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GOOD RADON MEASURE FOR ANISOTROPIC PROBLEMS
WITH VARIABLE EXPONENT

IBRAHIME KONATE, STANISLAS OUARO

ABSTRACT. We study nonlinear anisotropic problems with bounded Radon
diffuse measure and variable exponent. We prove the existence and uniqueness
of entropy solution.

1. INTRODUCTION

We consider the anisotropic elliptic Dirichlet boundary-value problem

N
0 Ju )
b(u)*zaj,iai(%afm) =p inQ (11)
i=1

u=0 on 01,

where  is an open bounded domain of RY (N > 3), with smooth boundary,
b: R — R is a continuous, surjective and non-decreasing function, with b(0) = 0
and p is a bounded Radon diffuse measure (this is ¢ does not charge the sets of zero
pm(+)-capacity) such that |p|(€2) > 0. All papers concerned by problems like (1.1])
considered particular cases of data b and measure p. Indeed, in [13], the authors
considered b(-) = 0, which permit them to exploit minimization technics to prove
the existence of weak solutions and mini-max theory to prove that weak solutions
are multiple. Using the same methods, Koné et al. (see [10]) studied the problem

N
0 ou
=D sz, 5—)=p inQ
;axia(”” gz;) ~H (1.2)
u=0 on 09,

where 4 is a bounded Radon measure. Note that (1.2 is a particular case of (1.1),
where b(-) = 0. Koné et al. also studied problem (1.2]) when p € L>®(£2) (see [9])

and Ouaro, when p € L'(Q) (see [I5]). Ibrango and Ouaro studied the following
problem (see [§])

N
-3 (e ) b = i Q

u=0 on 0f,

(1.3)

2010 Mathematics Subject Classification. 36J60, 35J65, 35J20, 35J25.

Key words and phrases. Generalized Lebesgue-Sobolev spaces; anisotropic Sobolev space;
weak solution; entropy solution; Dirichlet boundary condition;

bounded Radon diffuse measure; Marcinkiewicz space.

(©2016 Texas State University.

Submitted March 28, 2016. Published August 17, 2016.

1



2 I KONATE7 S. OUARO EJDE-2016/221

where 1 € LY(Q). In [8], the authors used the technic of monotone operators in
Banach spaces and approximation methods to prove the existence and uniqueness
of entropy solution of problem .

In this paper, by using the same technics as in [8], we extend their result, taking
into account a measure p which is zero on the subsets of zero p(-)-capacity (i.e.,
the capacity defined starting from VVO1 P (')(Q)). In order to do that, we use a
decomposition theorem proved by Nyanquini et al. in [I4]: every bounded Radon
measure that is zero on the sets of zero p(-)-capacity can be split in the sum of an
element in W~12'()(Q) (the dual space of W&’p(')(Q)), and a function in L(€2),
and conversely, every bounded measure in L!(Q) + W17 ()(Q) is zero on the sets
of zero p(-)-capacity. Using the decomposition of measures result of Nyanquini et
al. (see [14]), we prove that there exists a unique entropy solution of . The
proof of our result will strongly rely on the structure of the measure u, that is, u
belongs to L' (€2) + W=17'0)(Q).

Note that, since b is not necessarily invertible, then, the uniqueness of the entropy
solution is proved in terms of b(u) which is clearly equivalent to the uniqueness of
w if and only if b is invertible. Note that a good Radon measure for the problem
is a Radon measure for which, the entropy solution of problem is unique.
Many papers are related to problems involving variable exponents due to their
applications to elastic mechanics, electrorheological fluids or image restoration.

We denote by M;(2) the space of bounded Radon measures in 2, equiped with
its standard norm || - || o4, (). Note that, if u belongs to My (€2), then [u|(2) (the
total variation of p1) is a bounded positive measure on Q. Given p € My(Q2), we say
that u is diffuse with respect to the capacity Wol’p(')(Q) (p(-)-capacity for short) if
u(A) = 0, for every set A such that Capp.)(4,Q) = 0. For A C Q, we denote

Spy(A4) :={u e Wol’p(')(Q) NCo(N):u=1o0n A;u>0on Q}.
The p(-)-capacity of every subset A with respect to 2 is defined by
Capp(y(A,Q) ;= inf VulP®)dz ¢
app() (4, ©) ueér(l,)(,q){/gz' ul x}
In the case Sp.y(A) = 0, we set Cap,(.)(A,Q) = 400. The set of bounded Radon

diffuse measure in the variable exponent setting is denoted by M} ) (Q). We recall
the decomposition result of bounded Radon diffuse measure proved by Nyanquini
et al (see [14]).

Theorem 1.1. Let p : Q — (1,4+00) be a continuous function and p € My(S2).
Then, j € /\/lg(')(Q) if and only if p € L*(Q) + W—17'0)(Q).

Recall that, in this paper, we assume that p € Mfm(')(ﬂ), where p,,,(+) is to be
defined later.

Remark 1.2. We do not have uniqueness of entropy solution if the measure p does

not belong to the space M‘Z’"(') (see Proof of uniqueness). Therefore, Mf’"(') is the
set of good Radon measure for problem (1.1]).

The remaining part of this article is organized as follows: In Section 2, we intro-
duce some preliminary results. In Section 3, we study the existence and uniqueness
of entropy solution. We refer to [3, 4] [7] as papers dealing with measures (including
the case of variable exponents).
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2. PRELIMINARIES

We study problem under the following assumptions on the data.

Let Q be a bounded domain in RY (N > 3) with smooth boundary domain 92
and () = (p1(),...,pn (")) such that for any i = 1,...,N, p;(-) : Q@ — Ris a
continuous function with

1 <p; :=essinfeqpi(z) < pf = esssup,cq pi(x) < 0. (2.1)

Fori=1,...,N,let a; : 2 x R — R be a Carathéodory function satisfying:
e there exists a positive constant Cy such that

a:(w, )| < €1 (ji() + [ ), (2:2)

for almost every x € Q and for every £ € R, where j; is a non-negative function in
P () Hh L 4 1 _q.

LR, with 5755 + oy = 1

o for £, € R with £ # n and for every x € €, there exists a positive constant Cy

such that

Cale =P @ if | —n > 1
(ai(x,f) _ai(man))(g_n) > - . (23)
Col§ =P i€ —nl <1
e there exists a positive constant C3 such that
ai(z,€).£ > Cyl¢P, (2.4)

for £ € R and almost every z € €.
The hypotheses on a; are classical in the study of nonlinear problems (see [12]).
Throughout this paper, we assume that

p(N —1 p(N —1 f-p; -1 _ pP-N
B ) - B ) pi-p 2

— pr — < — 5 2.5
N(p-1) N-p D; p(N —1) (2:5)
and
N
Yo —>1, (2.6)
im1 Pi

N N 1
where = = > .0 . —.
P Zz:l p;

A prototype example that is covered by our assumption is the following anisotropic
P -harmonic problem: set

ai(z, &) = |¢[Pi@~2¢ where pi(x) > 2fori=1,...,N.
Then, we obtain the problem

“W—fiﬁigi

i=1

pi(z)=2 Oy
6l‘i
u=0 on 01,

):“mQ (2.7)

which, in the particular case where p; = p for any ¢ = 1,..., N, is the p-Laplace
equation.

We also recall in this section some definitions and basic properties of anisotropic
Lebesgue and Sobolev spaces. We refer to [I'7, [I8] for details and related properties.
Set

Ci(Q)={pecC): me%lp(x) >1 ae z €}
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and denote by
pu () = max(p1(z),...,py(x)) and pp(z) := min(p;(x),...,px(2)).
For any p € C,(Q), the variable exponent Lebesgue space is defined by

rO(Q) = {u : u is a measurable real valued function such that

/ JuP@ da < oo},
Q

endowed with the so-called Luxembourg norm
[ulp(y == inf {A>0: / |@\p(z)dx <1}
Q
The p(-)-modular of the LP()(Q) space is the mapping p,.) : LP()(Q) — R defined
by
Pp(y(u) == /Q [P d.
For any u € LP) (), the following inequality (see [5, 6]) will be used later
. - + - +
mln{|u\§(_); \UIﬁ(.)} < pp()(u) < max{ |U|Z(<)5 |u\§(_)}. (2.8)
For any u € LPO)(Q) and v € LI0)(Q), with ﬁ + ﬁ = 1 in Q, we have the
Holder type inequality (see [11])
1 1
[ el < (= + D)l ol (29)

If © is bounded and p,q € C(Q) such that p(z) < q(z) for any = € Q, then the
embedding LPO)(Q) < L) (Q) is continuous (see [IT, Theorem 2.8]).
Herein, we need the anisotropic Sobolev space
WoPO(Q) o= {u e WH(Q) : g—” e LP(Q),i=1,...,N},
T

which is a separable and reflexive Banach space (see [II]) under the norm

N oy
||UH7(-) = Z \%
i=1 v

pi()-

We introduce the numbers

1
N—1' TN TN—¢

and define
N

N 1
ZiZl Py 1
Remark 2.1. Since pu € Mf’"(')(Q), the Theorem implies that there exist
feLYQ) and F € (LP=)(Q))N such that
p=f—divF, (2.10)

1 1
Whereerm—lforallzGQ.

P = , Pt = max{p,...,pPnt P-oo= rnax{Pf, P*}.

We have the following embedding result (see [13, Theorem 1]).
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Theorem 2.2. Assume that Q@ C RY (N > 3) is a bounded domain with smooth
boundary. Assume also that the relation ([2.6)) is fillfuled. For any q € C(Q) verify-
mg
1<q(z) < P o foranyx € Q,
the embedding W&’?(')(Q) < LIO)(Q) is continuous and compact.
The following result is due to Troisi (see [20]).

Theorem 2.3. Let py,...,px € [, +00); g € WHEPLPN)(Q) and

=10 if (p)* <N

€[l,+00) ()" =N

Then, there exists a constant Cy > 0 depending on N,p1,...,py if p < N and also
on q and meas(Q) if p > N such that

N
99 1/n
lgllzaey < Ca]] ||%HL/IW @) (2.11)
i=1 ¢

In this paper, we will use the Marcinkiewicz space M?(Q) (1 < g < +00) as the
set of measurable function g : Q — R for which the distribution

Ag(k) = meas({z € Q: |g(x)| > k}), k>0 (2.12)
satisfies an estimate of the form
Ag(k) < Ck™9, for some finite constant C' > 0. (2.13)
We will use the following pseudo norm in M9(2)
9/l pma(o) := inf{C > 0: A,(k) < Ck™9, Vk >0} (2.14)
Finally, we use throughout the paper, the truncation function T, (k > 0) by
Tk (s) = max{—Fk, min{k; s}}. (2.15)
It is clear that limy oo Tk(s) = s and |Tx(s)| = min{|s|; k}. We define Tol’F(')(Q)

as the set of measurable functions u :  — R such that Ty (u) € W(}’?(')(Q). In the
sequel, we denote Wol’ P (')(Q) = FE to simplify notation.

3. EXISTENCE AND UNIQUENESS RESULT

Definition 3.1. A measurable function u € ’]Bl’p (')(Q) is an entropy solution of

if b(u) € L1(Q) and
Z/ a; 81'1 sz(u —v)dx + /Q b(u)Ty(u —v)dzr < /Q Tk (v —v)du, (3.1)

for all v € EN L*(Q) and for every k > 0.

The existence result is as follows.

Theorem 3.2. Assume (2.1)-(2.6) and (2.10) hold. Then, there exists at least one
entropy solution of problem (|1.1)).
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Proof. The proof is done in three steps.
Step 1: Approximate problem. We consider the problem

_Zaxz‘“( 8un>+T(b( n)) = tn in Q

’L

(3.2)
u, =0 on 99,

where f, = T,,(f) € L>®(Q) and u,, = f, — div F. Note that f, — f in L'(Q) as
n — 400, and

1l = / fulde < / Flde = |l (3.3)

Definition 3.3. A measurable function u, € E is a weak solution for (3.2)) if

Z / o 8“” 8% o+ /Q T (bun))v dar = /Q fovdz + /Q FVudr, (3.4)

for every v € E.

Lemma 3.4. There exists at least one weak solution u, for problem (3.2)) and

1b(un)| < |1 loo-
Proof. We define the operators A,, and B,, as follows.

(Apu,v) = (Au,v) +/ T, (b(u))vdx Yu,v € E, (3.5)
Q
where
N
Ou | Ov
(Au,v) = /Q;ai (2, 87331) oz, dx, (3.6)

(B, v) = /Q v, (3.7)

The operator A,, is onto (see [8, Lemma 3.1] and [19], Corollary 2.2]). Therefore, for
B, € E*, we can deduce the existence of a function w, € E such that (4,u,,v) =
(B, v).

Now, we show that |[b(up)| < ||ttn]leo- Indeed, let us denote by

+

1 if
Hezmin(s—;l), signa'(s):{ its>0

0 ifs<O.

€

If v is a maximal monotone operator defined on R, we denote by g the main section
of v; i.e.,

minimal absolute value of y(s) if v(s) #0
Yo(s) = < +o0 if [s,4+00) N D(y) =0
—00 if (—oo,s] N D(v) = 0.

We remark that, as ¢ approaches 0, H.(s) apaprocahes signf (s). We take v =
Hc(un, — M) as test function in (3.4]), for the weak solution u,, where M > 0 (a



EJDE-2016/221 GOOD RADON MEASURE 7

constant to be chosen later), to obtain

a Mip\ O
> / i . )ami H.luty = M)do + [ T, (b)) He = M)

By (2.4) we have

aun
Z/ a;(z e ale(u — M)dx

ou,, 0O
,Z/M o (;; ) 5 (un — M) *da

<1} €T

S BRI AL
Then, gives
/QT (b)) Ho(t, — M)dz < / He(u, — M)dp,
which is equivalent to
/Q (b)) — T (6D ) Houy — M) < /Q (10— T (b(0)) ) H (o, — M)

We now let € approach 0 in the inequality above to obtain

/Q (Tn(b(un)) - Tn(b(M)))+d:c < /Q (ﬂn - Tn(b(M))) signgd (un — M)dz. (3.9)

Choosing M = by ' (||ftn]|e0) in the above inequality (since b is surjective), we obtain

/ (Tn(b(un))—Tn(llunlloo))+dx
Q
< [, (i = Tl s =05 o))

For any n > ||tn|lco, we have

[ (o= Tl o) sz = 5 L
= [ (1 = i) s = 5" (o)) < 01
Then, (3.10]) gives

(3.10)

/Q (Tn(b(“n)) - ||,u'nHoo)+d1: <0.

+
Hence, for all n > ||tn ||, we have (Tn(b(un)) - HunHoo) =0 a.e. in Q, which is
equivalent to
T (b(un)) < [lpnllo,  for all n > lin oo (3.11)
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Let us remark that as u,, is a weak solution of (3.4]), then (—u,,) is a weak solution
of the problem

_Zaxzal( aun)"'T(b( n)) = fin in Q

’L

(3.12)
U, =0 on 09,

where d;(x,€) = —a;(z, —£), b(s) = —b(—s) and fi, = —jt,. From ([B.11) we deduce
that

To(=b(un)) < [lptnlloo,  for all n > ||jin||oo-

Therefore,
Tn(b(un)) = =|lpnlloo,  for all m > |y |oc- (3.13)

It follows from (3.11) and (3.13) that for all n > ||unllcc, |T0(d(un))| < ||tnllco
which implies |b(un)| < [[tin]lco a.e. in . O

‘We now consider the problem

Oun, .
B Z D, a’( ) +b(un) = pin i €Y (3.14)
U, =0 on 99,

where f, = T,(f) € L>®(Q) and pu,, € L>®(Q). It follows from Lemma that
there exists u, € E with b(u,) € L>°(f) such that

aun B
Z/al B 8wld Jr/ﬂb(un)vdxf/anvda:Jr/QF.Vvdx, (3.15)

3

for every v € F.

Our aim is to prove that these approximated solutions u,, tend, as n approaches
infinity, to a measurable function v which is an entropy solution of the problem
(1.1). To start with, we establish some a priori estimates.

Step 2: A priori estimates.

Lemma 3.5. There exists a positive constant Cs which does not depend on n, such
that

Z/ 8“" P da < Cs(k + 1), (3.16)
\un\<k}

l’i
for every k > 0.

Proof. We take v = Ty, (uy,) as test function in (3.15) to obtain
N

Ouy \ Ou
a;(z, 5 ndw+/bun)T Uy )dx

= / FnTio(un)da + / FVTk(up)dz
Q Q

Using relation (2.4)) and the fact that [, b(un) Tk (un)dz > 0, we obtain

8un .
032/ T pi@) gy < |/anTk(un)da:—&—/QFVTk(un)dx‘. (3.17)

{lun|<k} 3%
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Since
|/ fnTk(un)dx—l—/ FV T (up)dx| = ’/Tk(un)d,un| < klu|(Q) < Ck,
Q Q Q

we deduce that

cs Z/ 120 0@ gy < . (3.18)

{Jun|<k} 5%
We have
i/ |8un
= Junl<ky OTi

N

O - al O -
=> . |a_\zda:+z , o1 de
i1 MHlunl <k Ga>1) OFi i1 Hlun|<ks| Gom| <1} OTi

<Z/

" 1Pi(®@) dg: + N. meas(€2)

{Jun|<k} 5331
C :
< Ek + N.meas(€2) due to relation (3.18)
3
< C5(1+k)
with C5 = max {C%, N.meas(Q)}. O

We also have the following lemma (see [9], [10]).

Lemma 3.6. For any k > 0, there exists some positive constants Cg and C7 such
that:

(1) [unllpa @) < Co;

(ii) \‘%Z?’||Mp;%(ﬂ)§07, Vi=1,...,N.

Step 3: Convergence. According to [2] (see also [10]), we have the following
lemma.

Lemma 3.7. Fori=1,...,N, as n — 400, we have
a; (m, %) — a; (x7 %) in LY(Q), a.e. . € Q. (3.19)

Proposition 3.8. Assume — hold. If u,, € E is a weak solution of
then, the sequence (up)nen+ s Cauchy in measure. In particular, there exists a
measurable function u and a sub-sequence still denoted by u,, such that u, — u in
measure.

Proposition 3.9. Assume (2.1)-(2.6) hold. If u,, € E is a weak solution of (3.2),
then

i) fori=1,...,N, $¥ converges in measure to the weak partial gradient o

i i=1,...,N, 9 : to the weak partial gradient
u;

(i) fori=1,...,N and k > 0, a;(z, %Tk(un)) converges to a;(z, %Tk(u))
in LY(Q) strongly and in LP:)(Q) weakly.
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We can now pass to the limit in (3.4). Let v € Wol’?(')(ﬂ) N L>(2) and k > 0;
we choose Ty (u,, — v) as test function in (3.15) to obtain

Y du,\ 9
;/Qai (x, 87331) oz, Tk (u,, —v)dz + /Q b(un) Tk (un, — v)dz

(3.20)
= / foTk(uy, — v)dzx +/ FVTy(u, —v)dx.
Q Q
For the first term of the right-hand side of (3.20]), we have
/ fu(@) Tk (up —v)dz — / f(@) Tk (u —v)dz, (3.21)
Q Q

since f,, converges strongly to f in L'(Q) and Tj(u, — v) converges weakly-* to
Ti(u — o) in L®(Q) and a.e. in Q.
For the second term of the right-hand side of (3.20]), we have

/ FVTi(up —v)dr — / FVTi(u—v)dz, (3.22)
Q Q

since VT (un — v) = VTk(u—v) in (LP»O(Q)N and F e (LPmO)(Q))N. For the
first term of (3.20), we have (see [2]):

S ( %) O 13 d
n—1>r-|r-1001n Z/Qal N ox; / Ox; kun—U) o

-5 [ (o 22y
> il/ﬂm(m, 8xi)8aciTk(u v)dx.
For the second term of , we have

/Q bt Tt — v)da = /Q (b1n) — b(0)) T (1 — v)dz + / b(0) T — v)da.

Q
The quantity (b(w,)—b(v))Tk(u, —v) is nonnegative and since for all s € R, s — b(s)
is continuous, we obtain
(b(un) — b)) Tk (un —v) — (b(u) — b(v))Tk(u —v) a.e. in L.
Then, it follows by Fatou’s Lemma that
lim inf/ (b(uy) — b(v) Tk (uy — v)dx > /(b(u) —b(v))Tk(u—v)de. (3.24)
Q

n—-+o0o Q

We have b(v) € LY(9). Since Ty, (u, —v) converges weakly -* to Ty, (u —v) € L>=(Q)
and b(v) € L1(Q), it follows that

(3.23)

ngrfoo A b(v) Ty (up — v)dx = /Qb(v)Tk(un —v)dx. (3.25)

From (3.21)), (3.22)), (3.23)), (3.24]) and (3.25)), we pass to the limit in (3.20]) to obtain

Y duy 9
; /Q a; (x, a—xz) %Tk(u —v)dz + /Q b(uw) Ty (u — v)dx

< /Q fTe(u—v)dz + /Q FVTi(u—v)dx.

Then u is an entropy solution of (1.1)). O
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Theorem 3.10. Assume (2.1)-(2.6|) hold and let u be an entropy solution of (1.1)).

Then, u is unique.

The proof of the above theorem is done in two steps.
Step 1: A priori estimates.

Lemma 3.11. Assume (2.1)-(2.6) hold. Let u be an entropy solution of (L.1).
Then

a ou - k
/ 19U T g < @), V>0 (3.26)
= Jlui<ry 0% Cs
and there ezists a positive constant Cg such that
b(u) | < Cy meas(€) + |ul(Q): (3.27)

Proof. Let us take v = 0 in the entropy inequality (3.1)).
e By the fact that [, b(u)T)(u)dz > 0 and using relations (2.3)) and (2.4)), we deduce
(326).

o As
N N
ou\ 0 / ou\ Ou
E ailx, — | =—1T; udng a;i|lx, =— dx >0,
i—1/Q ( ‘%i)axi K =1/ {lul<k} ( 3%‘)3%‘
relation (3.1) gives

/ b(u) T (u)der < / FTe(w)da + / FYT,(u)da. (3.28)
Q Q Q
By , we deduce
/ b(u)Ty(u)dx +/ b(u) Ty (u)de < k|u|(£2)
{lul<k}

{lul>k}
or

/{|u>k} b(u) T (u)de = k/{u<k} b(u)dx + k/ b(u)dz < k|p|(Q).

{u>k}
Therefore,

/ Ibw)|dz < |ul(Q).
{lul>k}

b(u)|dr = b(u)|dx + b(u)|dx
< b(u)|dx + Q).
> /{u|<k}| ( )| |H|( )

Since b is non-decreasing, we have
lul <k < b(=k) < b(u) < b(k) = [b(u)| < max{b(k), [b(=k)|}.

Then, we have
/ Ib(w)|dz < / max{b(k), [b(—k)[}dz = max{b(k), |b(—k)[} meas(S).
{lu|<k} Q

Consequently, there exists a constant Cs = max{b(k), |b(—k)|} such that
1b(w)][1 < Cg meas(§2) + || (€2).

So, we obtain
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d

Lemma 3.12. Assume (2.1)-(2.6) hold true and p € MZZ(')(Q), If u is an entropy
solution of (L.1)), then there exists a constant D which depends on p and  such
that

D
meas{|u| > k} < — ,Vk >0 (3.29)
min(b(k), [b(—k)|)
and a constant D' which depends on p and ) such that
D/
meas {|—| >k} < , Vk>1. (3.30)
k‘(:DM)/

Proof. Since b is non-decreasing, we have
Vk > 0,[ul > k = [b(u)| > min(b(k), [b(—k)]).
For any k > 0, the relation ([3.27) and the fact that |b(u)| > min(b(k), |b(—k)|) give

/ min(b(k), |b(—k)|)dz < / |b(u)|dz < Cs meas(§2) + |u|(€2).
{lul>k} {lul>k}

Therefore,
min(b(k), |b(—k)|) meas(Ju| > k) < Csmeas(Q)) + |u|(2) = D;

that is
D
min(b(k), [b(—k)[)”
For the proof of (3.30)), we refer to [J. O

meas(|u| > k) <

We have the following two lemmas whose proofs can be found in [§].

Lemma 3.13. Assume [2.1)-(2.6) hold, and let f € L*(Q). If u is an entropy
solution of (L.1), then

hm /|f|X{\u|>h pydx =0,

where h > 0 and t > 0.

Lemma 3.14. Assume (2.1)-(2.6) hold, and let f € L (). If u is an entropy
solution of (1.1), then there exists a positive constant K such that

o () .
pp;()< 87% pi(2) 1XFh,k:> < K, fO’I”ZZ 1,...,]\77 (331)

where Fj, ), = {h <|u| <h+k}, h>0, k>0.

Step 2: Uniqueness of the entropy solution. Let A > 0 and u,v be two
entropy solutions of . We write the entropy inequality corresponding to the
solution u, with T} (v) as test function, and to the solution v, with T}, (u) as test
function. We obtain

Z/al oz aszk(u—Th(v))dx—i—/gb(u)Tk(u—Th(v))dx

§/Qka(u—Th(v))dx—l—/QFVTk(u—Th(v))dx

(3.32)
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and

i/ (7 ) g 0 — Tt + / b(0) T (v — T (w))da

i (3.33)
§/ka(v—Th(u))dx—i—/FVTk(v—Th(u))dx.
Addmg and (| -, we obtain
Z / ai &m axlT w(u — Th(v))dz — /Q F.VTk(ufTh(v))d;z:}
Z/al 8% &EZT (v — Th (w) dgc—/FVT,c (v — Th(u ))dx} 550

+ /Q b(uw)Ty(u — Ty (v))dx + /Q b(v)Ti(v — Ty (u))dz
< /Q F(@)[Te(u — Th(v)) + T (v — Th(u))]de.

Let us define
Er={lu—v[<kjlv| <h}, Ey=Ein{lul<h}, Ez=FEnN{ul>h},
By ={lv—u| <kjlu| <h}, FE3=Ein{v|]>h}

Assertion 1. F3 C Fj, ,, and
B = {|u — hsigng(v)| < k,|v] > h} C Fr_k, 2k

Indeed, We decompose E3 as E3 = E3 U E; where E;'f{|u7v|§k:, [v| < h,u >
h} and E5 f{\u7v|<k|v|<hu< —h}. In Ef, we have —h < v < h and
—k<u—v<ksothatv—k<u<v+k<h+k. Slnceu>handv+k§h+k,
we obtain h < u < h + k. Hence, E; C Fp k.

In E5, wehave —h <v < hand -k <u—v < ksothatv—k <u <v+k < h+k;
since u < —h and —k —h <v—k < h—Fk, we obtain —h — k < u < —h so that
h<l|ul <h+k.

Hence, E5 C Fy, k.

We split Bas B=BTUB™ ={|lu—h|<k,v>h}U{|lu+h|<kv<—h}. In
Bt (B~ can be treated in the same way), we have —k < u—h < k and v > h so
that h — k <u < h+ k. Hence BT C Fj_j 2.

Assertion 2. On E3 (and on B) we have according to Holder inequality

/ F.Vudx < (/ |F|(pin)‘dx) ()~ (/ ‘vu‘pfndx) Tm= (3.35)
Es E3 E3
1 J
li F|@m)” (Pm) ™ / (Prm) dy ) @m) —
i ([ )

3

with

where — + (TS5 ) = 1. Indeed,

(p ‘)
AR %
lim (/ |F|Pm) dx)“’w =0,
n—-+o0o Es
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as |[F|®»)" xp, belongs to L'(Q) and as Fs C Fj , then |F|Pm)” yp, converges to
zero as h — 4o00. Then, by Lebesgue dominated convergence theorem,

lim |F|Pm)” da = 0.
h—4o0 ES

Now, it remains to prove that || o |Vu|Pm)dz is bounded with respect to h. We use
the notation.

Ty ={ie{l,...,N}: g“

To={ie{l,...,N}: g“

Then we have

Pi() gy — / U pi(a) g 4 / O i) gy
Z/F 81‘1 ZEZZ Fp, €T ZEZIQ Fhk X
ou
> / | =— [P dg:
iezl':z Fp k Ox;

ou - ou , -
> / | =—Pmdx — / | P i
iz:; Fh,k (9:171 ’;L Fr ok 8552
N
Z/ 8u |Pmdx — N meas(§2)
i=17Fhk €Ls
N u
> P N QO
B Zz::| ax me(Fh &) meas( )
> 9| Vu ||pm — N meas(Q),

(LPm (F,5))N

where we used Poincaré inequality. We deduce that

Z/ 22 pil®) o > C’g/ |Vu|P; — N meas(Q). (3.36)
Fp, £

Fh ke

Choosing T (u) as test fonction in (3.1]), we obtain

Z/az o~ 8xT(u—Th( da:+/b VT (u — T (u))da

< /Qka(u —Th(u))dx—i-/QF.VTk(u—Th(u))dx.

According to the fact that VI (u — Tp(u)) = Vu on {h < |u| < h + k}, and zero
elsewhere, and [, b(u)Ty (v — Tj,(u))dx > 0, we deduce from (3.37) that

(3.37)

N

Z /Fh,k a; (at, %) SIZ dx

=1

(3.38)

2 ) | (0309pm

<k fldx +/ e — rm u|da.
{Jul>h} d Fi |<0309pm 2 ) |
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Using (2.4]) (in the left hand side of (3.38])), Young inequality (in the right hand
B39)

side of ) and setting
(2
Cro= (o) o Pm 2,
C3Copm Pm
we obtain
s Z / |p,(x>d
Fn (3.39)

< k/ |f|dx+C’10/ |F|®)” da + 0309/ VulPmda.
{lul>h} Fi 2

From ([3.36) and (3.39)), we obtain
0309/ |Vu|p7_"dl’
Fr

< k/ | fldz + 010/ |F| )™ g 2222 CaCo / |VulPmdz + N meas(£2).
Jul2h} Fu 2 Jr

Therefore,
CSQCQ / |v7.l,|p’_” dx
e (3.40)
<k |f|d$+010/ |F|(pm)7dx—|—Nmeas(Q).
{lu|>h} Fpk

Since E3 C [y, we deduce from (3.40) that [, [Vu[Pmdz is bounded. Since
B C Fj_k 2k, reasoning as before, we obtain

F.Vudz < / F|®m)” dg) @m)” / VulPrdz ) 7
/. (11" do) (] [9upndo)
: (pl,)~ (pi,i)*
i (e a7
We have
ou\ 0
il x, T (u— Ty, dx
Z/u Ty (v)| <k} ( axi)axz ( ()
—/ FVTi(u—Th(v))dx
{lu=Tn(v)|<k}
N
ouy 0
Z/ »(Jc,a—>a—Tk(u—Th(v))d$
= J{lu—T )1 <k {0l <k} ;) Ox;

+Z/ 8u> 0

83%

with )
(”:")dx) m) — 0.

ailx, — Ti(u— Ty (v))dx
{lu—=Th ()| <k}n{|v|>h} ( Ox;

- / FVT(u — Th(v))dz
{lu=Tx (v)|<E}N{|v|<h}

_ / FVT,(u — Th(v))da
{lu=Tx (v)|<kIN{|v|>h}
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N
Z/ »(x, %) 0 (u—v)dx
= J{lu—v|<k}n{|v|<h} Ox;/ 0x;

+Z/ %)&L

X
al'i

.(%
{lu—h sign, (v)|<k}n{|v|<h} O;

— / FV(u—v)dx
{lu—v[<E}In{lv|<h}

- / FVTy(u — hsigny(v))dz
{lu—hsigny (v)|<k}N{|v|>h}

>§;/ ai (. axz)ai(“_”)dx
f/E FV(ufv)dxf/ FVudz

{lu—hsign, (v)|<k}n{[v|>h}

ZN:/ (o axl)ailu’”d“Z/ (‘3301 8xl(u—v)dx

- FV(u—v)dx — FV(u—v)dm—/ FVudz.
B Es {lu—hsign, (v)|<k}N{|v|>h}

Then, we obtain

ouy\ O
ai\ Ty 7— Tilu —Th (v))dx
Z /u T (v)|<k} ( axl) o0x; k( h( ))

- / FENT,(u— Tp(v))dx
{lu=Ty (v)|<k}

> _ _
Z/ @i 81;1 (u—v dI+Z/ @i 8;101 axl( v)dz

FYVudr — FYVudx — / FYVudzx.
Es B

- / FV(u—v)dx +
By

E3

We deduce from that
N
ouy\ 0
ai|x, — T (u — Tp(v))dz
;/{Iu—n(u)lék} ( &”)3%'
_ / FVTy(u — Ty (0))de
{lu=Ty (v)|<k}
W RIG A
Ju
{Z/Esal 8 83:1 dm—/ESFVvdx}
— w)da — / FI@h)" gg) T / V@) gz ) 7m0
/ uvx<E3|| J:) (E|u| x)

3

—v)dx
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/ F0)"do) / Va7 dz) 7 (3.41)

According to and the Holder type inequality, we have
al duy 0
| [gai(x, a—xl) axi(u—v)—F.Vv]da:‘
< Z/
, ou
< cZ/E (ui(wn + gl
+ Flem) " g o= / Vol Pm)d u%?n),
(/Es| (o) ([ 9l

where

Sl o1 12 4w 1 [ 1FVlde
ZT; 83’51‘ Es

v
p;(-),{h<\u|<h+k}) |3Tsi |p;(‘),{hfk<\u|<h}

2
0x;

For i = 1,...,N, the quantity (|j;(z)] + ||g;‘
according to (2.8) and Lemma
Thanks to Lemma and Assertion 2, the quantity | 88;

1 _1
(/ ‘F‘(p:”)_dx) (P1y) ™ </ |V’U‘(p;‘)d$) (Pm)
E3 ES

converge to zero as h approaches infinity. Consequently, the second term at the
right-hand side of (3.41)) converges to zero as h approaches infinity. Therefore,

al duy 0
a;l v, — Te(u — Ty (v))dx
;/{u—n(vngk} ( 3%)5%‘ Hlu=Tie)

- / FNT,(u— Ty (v))dz
{lu— Th(v)|<k}

‘pl

POy h<lul<hik} = H' : m)_lHLP%<-><{h<|u|<h+k}>'

pi(z)—

- ~),{h<|u\<h+k}) is finite

pi(), {h—k<|u|<n} and

0
> § _ _ V(u—
I, + / a; (“)x oz, (u—v)dx /E2 FV(u—v)dz,

K2

with limp_ oo In = 0. We adopt the same process (replacing respectively Fy, Es3
by Ef and E% ) to treat the second term of ([3.34), which give

al duy 0
a; | x, Ti(v — T, dx
;/{wn(ka} ( 53%‘)3% ®=Th(w))

_ / FVTh(v — Ty (u))dz
{lv=Th (u)|<k}

ovy 0
i(m, a—xz) oz, (v —u)dx — ., FN (v —u)dz,

with limh_,+oo Jh =0.



18 I. KONATE, S. OUARO EJDE-2016/221
The other two terms in the left-hand side of (3.34]) are denoted by

K, = /Qb(u)Tk(u — Th(v))dz + /Q b(v)Tk (v — Th(u))dx.
We have
b(w)Tk(u — Th(v)) = b(u)Tk(u —v) a.e. in Q as h — +oo,
b(w)Ti (1 — To(0)] < Kfo(a)| € L}(©).

Then, by the Lebesgue dominated convergence theorem, we obtain

hEI-il:loo A b(w)Tk(u — Th(v))dx = /Qb(u)Tk(u —v)dz.

In the same way, we obtain

hEI—il-loo ; b(v)T(v — Th(u))dx = /Q b(u)Tk (v — u)dx.

Then
lim K, = /(b(u) —b(v))Tk(u — v)dx.
h—+o00 Q
Now, let us consider the integral of the right-hand side of (3.34). We have
hhT f(x) (Tk(u —Th(w)) + T (v — Th(u))> =0 ae. inQ,
1) (Ti(w = Tw)) + Tiw = Ta(w) )| < 26| € LY(9).

By the Lebesgue dominated convergence theorem, we obtain

Jim [ 1) (T = Th(0) + Teto = () d = 0.

After passing to the limit as h tends to infinity in (3.34)), we obtain

Oou ov .\ 0
Z/m u\<k} 87901‘) 7%(33’37561‘)) Ox; (u = v)de

+ /Q (b(u) — b(v))Ti(u — v)dz < 0.

Since b and a;(x,-) are monotone, we have

6U an a
Z/Iu U|<k} * oz, Bz,) 4@ 371;1)> oz, (u—v)dz =0, (3.42)

/Q(b(u) —b(v))Tk(u —v)dx = 0. (3.43)
We deduce from (3.43)) that

hm/ Tk(u—v dxf/ |b(u) — b(v)|dx = 0. (3.44)

We deduce from (2.3)) and ( - ) that
8
ox;
Therefore, there exists ¢ € R such that u — v = ¢ a.e. in ) and using we
obtain b(u) = b(v).

(u—v)=0 ae inQ fori=1,...,N.
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