbitrarily move it around
RN . Covering RN with these balls, we obtain that u ∈ C0,α(RN ). Finally, the fact
that u ∈ L2∗(RN ) ∩ C0,α(RN ) implies that u(x) → 0 as |x| → ∞, completing the
proof. �
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Proof of Theorem 1.3. Note that u(x) satisfies

(−∆)su(x) + V (x)u(x)−K(x)|u|p−2u(x) = λu(x),

for 2 < p < 2∗. Let Ṽ (x) = −V (x) +K(x)|u|p−2, then the equation becomes

(−∆)su(x)− λu(x) = Ṽ (x)u(x).

We claim that Ṽ (x) ∈ Ll(RN ) + L∞(RN ) for some l > N
2s .

Since the condition (A5) holds, K(x) ∈ Lr̃(RN ) + L∞(RN ) for r̃ > 2∗

2∗−p , then
K(x) = K1 +K2 with K1 ∈ Lr̃(RN ) and K2 ∈ L∞(RN ). Then Since u ∈ L2∗(RN ),
we have K2|u|p−2 ∈ Lr0(RN ) for r0 = 2∗

p−2 > 2∗

2∗−2 = N
2s . By Hölder inequality,

we have K1|u|p−2 ∈ Lr1(RN ) with r1 = ( 1
r̃ + p−2

2∗ )−1 such that r1 >
N
2s . Then by

Proposition 6.1 (i), we have K(x)|u|p−2 ∈ Ll1(RN )+L∞(RN ) with l1 = min{r0, r1}
such that l1 > N

2s . Then by Proposition 6.1 (ii), we have Ṽ (x) ∈ Ll(RN )+L∞(RN )
with l = min{q̃, l1}(where q̃ given in (A5)), such that l > N

2s . Then by Theorem
6.6, we obtain the regular result of Theorem 1.3. �
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