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EXISTENCE AND BEHAVIOR OF POSITIVE SOLUTIONS TO
ELLIPTIC SYSTEM WITH HARDY POTENTIAL

LEI WEI, XIYOU CHENG, ZHAOSHENG FENG

Abstract. In this article, we study a class of elliptic systems with Hardy
potentials. We analyze the possible behavior of radial solutions to the system

when p, t > 1, q, s > 0 and λ, µ > (N − 2)2/4, and obtain the existence of

positive solutions to the system with the Dirichlet boundary condition under
certain conditions. When λ, µ ≤ 0, p, t > 1 and q, s > 0, we show that any

radial positive solution is decreasing in r.

1. Introduction

We consider the elliptic system with singular potentials

−∆u = λ
u

|x|2
− upvq, x ∈ B1(0)\{0},

−∆v = µ
v

|x|2
− usvt, x ∈ B1(0)\{0},

(1.1)

where p > 1, t > 1, and B1(0) ⊂ RN (N ≥ 3) is a unit ball centered at origin.
The right hand side in (1.1) contains singular terms, which are usually called the
singular inverse square potentials or Hardy potential in the literature. In this study,
we investigate system (1.1) with the Dirichlet boundary condition

u(x) = v(x) = 0, x ∈ ∂B1(0). (1.2)

Elliptic problems with Hardy potential have been an interesting topic in the field
of singular partial differential equation for a long time. Let us briefly review some
results with respect to the single equation with Hardy potential. Guerch and Véron
[8] studied the equation

−∆u = V (x)u− h(u), (1.3)
where V (x) = λ|x|−2 and h(u) has the property like up. They considered the clas-
sification of positive solutions as λ ≤ (N−2)2

4 , and showed the behavior of positive

solutions as λ > (N−2)2

4 under some conditions. In a recent work [1], Cirstea studied

−∆u = λ
u

|x|2
− b(x)f(u), ∀x ∈ Ω\{0}, (1.4)

where Ω is a domain containing the origin, and the function b(x) is a continuous
positive function (may vanish at the origin) or a singular function with a singular
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origin. It is well-known that (N − 2)2/4 is the Hardy constant corresponding to
the Hardy potential. The function f(u) has similar behavior like up (p > 1). When
λ ≤

(
N−2

2

)2, the qualitative properties of positive solutions at the origin were
presented and a complete classification was provided.

The supercritical case has recently been studied. In [14] the authors considered
the singular logistic equation

−∆u = λ
u

|x|2
− b(x)up, x ∈ Ω\{0},

u = 0, x ∈ ∂Ω,
(1.5)

where λ > (N−2)2

4 , p > 1 and b(x) is a nonnegative continuous function over Ω. It
shows that (1.5) has a minimal positive solution and a maximal positive solution
if b(x) is a positive function. Suppose that b(x) has a vanishing set denoted as
Ω0 = {x ∈ Ω : b(x) = 0}. If Ω0 b Ω, the boundary of Ω belongs to Cµ, Ω0 is a
connected set and b(0) 6= 0, then problem (1.5) has a minimal positive solution and
a maximal positive solution. In [14], the authors considered the problem

−∆u = λ
u

|x|2
− |x|θup, x ∈ Ω\{0}, (1.6)

where θ > −2 and λ > (N−2)2

4 . The asymptotic estimate of positive solutions to
(1.6) was

lim
|x|→0

u(x)

|x|−
2+θ
p−1

=
[
λ+

2 + θ

p− 1

(2 + θ

p− 1
+ 2−N

)]1/(p−1)

.

The uniqueness of positive solutions to (1.6) with u = 0 for all x ∈ ∂Ω was shown.
In fact, a direct calculation yields

λ+
2 + θ

p− 1
(
2 + θ

p− 1
+ 2−N) > 0 when λ > (N − 2)2/4.

This conclusion shows that any positive solution of (1.6) blows up at the origin
when θ > −2 and λ > (N−2)2

4 . When θ = −2, positive solutions are uniformly
bounded near the origin. When θ < −2, any positive solution vanishes at the
origin. So positive solutions of (1.6) have no singularity when θ ≤ −2. In addition,
for problem (1.5), we can prove the uniqueness of positive solutions and give the
exact behavior of the positive solution in a similar manner.

Garćıa-Melián and Rossi [7] considered the competitive type system
∆u = upvq, x ∈ Ω,

∆v = usvt, x ∈ Ω,
u = v =∞, x ∈ ∂Ω,

(1.7)

where Ω is a bounded smooth domain, p, t > 1 and q, s > 0. The existence,
uniqueness, blow-up rate and nonexistence of positive solutions were established
under certain conditions. Li and Wang [9] considered an elliptic system in a smooth
bounded domain,

−∆u = u(a1 − b1um − c1vn) x ∈ Ω,

−∆v = v(a2 − b2up − c2vq), x ∈ Ω,
u = v = +∞, x ∈ ∂Ω,

(1.8)

where ai ≥ 0, bi, ci (i = 1, 2) are positive constants, m, q > 0 and n, p ≥ 0. Based
on the construction of certain sub-solution and upper-solution, some conditions on
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the parameters and the exponents to ensure the existence of positive solutions were
explored. Garćıa-Melián [6] extended the results in [7] to study the existence and
uniqueness of positive solutions of

∆u = a(x)upvq, x ∈ Ω,

∆v = b(x)urvs, x ∈ Ω,
u = v =∞, x ∈ ∂Ω,

(1.9)

where a(x) and b(x) satisfy

C2d(x, ∂Ω)γ1 ≤ a(x) ≤ C1d(x, ∂Ω)γ1 for x ∈ Ω,

C2d(x, ∂Ω)γ2 ≤ b(x) ≤ C1d(x, ∂Ω)γ2 for x ∈ Ω,

for γ1 > −2, γ2 > −2.
This article is mainly devoted to the behavior analysis of positive solutions to

(1.1) with the boundary condition (1.2). In our discussions, we apply some ar-
guments and techniques with respect to boundary blow-up problems, which can
be found in [2, 3, 4, 5, 10, 11, 12]. We also use the methods of subsolution and
supersolution [13].

Let us summarize our main results into the following three theorems. For any
radial positive solution (u(x), v(x)), the first theorem reveals the behavior of u(x)+
v(x) at the origin.

Theorem 1.1. Suppose that λ, µ > (N−2)2

4 , p, t ≥ 1, q, s > 0 and (u, v) is an
arbitrary radial positive solution of (1.1). Then

lim
|x|→0

{u(x) + v(x)} =∞.

When the positive solution (u, v) satisfies u→∞ and v →∞ as |x| → 0, (u, v)
is said to be a blow-up solution. The following theorem is regarding the existence
of blow-up solution and an estimate of blow-up solution near the origin.

Theorem 1.2. Suppose that λ, µ > (N−2)2

4 , p−1 > s > 0 and t−1 > q > 0. Then
the following two statements are true.

(i) Problem (1.1) with condition (1.2) has at least one positive blow-up solution
(U, V ).

(ii) Assume that λ > max{4λ1[B1(0)], (N − 2)2/4} and (û, v̂) is a blow-up so-
lution of the problem (1.1) with condition (1.2). Then for any τ > 0 there
exists δ := δ(τ) > 0 and C1, C2 > 0, such that

C1|x|−
2(t−1−q)

(p−1)(t−1)−qs+τ ≤ û(x) ≤ C2|x|−
2(t−1−q)

(p−1)(t−1)−qs−τ , ∀x ∈ Bδ0)\{0}, (1.10)

C1|x|−
2(p−1−s)

(p−1)(t−1)−qs+τ ≤ v̂(x) ≤ C2|x|−
2(p−1−s)

(p−1)(t−1)−qs−τ , ∀x ∈ Bδ(0)\{0}. (1.11)

For the parameters λ, µ ≤ 0, we may obtain the behavior of positive solutions.

Theorem 1.3. Suppose that λ, µ ≤ 0, p, t > 1, q, s > 0 and (u, v) is an arbitrary
positive radial solution of (1.1) with condition (1.2). Then we have

(i) u′(r), v′(r) < 0 for r ∈ (0, 1]. Moreover, u(r) and v(r) are convex functions;
and

(ii) u(r)→∞ and v(r)→∞ when r → 0.
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The rest of this article is organized as follows. In Section 2, we introduce some
preliminary results which will be used in the proofs of our main results. In Section
3, some rough estimates of positive solution of the problem (1.1) are established.
Section 4 is dedicated to the existence of positive solution to problem (1.1) with
boundary condition (1.2) and the estimate of blow-up rate of positive solution at
the origin, i.e., the proof of Theorem 1.2. Finally, in Section 5 we show the proof
of Theorem 1.3.

2. Preliminary results

To make our discussions in a straightforward manner, we need the following three
technical lemmas. The first lemma is regarding the comparison principle which can
be found in [3, 5].

Lemma 2.1. Suppose that Ω is a bounded domain in RN , α(x) and β(x) are con-
tinuous functions in Ω with ‖α‖∞ <∞, and β(x) is nonnegative and not identically
zero. Let u1, u2 ∈ C1(Ω) be positive in Ω and in the weak sense satisfy

∆u1 + α(x)u1 − β(x)g(u1) ≤ 0 ≤ ∆u2 + α(x)u2 − β(x)g(u2), x ∈ Ω,

lim sup
x→∂Ω

(u2 − u1) ≤ 0,

where g(u) is continuous and such that g(u)
u is strictly increasing with respect to u

in the range of min{u1, u2} < u < max{u1, u2}. Then u2 ≤ u1 holds.

For the Hardy potential, it is well-known that the Hardy constant H = (N−2)2

4
and the Hardy inequality

(N − 2)2

4

∫
Ω

φ2

|x|2
dx ≤

∫
Ω

|∇φ|2dx, ∀φ ∈W 1,2
0 (Ω).

In addition, (N−2)2

4 can be expressed as

(N − 2)2

4
= inf
φ∈W 1,2

0 (Ω)/{0}

∫
Ω
|∇φ|2dx∫

Ω
φ2

|x|2 dx
, (2.1)

but it is not attained. Let λ1[a(x),Ω] denote the first eigenvalue of

−∆u = λa(x)u, x ∈ Ω,
u = 0, x ∈ ∂Ω.

A close relation between the Hardy constant and the first eigenvalue of the Dirichlet
eigenvalue problem is given in [14].

Lemma 2.2. Suppose that Ω is a bounded smooth domain and 0 ∈ Ω. Then we
have

lim
δ→0

λ1

[ 1
|x|2

,Ωδ
]

=
(N − 2)2

4
;

lim
ε→0

λ1

[ 1
|x|2 + ε

,Ω
]

=
(N − 2)2

4
,

where Ωδ = {x ∈ Ω : |x| > δ}.

By the uniqueness and blow-up rate of positive solutions for a single equation
with the Hardy potential [14], we can obtain the following conclusion.
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Lemma 2.3. Suppose that p > 1, σ > −2, λ > (N − 2)2/4, Ω is a bounded smooth
domain and 0 ∈ Ω.

(i) Assume that u is any positive solution of

−∆u = λ
u

|x|2
− |x|σup, x ∈ Ω\{0}.

Then u satisfies

lim
|x|→0

|x|
2+σ
p−1 u(x) =

[
λ+

2 + σ

p− 1

(2 + σ

p− 1
+ 2−N

)]1/(p−1)

.

(ii) Assume that c is a nonnegative constant (c = +∞ is also allowed). Then
the problem

−∆u = λ
u

|x|2
− |x|σup, x ∈ Ω,

u = c, x ∈ ∂Ω
(2.2)

has a unique positive solution Up,σ.

Proof. Firstly, Part (i) is the direct result of [14]. Now, we simply sketch the proof
of Part (ii). Suppose that c = 0. Since λ > (N−2)2

4 , for any sufficiently small δ > 0,
by Lemma 2.2 and the standard arguments of logistic equations, it follows that

−∆u = λ
u

|x|2
− |x|σup, x ∈ Ωδ,

u = 0, x ∈ ∂Ωδ

has a unique positive solution uδ. By the comparison principle and regularity
arguments of elliptic equations, w = limδ→0 uδ is a positive solution of the problem
(2.2). Suppose that c > 0 (= ∞), then a similar argument shows that (2.2) has a
positive solution w. Suppose that ω is any positive solution of (2.2). By Part (i),
we have

lim
|x|→0

|x|
2+σ
p−1ω(x) =

[
λ+

2 + σ

p− 1

(2 + σ

p− 1
+ 2−N

)]1/(p−1)

.

If c = ∞, by the standard arguments of boundary blow-up problems, we can find
the exact behavior near boundary for positive solutions. By the standard method,
one can see the uniqueness of positive solutions. �

3. Blow-up behavior of positive solutions

In this section, we present some behavior analysis of positive solutions of (1.1)
and prove Theorem 1.1.

Lemma 3.1. Suppose that p, t ≥ 1, q, s > 0, λ, µ > (N−2)2

4 and (u(x), v(x)) is an
arbitrary solution of (1.1). Then

lim sup
|x|→0

{u(x) + v(x)} =∞.

That is,
lim sup
|x|→0

u(x) =∞ or lim sup
|x|→0

v(x) =∞.
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Proof. By the way of contradiction, we suppose that lim sup|x|→0+{u(x) + v(x)} =
M , where M ∈ [0,∞). Then there is a δ > 0 such that 0 < v(x) ≤ M + 1 for all
x ∈ Bδ(0)\{0}.
Case 1: p > 1. From the first equation of (1.1), we have

−∆u ≥ λ u

|x|2
− (M + 1)qup in Bδ(0)\{0}. (3.1)

Let w(x) = (M + 1)
q
p−1u, then we obtain

−∆w ≥ λ w

|x|2
− wp in Bδ(0)\{0}.

Since λ > (N−2)2

4 , by Lemma 2.2, for any sufficiently small ε > 0, the problem

−∆u = λ
u

|x|2
− up, x ∈ Bδ\Bε(0),

u = 0, |x| = δor |x| = ε

has a unique positive solution uε. By the comparison principle, the function
u∗(x) := limε→0 uε(x) is well defined in Bδ(0)\{0}, and hence by the regularity
arguments, u∗ satisfies

−∆u∗ = λ
u∗
|x|2
− up∗ in Bδ(0)\{0}.

By the comparison principle,

w(x) ≥ uε(x) for all x ∈ Bδ(0)\Bε(0).

Letting ε→ 0, we find

w(x) ≥ u∗(x) for all x ∈ Bδ(0)\{0}.
By Lemma 2.3, lim|x|→0+ u(x) =∞, which contradicts lim sup|x|→0+{u(x)+v(x)} =
M .
Case 2: p = 1. Since λ > (N−2)2

4 and using (3.1), there is τ ∈ (0, δ) such that

−∆u ≥ 1
2

(λ+
(N − 2)2

4
)
u

|x|2
for x ∈ Bτ (0)\{0}.

For each η ∈ (0, τ), u is a positive supersolution of

−∆φ =
1
2

(λ+
(N − 2)2

4
)
φ

|x|2
, x ∈ Bτ (0)\Bη(0),

φ(x) = 0, x ∈ ∂Bτ (0) ∪ ∂Bη(0).

So, we derive that

λ1

[ 1
|x|2

, Bτ (0)\Bη(0)
]
>

1
2

(λ+
(N − 2)2

4
),

which contradicts Lemma 2.2, namely

lim
η→0

λ1

[ 1
|x|2

, Bτ (0)\Bη(0)
]

=
(N − 2)2

4
.

�

Remark 3.2. Suppose that p, t ≥ 1, q, s > 0 and λ, µ > (N − 2)2/4. From the
proof of Lemma 3.1, it follows that lim|x|→0 v(x) = ∞ if u is bounded near the
origin, and lim|x|→0 u(x) =∞ if v is bounded near the origin.
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Proof of Theorem 1.1. Suppose that (u(x), v(x)) is an arbitrary positive radial so-
lution of (1.1). By Lemma 3.1, we have

lim sup
|x|→0

{u(x) + v(x)} =∞.

It suffices to show that
lim inf
|x|→0

{u(x) + v(x)} =∞.

By the way of contradiction, we suppose lim inf |x|→0{u(x) + v(x)} < ∞. For
convenience of our statement, we denote u(r) = u(x) and v(r) = v(x) when |x| = r.
In view of

lim inf
|x|→0

{u(x) + v(x)} < lim sup
|x|→0

{u(x) + v(x)},

there is {rn} with rn → 0 such that

u′′(rn) + v′′(rn) ≥ 0, u′(rn) + v′(rn) = 0,

lim
n→∞

{u(rn) + v(rn)} = lim inf
|x|→0

{u(x) + v(x)}.

Without loss of generality, we assume that λ ≤ µ. It follows from (1.1) that

λ

r2
n

≤ u(rn)pv(rn)q + u(rn)sv(rn)t

u(rn) + v(rn)
, (3.2)

which implies
λ

r2
n

< u(rn)p−1v(rn)q + u(rn)sv(rn)t−1.

So, we have
u(rn)p−1v(rn)q + u(rn)sv(rn)t−1 →∞ (n→∞).

This indicates that {u(rn) + v(rn)} is an unbounded set. This contradicts the
assumption of limn→∞(u(rn) + v(rn)) <∞. �

We now show some analysis on the behavior of positive solutions to (1.1) near
the origin.

Proposition 3.3. Suppose that λ, µ > (N − 2)2/4, t − 1 > q > 0, p − 1 > s > 0,
and (u(x), v(x)) is an arbitrary positive solution of the system (1.1) such that both
lim|x|→0 u(x) and lim|x|→0 v(x) exist. Then at least one of following statements
holds: (i) both u(x) and v(x) blow up at the origin; (ii) u(x) blows up and v(x)
vanishes at the origin; and (iii) u(x) vanishes and v(x) blows up at the origin.

Proof. We claim that either lim|x|→0 u(x) = ∞ or lim|x|→0 u(x) = 0 holds. Oth-
erwise, we suppose lim|x|→0 u(x) = m ∈ (0,∞). So there exists a δ > 0 such
that

m/2 ≤ u(x) ≤ 2m for x ∈ Bδ(0)\{0}.
Then, we see that

−∆v ≤ µ v

|x|2
− (m/2)svt for x ∈ Bδ(0)\{0}.

Let w1 = (m/2)
s
t−1 v. Then

−∆w1 ≤ µ
w1

|x|2
− wt1 in Bδ(0)\{0}.
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By Lemma 2.3 and an analogous argument described in [14], it follows that

v(x) ≤ C|x|−
2
t−1 for x ∈ Bδ(0)\{0}.

From the first equation of (1.1), we have

−∆u ≥ λ u

|x|2
− Cq|x|−

2q
t−1up in Bδ(0)\{0}.

Let w2 = C
q
p−1u. Then

−∆w2 ≥ λ
w2

|x|2
− |x|−

2q
t−1wp2 in Bδ(0)\{0}.

Hence, by t− 1 > q and Lemma 2.3, we deduce that

u(x) ≥ C1|x|−
2− 2q

t−1
p−1 = C1|x|−

2(t−1−q)
(p−1)(t−1) on Bδ(0)\{0},

which contradicts the assumption lim|x|→0 u(x) = m ∈ (0,∞).
Similarly, we can prove that either lim|x|→0 v(x) = ∞ or lim|x|→0 v(x) = 0

holds. �

Proposition 3.4. Suppose that p, t ≥ 1, q, s > 0 and λ, µ > (N − 2)2/4 and
(u(x), v(x)) is an arbitrary positive solution of (1.1). Then both up−1vq and usvt−1

are unbounded near the origin. In particular, when p = 1 and t = 1, both u and v
are unbounded near the origin.

Proof. Suppose that up−1vq is bounded near the origin. Using the first equation in
(1.1), we have

−∆u+ (up−1vq)u = λ
u

|x|2
in B1(0)\{0}.

Since up−1vq is bounded near the origin, there is a sufficiently small δ0 > 0 such
that for any δ ∈ (0, δ0],

−∆ ≥ 1
2
[
λ+

(N − 2)2

4
] u

|x|2
in Bδ0(0).

This implies

λ1

[ 1
|x|2

, Bδ0(0)\Bδ(0)
]
≥ 1

2
[
λ+

(N − 2)2

4
]

for δ ∈ (0, δ0),

which is a contradiction to

lim
δ→0

λ1

[ 1
|x|2

, Bδ0(0)\Bδ(0)
]

=
(N − 2)2

4
.

�

4. Existence and estimates of blow-up solutions

In this section, we deal with the existence of positive blow-up solutions of the
problem (1.1) with the boundary condition (1.2) and establish estimates of positive
blow-up solutions near the origin.

Suppose that λ > 4λ1[B1(0)] and α ∈ (0, 1) satisfies λ α2

(1+α)2 > λ1[B1(0)]. For
the case σ ≥ 0, let u0,α denote the unique positive solution of

−∆u = λ
α2

(1 + α)2
u− α2(1 + α)σup, x ∈ B1(0)

u(x) = 0, x ∈ ∂B1(0).
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For convenience, for the case of −2 < σ < 0, by u0,α we denote the unique positive
solution of

−∆u = λ
α2

(1 + α)2
u− α2(1− α)σup, x ∈ B1(0)

u(x) = 0, x ∈ ∂B1(0).

When σ ≥ 0, let u∞,α denote the unique positive solution of

−∆u = λ
α2

(1− α)2
u− α2(1− α)σup, x ∈ B1(0)

u(x) =∞, x ∈ ∂B1(0).

For the case of −2 < σ < 0, let u∞,α denote the unique positive solution of

−∆u = λ
α2

(1− α)2
u− α2(1 + α)σup, x ∈ B1(0)

u(x) =∞, x ∈ ∂B1(0).

In fact, there is a relation between u0,α, u∞,α and α. For our convenience, we denote
u0,α and u∞,α by u0 and u∞, respectively. In some places, we will write u∞(x;λ)
and u0(x;λ) instead of u∞ and u0, to clearly indicate the relation depending on
the parameter λ.

Lemma 4.1. Let p > 1, σ > −2, λ > 4λ1[B1(0)] and U be a positive solution of

−∆U = λ
U

|x|2
− |x|σUp on BR(0)\{0}.

Then we have

u0(0)|x|−
2+σ
p−1 ≤ U(x) ≤ u∞(0)|x|−

2+σ
p−1 for x ∈ BR/2(0)\{0}. (4.1)

Proof. Suppose that x0 ∈ BR/2(0)\{0} is an arbitrary point. Since λ > 4λ1[B1(0)],
we can choose α ∈ (0, 1) close to 1 such that λ α2

(1+α)2 > λ1[B1(0)]. Let

Ũ(x) = |x0|
2+σ
p−1U(x0 + α|x0|x), x ∈ B1(0).

So, for all x ∈ B1(0), we obtain

(1− α)|x0| ≤ |(x0 + α|x0|x)| ≤ (1 + α)|x0|.
When σ ≥ 0, a straightforward calculation leads to

−∆Ũ ≤ λ α2

(1− α)2
Ũ − α2(1− α)σŨp in x ∈ B1(0),

−∆Ũ ≥ λ α2

(1 + α)2
Ũ − α2(1 + α)σŨp in x ∈ B1(0).

We find that if 0 > σ > −2, then

−∆Ũ ≤ λ α2

(1− α)2
Ũ − α2(1 + α)σŨp x ∈ B1(0),

−∆Ũ ≥ λ α2

(1 + α)2
Ũ − α2(1− α)σŨp x ∈ B1(0).

By the comparison principle, we obtain

u0(x) ≤ Ũ(x) ≤ u∞(x) for all x ∈ B1(0).
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Particularly, choosing x = 0 and by the arbitrariness of x0, we arrive at (4.1). �

Lemma 4.2. Suppose that C > 0, R > 0 and λ > max{4λ1[B1(0)], (N − 2)2/4}.
(i) If U > 0 satisfies

−∆U ≥ λ U
|x|2
− C|x|σUp, x ∈ BR(0)\{0},

then

U(x) ≥ C−
1
p−1u0(0)|x|−

2+σ
p−1 for x ∈ BR/2(0)\{0}. (4.2)

(ii) If U > 0 satisfies

−∆U ≤ λ U
|x|2
− C|x|σUp, x ∈ BR(0)\{0}, (4.3)

then

U(x) ≤ C−
1
p−1u∞(0)|x|−

2+σ
p−1 for x ∈ BR/2(0)\{0}. (4.4)

Proof. From the condition in case (i), it follows that C
1
p−1U is a supersolution of

−∆u = λ
u

|x|2
− |x|σup, x ∈ BR(0)\{0},

u = 0, x ∈ ∂BR(0).
(4.5)

Let U be the unique positive solution of (4.5), then

U(x) = lim
δ→0

Uδ(x),

where Uδ is the unique positive solution of

−∆u = λ
u

|x|2
− |x|σup, x ∈ BR(0)\Bδ(0),

u = 0, x ∈ ∂BR(0) ∪ ∂Bδ(0).
(4.6)

So, the comparison principle yields

Uδ(x) ≤ C
1
p−1U(x) for all x ∈ BR(0)\Bδ(0).

Further, letting δ → 0, we have

U(x) ≤ C
1
p−1U(x) for all x ∈ BR(0).

In view of Lemma 4.1, we arrive at (4.2).
Now, we prove conclusion (ii). Suppose that U > 0 satisfies (4.3). Let Vδ be the

unique positive solution of

−∆u = λ
u

|x|2
− |x|σup, x ∈ BR(0)\Bδ(0),

u =∞, x ∈ ∂BR(0) ∪ ∂Bδ(0).
(4.7)

From [14], we know that

Û(x) := lim
δ→0

Vδ(x) for all x ∈ BR(0)\{0} is well defined,

and that Û satisfies

−∆Û = λ
Û

|x|2
− |x|σÛp, x ∈ BR(0)\{0},

Û =∞, x ∈ ∂BR(0).
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So by the comparison principle, it is easy to see

C
1
p−1U(x) ≤ Û(x) for x ∈ BR(0)\{0}.

Using Lemma 4.1 again, we arrive at (4.4). �

Next, we give the proof of Theorem 1.2, i.e., we explore the existence of blow-
up solution of the problem (1.1) with the boundary condition (1.2), and give the
estimate of positive solutions near the origin.

Proof of Theorem 1.2. Since s < p− 1 and q < t− 1, we may choose γ, σ ∈ (−2, 0)
such that

− γ

q
=

2 + σ

t− 1
and − σ

s
=

2 + γ

p− 1
. (4.8)

Denote by Up,γ the unique positive solution of (4.5) with σ being replaced by γ
and R = 1, and denote by Ut,σ the unique positive solution of (4.5) with p being
replaced by t and R = 1. Choose η ∈ (s/(t − 1), (p − 1)/q). A simple calculation
shows that for sufficiently small ε > 0 and sufficiently large M > 0, we have

−∆(εUp,γ) ≤ λεUp,γ
|x|2

− (εUp,γ)p(ε−ηUt,σ)q in B1(0)\{0},

−∆(ε−ηUt,σ) ≥ λε
−ηUt,σ
|x|2

− (εUp,γ)s(ε−ηUt,σ)t in B1(0)\{0},

−∆(MUp,γ) ≥ λMUp,γ
|x|2

− (MUp,γ)p(M−ηUt,σ)q in B1(0)\{0},

−∆(M−ηUt,σ) ≤ λM
−ηUt,σ
|x|2

− (MUp,γ)s(M−ηUt,σ)t in B1(0)\{0}.

So, (εUp,γ ,M−ηUt,σ) and (MUp,γ , ε
−ηUt,σ) are a pair of subsolution and superso-

lution of
−∆u = λ

u

|x|2
− upvq, x ∈ B1(0)\B1/n(0),

−∆v = µ
v

|x|2
− usvt, x ∈ B1(0)\B1/n(0),

u = v = 0, x ∈ ∂B1(0),

u = εUp,γ , v = M−ηUt,σ, x ∈ ∂B1/n(0).

(4.9)

By the supersolution and subsolution method, we know that (4.9) has at least one
solution (Un(x), Vn(x)) satisfying

εUp,γ ≤ Un(x) ≤MUp,γ(x) for x ∈ B1(0)\B1/n(0),

M−ηUt,σ(x) ≤ Vn(x) ≤ ε−ηUt,σ(x) for x ∈ B1(0)\B1/n(0).

In view of the regularity arguments of elliptic equations, (Un, Vn) has a conver-
gent subsequence in C2

loc(B1(0)\{0}) × C2
loc(B1(0)\{0}). We by (u, v) denote the

limit functions, and hence (u, v) is a solution of the problem (1.1). Clearly, since
both Up,γ and Ut,σ blow up at the origin, we can see that both u and v blow up at
the origin. The proof of (i) is complete.

Now, we prove the conclusion (ii). By hypothesis, both û(x) and v̂(x) have
positive bound from below in B1/2(0). Denote m0 = inf{v̂(x) : x ∈ B1/2(0)}, and
hence û satisfies

−∆û ≤ λ û

|x|2
−mq

0û
p, x ∈ B1/2(0)\{0}.
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In view of Lemma 4.2, we have

û(x) ≤ m−
q
p−1

0 u∞(0;λ)|x|−
2
p−1 for x ∈ B1/4(0)\{0}.

Let a1 = m
− q
p−1

0 u∞(0;λ) and α0 = 2
p−1 . Then we find that

û(x) ≤ a1|x|−α0 for x ∈ B1/4(0)\{0}.
By the second equation in (1.1), it follows that

−∆v̂ ≥ µ v̂

|x|2
− as1|x|

− 2s
p−1 v̂t, x ∈ B1/4(0)\{0}.

Since s < p − 1, we have − 2s
p−1 > −2. Take a2 = a

− s
t−1

1 . In view of Lemma 4.2
again, we obtain

v̂(x) ≥ a2|x|−
2−sα0
t−1 for x ∈ B2−3(0)\{0}.

Choose β1 = 2−sα0
t−1 , and hence we see that

v̂(x) ≥ a2|x|−β1 for x ∈ B2−3(0)\{0}.

Let a3 = a
− q
p−1

2 and α2 = 2−qβ1
p−1 . Using the first equation in (1.1) and Lemma 4.2

again, we have
û ≤ a3|x|−

2−qβ1
p−1 in B2−4(0)\{0}.

Proceeding in this way inductively, we obtain

û(x) ≤ a2n−1|x|−
2−qβn−1
p−1 , x ∈ B2−2n(0)\{0},

v̂(x) ≥ a2n|x|−
2−qαn−1

t−1 , x ∈ B2−(2n+1)(0)\{0},
where n ≥ 1, and

α0 =
2

p− 1
, β0 = 0, αn =

2− qβn
p− 1

, βn =
2− sαn−1

t− 1
,

a1 = m
− q
p−1

0 u∞(0;λ), a2n = a
− s
t−1

2n−1 , a2n+1 = a
− q
p−1

2n .

From the relation between αn and βn, we can deduce that {αn} is a decreasing
sequence and {βn} is an increasing sequence. By letting n→∞, it follows that

lim
n→∞

αn =
2(t− 1− q)

(p− 1)(t− 1)− qs
and lim

n→∞
βn =

2(p− 1− s)
(p− 1)(t− 1)− qs

.

From the relation between an and an+1, we can deduce that

a2n+1 = a
qnsn

(t−1)n(p−1)n

1 .

In view of (p − 1)(t − 1) > qs and min{a1, 1} ≤ a2n+1 ≤ max{a1, 1} for all n, we
have

min{a1, a
− s
t−1

1 } ≤ an ≤ max{a1, a
− s
t−1

1 } for all n.
Thus, for any τ > 0 there are δ := δ(τ) and C1, C2 > 0 such that

C1|x|−
2(p−1−s)

(p−1)(t−1)−qs+τ ≤ v̂(x) for x ∈ Bδ(0)\{0},

û(x) ≤ C2|x|−
2(t−1−q)

(p−1)(t−1)−qs−τ for x ∈ Bδ(0)\{0}.
Consequently, the second inequality of (1.10) and the first inequality of (1.11) hold.
By a similar argument, we can prove the remaining cases of (1.10) and (1.11). �
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Remark 4.3. From the proof of (i) in Theorem 1.2, it follows that (1.1) has a
positive solution (u, v) satisfying

C1|x|−
2+γ
p−1 ≤ u(x) ≤ C2|x|−

2+γ
p−1 for x ∈ Ω\{0},

C1|x|−
2+σ
t−1 ≤ v(x) ≤ C2|x|−

2+σ
t−1 for x ∈ Ω\{0},

where γ and σ satisfies (4.8). In fact, a simple calculation shows that

2 + γ

p− 1
=

2(t− 1− q)
(p− 1)(t− 1)− qs

and
2 + σ

t− 1
=

2(p− 1− s)
(p− 1)(t− 1)− qs

.

5. Proof of Theorem 1.3

Proof. Suppose that (u(x), v(x)) is a positive radial solution of (1.1) with condition
(1.2). For convenience, we denote u(r) = u(x) and v(r) = v(x) as |x| = r. Define

t0 = inf{r0 ∈ (0, 1) : u′(r) < 0 and v′(r) < 0 for r ∈ (r0, 1)}.
By Hopf’s lemma, when r < 1 is close to 1, we have u′(r) < 0 and v′(r) < 0. So,
this leads to t0 < 1. We claim t0 = 0. Otherwise, we will see that

Case (1) u′(t0) = 0, u′(r) < 0 and v′(r) < 0 for r ∈ (t0, 1), and
Case (2) v′(t0) = 0, v′(r) < 0 and u′(r) < 0 for r ∈ (t0, 1).

Without loss of generality, we assume that Case (1) occurs. Denote

ũ = u(t0)− u(x) for t0 < |x| < 1.

Then, ũ(x) > 0 when t0 < |x| < 1 and ũ′(t0) = ũ(t0) = 0. A simple calculation
gives

−∆ũ− λ ũ

|x|2
= −λu(t0)

|x|2
+ upvq > 0 when t0 < |x| < 1.

By Hopf’s lemma, there holds ũ′(t0) > 0, which contradicts ũ′(t0) = 0. The
conclusion t0 = 0 implies that

u′(r) < 0 and v′(r) < 0 for r ∈ (0, 1).

Since u′(r) < 0 in (0, 1) and λ ≤ 0, we have u′′ ≥ upvq in (0, 1), which implies
that u(r) is a convex function in (0, 1). Analogously, we may show that v is a
convex function. So, the conclusion (i) is proved.

Now we prove the conclusion (ii). From (1.1), we see that

−(rN−1u′)′ = λrN−3u− rN−1upvq for r ∈ (0, r).

Integrating on [r, 1] gives

rN−1u′(r)− u′(1) = λ

∫ 1

r

τN−3u(τ)dτ −
∫ 1

r

τN−1u(τ)pv(τ)qdτ for r ∈ (0, 1).

That is,

u′(r) = r1−Nu′(1) + λr1−N
∫ 1

r

τN−3u(τ)dτ

− r1−N
∫ 1

r

τN−1u(τ)pv(τ)qdτ for r ∈ (0, 1).

Integrating on [r, 1] yields

u(r) = −
∫ 1

r

s1−Nu′(1)ds− λ
∫ 1

r

s1−N
∫ 1

s

τN−3u(τ)dτds
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+
∫ 1

r

s1−N
∫ 1

s

τN−1u(τ)pv(τ)qdτds

≥ −
∫ 1

r

s1−Nu′(1)ds.

This inequality implies that u(r)→∞ as r → 0. In a similar manner, one can see
that v(r)→∞ as r → 0. �
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