
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 220, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

MULTIPLE SOLUTIONS FOR POSSIBLY DEGENERATE
EQUATIONS IN DIVERGENCE FORM

ANDREA PINAMONTI

Abstract. Via variational methods, we establish the existence of at least

two distinct weak solutions for the Dirichlet problem associated to a possibly

degenerate equation in divergence form.

1. Introduction

Let Ω be a bounded open subset of Rn, 1 ≤ m ≤ n and X = (X1, . . . , Xm) be
a family of locally Lipschitz vector fields in Rn. We prove a multiplicity result for
the problem

divX a(x,Xu) = λf(x, u) in Ω
u = 0 on ∂Ω

(1.1)

where f : Ω×R→ R and a : Ω×Rm → Rm are continuous maps satisfying suitable
growth assumptions and λ ∈ R. We denote by divX u = −

∑m
i=1X

∗
i ui the so-called

X-divergence where X∗i denotes the operator formally adjoint to Xi, that is the
operator for which∫

Rn
ψXiϕdx =

∫
Rn
ϕX∗i ψdx ∀ϕ,ψ ∈ C∞0 (Rn).

We prove that under suitable assumptions, there is an explicit interval of values for
λ for which (1.1) has at least two distinct weak solutions. This type of problem
has been studied when m = n and X is the standard Euclidean gradient, we refer
for instance to [2, 3, 8, 9, 10, 20, 21, 33] and references therein. If m < n and
X is a general family of locally Lipschitz vector fields then equations of type (1.1)
have been studied from several perspectives, see for example [4, 7, 6, 11, 12, 18,
23, 27, 30, 31]. For multiplicity results in the particular case 1 ≤ m < n we refer
to [26, 17, 27] and references therein. In particular, in [27] the authors proved
a multiplicity result for the Kohn Laplacian in general Carnot groups using only
variational techniques and under the assumption that the nonlinear term f satisfies
the Ambrosetti-Rabinowitz condition (see (A11) below). In the present paper we
prove that using the approach developed in [28] and under suitable assumptions,
the result proved in [27] can be generalized to more general equations and more
general settings, see Section 5. Our main assumptions are:
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(A1) a(x, ξ) = ∇ξA(x, ξ) for some continuous A : Ω× Rm → R with continuous
gradient.

(A2) A(x, 0) = 0 for all x ∈ Ω.
(A3) There exist c > 0 and p > 1 such that |a(x, ξ)| ≤ c(1 + |ξ|p−1) for all x ∈ Ω,

ξ ∈ Rm.
(A4) A is uniformly convex, i.e. there is k > 0 such that

A
(
x,
ξ + η

2

)
≤ 1

2
A(x, ξ) +

1
2
A(x, η)− k|ξ − η|p

for all x ∈ Ω and ξ, η ∈ Rm.
(A5) 0 ≤ a(x, ξ)ξ ≤ pA(x, ξ) for all x ∈ Ω, ξ ∈ Rm.
(A6) There are C1, C2 > 0 such that

C1|ξ|p ≤ A(x, ξ) ≤ C2|ξ|p

for all x ∈ Ω and ξ ∈ Rm.
(A7) The control distance d (see [4, Definition 5.2.2]) associated to the family

X is defined, moreover (Rn, d) is complete and the topology generated by
d is equivalent to the one generated by the Euclidean distance. For every
compact set K of Rn, there exists C > 1 and R0 > 0 such that denoted
by Br(x) the d−ball centered at x ∈ Rn with radius r > 0 the following
condition holds:

0 < |B2r(x)| ≤ C|Br(x)| ∀x ∈ K, 0 < r ≤ R0,

where |E| denotes the n−Lebesgue measure of E ⊆ Rn.
(A8) For each compact set K ⊂ Rn there are θ, ν > 0 such that

1
|Br|

∫
Br(x)

|u− ur|dx ≤
θr

|Bνr|

∫
Bνr(x)

|Xu|dx ∀u ∈ C1(Ω)

for every x ∈ K and 0 < r ≤ R0. As usual, ur := 1
|Br|

∫
Br
udx.

(A9) There exist p∗ = p∗(Ω) > p and Sp > 0 such that

‖u‖Lp∗ (Ω) ≤ Sp‖Xu‖Lp(Ω) ∀u ∈ C1
0 (Ω). (1.2)

(A10) There are a1, a2 > 0 and q ∈ (p, p∗) such that |f(x, t)| ≤ a1 + a2|t|q−1 for
every x ∈ Ω and t ∈ R.

(A11) There are α > C2
C1
p and r0 > 0 such that 0 < α

∫ t
0
f(x, τ)dτ ≤ tf(x, t) for

every x ∈ Ω and |t| ≥ r0. Here C1 and C2 are as in [A6].

By (1.2), the function ‖u‖X := ‖Xu‖Lp(Ω) is a norm in C1
0 (Ω). Consequently, we

define

W 1,p
0 (Ω;X) := C1

0 (Ω)
‖·‖X

. (1.3)

As pointed out in [23], if u ∈ W 1,p
0 (Ω;X) then Xju exists in the sense of dis-

tributions and Xju ∈ Lp(Ω) for j = 1, . . . ,m. Consequently, the gradient Xu is
well-defined for any u ∈W 1,p

0 (Ω;X). If follows from (1.2) that for every 1 ≤ q ≤ p∗,
there exits cq > 0 such that

‖u‖Lq(Ω) ≤ cq‖u‖X ∀u ∈W 1,p
0 (Ω;X). (1.4)

We are now in a position to state our main result.
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Theorem 1.1. Assume (A1)–(A11) are satisfied. Let Ω be an open bounded subset
of Rn. Then for every ρ > 0 and

0 < λ < Λ(ρ) :=
(
a1c1C

−1/p
1 ρ

1
p−1 + a2c

q
qq
−1C

− qp
1 ρ

q
p−1
)−1

,

problem (1.1) has at least two weak solutions one of which satisfies

‖u‖pX <
ρ

C1
.

The plan of the paper is the following. In Section 2 we introduce and describe
our variational framework. In Section 3 we collect some results that we will use
in the proof of Theorem 1.1. Section 4 is entirely devoted to the proof of Theo-
rem 1.1. Finally, in Section 5 we provide some interesting examples satisfying our
assumptions.

2. Variational framework

For describing the variational framework, we need the following theorem that
has been proved in [18, 16], see also [1, 13, 22].

Theorem 2.1. Assume (A7)–(A9). If Ω ⊂ Rn is a bounded open set and p > 1
then W 1,p

0 (Ω;X) is reflexive and the embedding

W 1,p
0 (Ω;X) ↪→ Lq(Ω)

is compact for every 1 ≤ q < p∗.

In the sequel we will use the following interesting result, see [32, Theorem 6] for
a proof.

Theorem 2.2. Let Y be a reflexive real Banach space, and let Φ,Ψ : Y → R be two
continuously Gâteaux differentiable functionals such that Φ is sequentially weakly
lower semicontinuous and coercive. Further, assume that Ψ is sequentially weakly
continuous. In addition, assume that, for each µ > 0, the functional

Jµ := µΦ−Ψ

satisfies the Palais-Smale condition. Then, for every ρ > infY Φ and every

µ > inf
u∈Φ−1((−∞,ρ))

supv∈Φ−1((−∞,ρ)) Ψ(v)−Ψ(u)
ρ− Φ(u)

,

the following holds:
either the functional Jµ has a strict global minimum in Φ−1((−∞, ρ)), or Jµ has
at least two critical points one of which lies in Φ−1((−∞, ρ)).

For the sake of completeness, we recall that given a Banach space Y with topo-
logical dual Y ∗, a C1-functional I : Y → R is said to satisfy the Palais-Smale
condition if for every η ∈ R, every sequence {xn}n∈N ⊂ Y such that

I(xn)→ η, ‖I ′(xn)‖Y ∗ → 0 as n→∞
admits a convergent subsequence in Y . As usual,

‖I ′(u)‖Y ∗ := sup
{
|I ′(u)[ϕ]| : ϕ ∈ Y, ‖ϕ‖Y = 1

}
. (2.1)

Let us define the functional Iλ : W 1,p
0 (Ω;X)→ R by

Iλ(u) :=
1
λ

Φ(u)−Ψ(u),
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where

Φ(u) :=
∫

Ω

A(x,Xu(x))dx and Ψ(u) :=
∫

Ω

F (x, u(x))dx

where λ ∈ R \ {0} and F (x, t) :=
∫ t

0
f(x, τ)dτ . It is easy to see that Iλ ∈

C1(W 1,p
0 (Ω;X),R) and

I ′λ(u)[ϕ] =
1
λ

∫
Ω

〈a(x,Xu), Xϕ〉dx−
∫

Ω

f(x, u)ϕdx ϕ ∈W 1,p
0 (Ω;X).

We say that u ∈W 1,p
0 (Ω;X) is a weak solution of (1.1) if

I ′λ(u)[ϕ] = 0 ∀ϕ ∈W 1,p
0 (Ω;X).

3. Structural properties

In this section we collect some interesting consequences of (A1)–(A11). The
following Lemma corresponds to [27, Remark 3.2].

Lemma 3.1. If f satisfies (A11) (also known as Ambrosetti-Rabinowitz condition)
then

F (x, t) ≥ F (x, v)tα

for every x ∈ Ω and every (t, v) ∈ R2 with t ≥ 1 and |v| ≥ r0.

Let Y be a Banach space and Y ∗ its dual. We recall [5, 9] that an operator
a : Y → Y ∗ verifies the (S+)-condition if for any sequence (xn)n∈N ⊂ Y , xn ⇀ x
and

lim sup
n→∞

〈a(xn), xn − x〉 ≤ 0

it holds xn → x strongly in Y . We also recall [9] that a convex functional A : Y → R
is uniformly convex if for any ε > 0 there is δ > 0 such that

A
(x+ y

2

)
≤ 1

2
A(x) +

1
2
A(y)− δ

for all x, y ∈ Y with ‖x−y‖ > ε. If A is uniformly convex on every ball, A is called
locally uniformly convex.

The following result corresponds to [9, Proposition 2.1].

Proposition 3.2. Suppose A : Y → R is a C1 locally uniformly convex functional
that is locally bounded. Then a = DA : Y → Y ∗ verifies the (S+)−condition.

By [28, Remark 3.3], the functional Φ(u) =
∫

Ω
A(x,Xu)dx is locally bounded

and locally uniformly convex. Proposition 3.2 gives that,

Φ′(u)[ϕ] =
∫

Ω

〈a(x,Xu), Xϕ〉dx

satisfies the (S+)−condition.
We conclude this section with some comments about assumptions (A7)–(A9). In

[16], it is proved that (A7) and (A8) imply (A9) for every Ω with sufficiently small
diameter, Ω ⊂ K◦ and p∗ = pQ/(Q − p) with Q = log2(C). Moreover, as pointed
out in [23], if the family X has the additional property
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(A12) Let α1, . . . , αn ∈ N and R > 0 we define the map δR : Rn → Rn as

δR(x) =
(
Rα1x1, . . . , R

αnxn
)
.

Then
Xj(δRu)(x) = R(Xju)(δRx) ∀u ∈ C∞(Rn)

where δRu(x) = u(δR(x)).
Then (1.2) holds for every open bounded subset of Rn. As proved in [24, Remark
9] the same conclusion holds if (A7) and (A8) are satisfied for every r > 0. We also
point out that in general (A9) does not imply (A7), [23, Section 6.2].

4. Main theorem

In this Section we prove Theorem 1.1. We start with two preliminary lemmas.

Lemma 4.1. Every Palais-Smale sequence {ui}i∈N ⊂W 1,p
0 (Ω;X) for Iλ is bounded.

Proof. We proceed by contradiction. Possibly passing to a subsequence we can
assume ‖ui‖X →∞ as i→∞. Let α > pC2

C1
, by definition

Iλ(ui)−
I ′λ(ui)[ui]

α
=

1
λ

∫
Ω

A(x,Xui)dx−
1
αλ

∫
Ω

〈a(x,Xui), Xui〉dx

+
∫

Ω

f(x, ui(x))ui(x)
α

− F (x, ui(x))dx.
(4.1)

Recalling that f is continuous and denoting

υ := sup
{∣∣f(ξ, t)t

α
− F (ξ, t)

∣∣ : ξ ∈ Ω, |t| ≤ r0

}
<∞,

we obtain ∫
|ui(x)|≤r0

f(x, ui(x))ui(x)
α

− F (x, ui(x))dx ≥ −|Ω|υ (4.2)

and by (A11), ∫
|ui(x)|>r0

f(x, ui(x))ui(x)
α

− F (x, ui(x))dx ≥ 0. (4.3)

Assumptions (A5) and (A6) give
1
λ

(
C1 −

C2p

α

)
‖u‖pX ≤

1
λ

∫
Ω

A(x,Xui)dx−
1
αλ

∫
Ω

〈a(x,Xui), Xui〉dx . (4.4)

Using (4.1), (4.2), (4.3) and (4.4)
1
λ

(
C1 −

C2p

α

)
‖u‖pX ≤ Iλ(ui)−

I ′λ(ui)[ui]
α

+ |Ω|υ,

note that α > pC2
C1

implies C1 − C2p
α > 0. Therefore,

1
λ

(
C1 −

C2p

α

)
‖u‖pX ≤ Iλ(ui) +

‖I ′λ(ui)‖X−1‖ui‖X
α

+ |Ω|υ.

Let i0 ∈ N be such that ‖ui‖X ≥ 1 for every i ≥ i0. Since p > 1 then for every
i ≥ i0

0 <
1
λ

(
C1 −

C2p

α

)
≤ Iλ(ui)
‖ui‖X

+
‖I ′λ(ui)‖X−1

α
+
|Ω|υ
‖ui‖X

. (4.5)

Letting i → ∞ in (4.5) and recalling that {ui}i∈N is a Palais-Smale sequence we
obtain a contradiction. �
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Lemma 4.2. The functional Iλ satisfies the Palais-Smale condition.

Proof. Let {ui}i∈N ⊂ W 1,p
0 (Ω;X) be a Palais-Smale sequence for Iλ. By Lemma

4.1, {ui}i∈N is bounded and since W 1,p
0 (Ω;X) is reflexive, there is a subsequence,

that we still denote by {ui}i∈N, and û ∈W 1,p
0 (Ω;X) such that ui ⇀ û inW 1,p

0 (Ω;X).
We have to prove that ui → û in W 1,p

0 (Ω;X). By definition,∫
Ω

〈a(x,Xui), X(ui(x)− û(x))〉dx

= λI ′λ(ui)[ui − û] + λ

∫
Ω

f(x, ui(x))(ui(x)− û(x))dx.
(4.6)

Since ‖I ′λ(ui)‖X−1 → 0, and {ui − û}i∈N is bounded in W 1,p
0 (Ω;X), and recalling

that
|I ′λ(ui)[ui − û]| ≤ ‖I ′λ(ui)‖X−1‖ui − û‖X ,

we obtain
I ′λ(ui)[ui − û]→ 0 as i→∞. (4.7)

By Theorem 2.1, ui → û in Lq(Ω). By (A10),

0 <
∫

Ω

f(x, ui(x))(ui(x)− û(x))dx

≤ a1

∫
Ω

|ui(x)− û(x)|dx+ a2

∫
Ω

|ui(x)|q−1|ui(x)− û(x)|dx

≤ Ca1‖u− ui‖Lq(Ω) + a2‖ui‖Lq(Ω)‖u− ui‖Lq(Ω)

hence ∫
Ω

f(x, ui(x))(ui(x)− û(x))dx→ 0 as i→∞. (4.8)

Putting together (4.6), (4.7) and (4.8) we conclude that

Φ′(ui)[ui − û] =
∫

Ω

〈a(x,Xui), X(ui(x)− û(x))〉dx→ 0 as i→∞. (4.9)

Since Φ′ has the (S+)-property, ui → û in W 1,p
0 (Ω;X). �

Proof of Theorem 1.1. By Lemma 4.2, Iλ satisfies the Palais-Smale condition and
by (A4) and (A6), Φ is coercive and sequentially weakly lower semicontinuous. Since
f is continuous and using Theorem 1.2 then Ψ is sequentially weakly continuous.
We claim that for every ρ > 0 and 0 < λ < Λ(ρ)

1
λ
> Θ(ρ) := inf

u∈Φ−1((−∞,ρ))

supv∈Φ−1((−∞,ρ)) Ψ(v)−Ψ(u)
ρ− Φ(u)

.

By (A2) we obtain Φ(0) = 0 and by definition Ψ(0) = 0. Hence,

Θ(ρ) ≤
supv∈Φ−1((−∞,ρ)) Ψ(v)

ρ
.

By (A6),
Φ−1((−∞, ρ)) ⊆ {v ∈ X | ‖v‖X ≤ C−1/p

1 ρ
1
p }; (4.10)

therefore

Θ(ρ) ≤
sup
{v∈X | ‖v‖X≤C−1/p

1 ρ
1
p }

Ψ(v)

ρ
.
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Using (A10), (4.10) and (1.4) we easily obtain

Θ(ρ) ≤ a1c1

C
1
p

1

ρ
1
p−1 +

a2c
q
q

qC
q
p

1

ρ
q
p−1

and the conclusion follows. Now we prove that Jλ cannot have a strict global
minimum in Φ−1((−∞, ρ)). By Lemma 3.1 and (A6) it follows

Jλ(tu0) =
1
λ

Φ(tu0)−Ψ(tu0)

≤ C2

λ
tp
∫

Ω

|Xu0|pdx− tα
∫
{ξ∈Ω | |u0(x)|≥r0}

F (x, u0(x))dx+ ν|Ω|,

for every u0 ∈ W 1,p
0 (Ω;X), where ν = sup{|F (x, t)|, x ∈ Ω, |t| ≤ r0}. Choosing u0

such that |{x ∈ Ω : |u0(x)| ≥ r0}| > 0, recalling that α > C2
C1
p > p and F (x, t) > 0

for |t| ≥ r0 we obtain
lim

t→+∞
Jλ(tu0) = −∞.

Applying Theorem 2.2 we complete the proof. �

5. Examples

In this section we collect some interesting examples of vector fields satisfying
(A7), (A8) and (A9).

5.1. Euclidean space. Let m = n and X be the standard Euclidean gradient.
It is well known that (A7) and (A8) are satisfied for every r > 0, therefore also
(A9) holds. In this case a result similar to Theorem 1.1 has been proved in [28].
We invite the reader to have also a look at [3] where the case A(x, ξ) = |ξ|2 is
investigated and [9, 8, 10, 20, 33] for the case A(x, ξ) = |ξ|p.

5.2. Carnot Groups. We recall that a Carnot group G is a connected Lie groups
whose Lie algebra G is finite dimensional and stratified of step s ∈ N. Precisely,
there exist linear subspaces V1, . . . , Vs of G such that

G = V1 ⊕ · · · ⊕ Vs
with

[V1, Vi−1] = Vi if 2 ≤ i ≤ s, and [V1, Vs] = {0}.
Here [V1, Vi] := span{[a, b] : a ∈ V1, b ∈ Vi}. Since G is stratified then every element
in G is the linear combination of commutators of elements V1. We refer to [4] for
a complete introduction to the subject. Let dim(V1) = m and X = (X1, . . . , Xm)
be a basis of V1. In [18], it is proved that (A7) and (A8) are satisfied for every
r > 0 therefore also (A9) holds. We point out that when p = 2 and A(x, ξ) = |ξ|2,
Theorem 1.1 boils down to [27, Theorem 3.1].

5.3. Hörmander vector fields. Let X = (X1, . . . , Xm) be a family of smooth
vector fields in Rn. We say that X satisfies the Hörmander condition if

rank
(

Lie{X1, . . . , Xm}
)
(x) = n ∀x ∈ Rn

where Lie{X1, . . . , Xm} denotes the Lie algebra generated by X. Clearly, Carnot
groups satisfy the Hörmander condition, on the other hand there are plenty of
examples of vector fields satisfying the Hörmander condition whose generated Lie
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algebra is not stratified. For instance, we can consider in R2 the family X =
(X1, X2) where

X1 = ∂x, X2 = x2∂y

then rank
(

Lie{X1, X2}
)
(x, y) = 2 for every (x, y) ∈ R2 and Lie{X1, X2} is not

stratified. In [29] and [19] it is proved that (A7) and (A8) hold respectively with
R0 > 0.

5.4. Vector fields not satisfying the Hörmander condition but satisfying
(A7) and (A8). The following example is contained in [23]. Let us consider the
family X = (X1, X2) in R3 where

X1 = ∂x, X2 = |x|m∂y + ∂z, m ∈ [1,∞),

in [23] is it proved that X satisfies (A7) and (A8). The family X satisfies (A12)
with δR(x, y, z) = (Rx,Rm+1y,Rz), therefore it also satisfies (A9).
The following family of vector fields has been studied in [14, 15],

Xj = λj∂xj j = 1, . . . ,m

where each λj is a real-valued function and the family (λj) satisfies suitable con-
ditions, see [14, 15]. As proved in [14, 15], these conditions ensure the validity of
(A7) and (A8).

We conclude with an explicit application of Theorem 1.1 to Carnot groups, note
that the following result generalizes [27, Theorem 3.1]. Let X = (X1, . . . , Xm) be
a basis of V1 and p > 1. We define

∆pu = divX(|Xu|p−2Xu).

Theorem 5.1. Let G be a Carnot group, Ω be a bounded open subset of G and
p ≥ 2. If f : Ω × R → R satisfies (A10) and (A11) for some q ∈ (p, p∗) then, for
every ρ > 0 and each

0 < λ < Λ(ρ) :=
(
a1c1ρ

1
p−1 + a2c

q
qq
−1ρ

q
p−1
)−1

the problem

∆pu = λf(x, u) in Ω
u = 0 on ∂Ω

has at least two distinct weak solutions in W 1,p
0 (Ω;X) one of which is such that

‖u‖X ≤ ρ.
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Spaces and the Existence of Minimal Surfaces, Comm. Pure Appl. Math. 49(10) (1996),

1081–1144.
[17] E. Garagnani, F. Uguzzoni; A multiplicity result for a degenerate-elliptic equation with crit-

ical growth on noncontractible domains. Topol. Methods Nonlinear Anal. 22 (2003), 53–68.
[18] P. Hajlasz, P. Koskela; Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000), no. 688.
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