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GROWTH OF LOCAL SOLUTIONS TO LINEAR DIFFERENTIAL
EQUATIONS AROUND AN ISOLATED ESSENTIAL

SINGULARITY

HOUARI FETTOUCH, SAADA HAMOUDA

Abstract. In this article we study the growth of solutions to a class of linear

differential equations around an isolated essential singularity point. By using

conformal mapping we apply some results from the complex plane to a neigh-
borhood of a singular point. We point out that there are several similarities

between the results for complex plane and results in this article.

1. Introduction and statement of results

Throughout this article, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna value distribution
theory of meromorphic function on the complex plane C and in the unit disc
D = {z ∈ C : |z| < 1} (see [14, 23]). The importance of this theory has in-
spired many authors to find modifications and generalizations to different domains.
Extensions of Nevanlinna Theory to annuli have been made by [3, 18, 19, 20, 22].
In this paper, we concentrate our investigation near an isolated essential singular
point. We start to give the appropriate definitions. Set C = C ∪ {∞} and suppose
that f(z) is meromorphic in C− {z0}, where z0 ∈ C. Define the counting function
of f by

Nz0(r, f) = −
∫ r

∞

n(t, f)− n(∞, f)
t

dt− n(∞, f) log r, (1.1)

where n(t, f) counts the number of poles of f(z) in the region {z ∈ C : t ≤
|z − z0|} ∪ {∞} each pole according to its multiplicity; and the proximity function
by

mz0(r, f) =
1

2π

∫ 2π

0

ln+ |f(z0 − reiϕ)|dϕ. (1.2)

The characteristic function of f is defined in the usual manner by

Tz0(r, f) = mz0(r, f) +Nz0(r, f). (1.3)

In addition, the order of meromorphic function f(z) near z0 is defined by

σT (f, z0) = lim sup
r→0

log+ Tz0(r, f)
− log r

. (1.4)
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For an analytic function f(z) in C− {z0}, we have also the definition

σM (f, z0) = lim sup
r→0

log+ log+Mz0(r, f)
− log r

, (1.5)

where Mz0(r, f) = max{|f(z)| : |z − z0| = r}.
For example, the function f(z) = exp{ 1

(z0−z)n }, where n ∈ N\{0}, we have
Mz0(r, f) = exp{ 1

rn }, and then σM (f, z0) = n. We have also Tz0(r, f) = mz0(r, f) =
1
2π

∫ 2π

0
ln+ |f(z0 − reiϕ)|dϕ = 1

rn , and so σT (f, z0) = n.
For the function f(z) = exp{ −1

(1−z)}, we have σ(f, 1) = 1 while in the unit disc
we have σT (f) = σM (f) = 0.

We see that in the unit disc we have σT (f) ≤ σM (f) ≤ σT (f) + 1 and in the
complex plane we have σT (f) = σM (f). Now, how about the relation between
σT (f, z0) and σM (f, z0)? Below, in Lemma 2.2, we will prove that if f(z) is mero-
morphic function in C − {z0} and g(w) = f(z0 − 1

w ), then g(w) is a meromorphic
function in C and we have T (R, g) = Tz0(r, f); where R = 1

r ; which implies that
σT (f, z0) = σM (f, z0). So, we can use the notation σ(f, z0) without any ambiguity.

In the usual manner, we define the hyper order near z0 as

σ2,T (f, z0) = lim sup
r→0

log+ log+ Tz0(r, f)
− log r

, (1.6)

σ2,M (f, z0) = lim sup
r→0

log+ log+ log+Mz0(r, f)
− log r

. (1.7)

The linear differential equation

f ′′ +A(z)eazf ′ +B(z)ebzf = 0, (1.8)

where A(z) and B(z) are entire functions, is investigated by many authors; see for
example [1, 4, 5, 10]. In [4], Chen proved that if ab 6= 0 and arg a 6= arg b or a = cb
(0 < c < 1 or c > 1), then every solution f(z) 6≡ 0 of (1.8) is of infinite order.
Recently, the second author proved results similar to (1.8) in the unit disc for the
differential equation

f ′′ +A(z)e
a

(z0−z)µ f ′ +B(z)e
b

(z0−z)µ f = 0, (1.9)

where A(z) and B(z) are analytic in the unit disc, µ > 0 and arg a 6= arg b or a = cb
(0 < c < 1), see [12]. However, the method of [12] does not work in general for the
case 0 < µ ≤ 1: see the discussion in [12, Remark 3.1]. The case µ = 1 will be
investigated in the following theorem with certain modifications on A(z) and B(z).

Theorem 1.1. Let z0, a, b be complex constants such that arg a 6= arg b or a = cb
(0 < c < 1) and n be a positive integer. Let A(z), B(z) 6≡ 0 be analytic functions in
C − {z0} with max{σ(A, z0), σ(B, z0)} < n. Then, every solution f(z) 6≡ 0 of the
differential equation

f ′′ +A(z)e
a

(z0−z)n f ′ +B(z)e
b

(z0−z)n f = 0. (1.10)

satisfies σ(f, z0) =∞ with σ2(f, z0) = n.

In [7], Frei proved the following result in the complex plane.

Theorem 1.2 ([7]). If the differential equation

g′′ + e−wg′ + cg = 0 (1.11)
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where c 6= 0 is a complex constant, possesses a solution g 6≡ 0 of finite order, then
c = −k2 where k is a positive integer. Conversely, for each positive integer k, the
equation (1.11) with c = −k2 possesses a solution g which is a polynomial in ew of
degree k.

The analogous of this result, near a singular point z0, is as follows.

Theorem 1.3. Let c 6= 0, z0 be complex numbers. If the differential equation

f ′′ +
( 1

(z0 − z)2
e

−1
(z0−z) − 2

(z0 − z)

)
f ′ +

c

(z0 − z)4
f = 0 (1.12)

possesses a solution f(z) 6≡ 0 of finite order σ(f, z0) < ∞ then c = −k2, where
k is an integer. Conversely, for each positive integer k, the equation (1.12) with
c = −k2, possesses a solution f which is a polynomial in e

1
(z0−z) of degree k.

Example 1.4. f1(z) = 1 + e
1

(z0−z) is a solution of the differential equation

f ′′ + (
1

(z0 − z)2
e

−1
(z0−z) − 2

(z0 − z)
)f ′ − 1

(z0 − z)4
f = 0.

Example 1.5. f2(z) = 1 + 4e
1

(z0−z) + 6e
2

(z0−z) is a solution of the differential
equation

f ′′ +
( 1

(z0 − z)2
e

−1
(z0−z) − 2

(z0 − z)

)
f ′ − 4

(z0 − z)4
f = 0.

Theorem 1.6. Let A0(z) 6≡ 0, A1(z), . . . , Ak−1(z) be meromorphic functions in
C− {z0} satisfying

|A0(z)| ≥ exp{ α
rµ
}, (1.13)

|Aj(z)| ≤ exp{ β
rµ
}, j 6= 0, (1.14)

where α > β ≥ 0, µ > 0, arg(z0 − z) = θ ∈ (θ1, θ2) ⊂ [0, 2π) and |z0 − z| = r → 0.
Then, every solution f(z) 6≡ 0 of the differential equation

f (k) +Ak−1(z)f (k−1) + · · ·+A1(z)f ′ +A0(z)f = 0, (1.15)

satisfies σ2(f, z0) ≥ µ.

Similar results to Theorem 1.6 in the complex plane are given in [2, 11].

Theorem 1.7. Let A0(z) 6≡ 0, A1(z), . . . , Ak−1(z) be analytic functions in C−{z0}
satisfying max{σ(Aj , z0) : j 6= 0} < σ(A0, z0). Then, every solution f(z) 6≡ 0 of
(1.15) satisfies σ2(f, z0) = σ(A0, z0).

2. Preliminaries lemmas

Throughout this paper, we use the following symbols that do not have necessarily
the same at each occurrence: r0 > 0, ε > 0, γ > 1, λ > 0 are real constants. The set
E∗1 ⊂ (0, r0] has finite logarithmic measure

∫ r0
0

χE∗1
t dt < ∞. The set E∗2 ⊂ [0, 2π)

has a linear measure zero,
∫ 2π

0
χE∗2 dt = 0.

Lemma 2.1 ([9]). Let g be a transcendental meromorphic function in C, and let
γ > 1, ε > 0 be given real constants; then
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(i) there exists a set E1 ⊂ (1,∞) that has a finite logarithmic measure and a
constant λ > 0 that depends only on γ such that for all R = |w| satisfying R /∈ E1,
we have ∣∣g(k)(w)

g(w)

∣∣ ≤ λ[T (γR, g) log T (γR, g)]k; (2.1)

(ii) there exists a set E2 ⊂ [0, 2π) that has a linear measure zero and a constant
λ > 0 that depends only on γ such that for all θ ∈ [0, 2π)\E2 there exists a constant
R0 = R0(θ) > 0 such that for all z satisfying arg z ∈ [0, 2π)\E2 and r = |z| > R0,
we have ∣∣g(k)(w)

g(w)

∣∣ ≤ λ[T (γR, g)Rε log T (γR, g)]k. (2.2)

Lemma 2.2. Let f be a non constant meromorphic function in C − {z0} and set
g(w) = f(z0 − 1

w ). Then, g(w) is meromorphic in C and we have

T (R, g) = Tz0
( 1
R
, f
)
.

Proof. It is easy to prove the following statements:
(i) w0 6= 0 is a pole of g of order n if and only if 1

w0
− z0 is a pole of f of order n.

(ii) 0 is a pole of g of order n if and only if ∞ is a pole of f of order n.
(iii) The change of variable w = 1

z0−z maps the region {z ∈ C : t ≤ |z−z0|}∪{∞}
on the region {w ∈ C : |w| ≤ 1

t }.
From these statements, g(w) is meromorphic in C and by using the change of

variable T = 1
t , we obtain

N(R, g) =
∫ R

0

n(T, g)− n(0, g)
T

dT + n(0, g) lnR

= −
∫ 1

R

∞

n(t, f)− n(∞, f)
t

dt+ n(∞, f) lnR

= −
∫ 1

R

∞

n(t, f)− n(∞, f)
t

dt− n(∞, f) ln
1
R

= Nz0(
1
R
, f).

Which means that N(R, g) = Nz0( 1
R , f). We have

m(R, g) =
1

2π

∫ 2π

0

ln+ |g(Reiϕ)|dϕ

=
1

2π

∫ 2π

0

ln+ |f(z0 −
1
R
e−iϕ)|dϕ

=
−1
2π

∫ −2π

0

ln+ |f(z0 −
1
R
eiϕ)|dϕ

=
1

2π

∫ 0

−2π

ln+ |f(z0 −
1
R
eiϕ)|dϕ

=
1

2π

∫ 2π

0

ln+ |f(z0 −
1
R
eiϕ)|dϕ = mz0(

1
R
, f).

(2.3)

So, we conclude that T (R, g) = Tz0( 1
R , f). �

Remark 2.3. By Lemma 2.2, if f is a non constant meromorphic function in
C− {z0} and g(w) = f(z0 − 1

w ) then σ(f, z0) = σ(g).



EJDE-2016/226 GROWTH OF LOCAL SOLUTIONS 5

Lemma 2.4. Let f be a non constant meromorphic function in C − {z0} and let
γ > 1, ε > 0 be given constants; then

(i) there exists a set E∗1 ⊂ (0, r0] that has finite logarithmic measure
∫ r0
0

χE∗1
t dt <

∞ and a constant λ > 0 that depends only on γ such that for all r = |z − z0|
satisfying r ∈ (0, r0]\E∗1 , we have

|f
(k)(z)
f(z)

| ≤ λ[
1
r2
Tz0(

r

γ
, f) log Tz0(

r

γ
, f)]k (k ∈ N); (2.4)

(ii) there exists a set E∗2 ⊂ [0, 2π) that has a linear measure zero and a constant
λ > 0 that depends only on γ such that for all θ ∈ [0, 2π)\E∗2 there exists a constant
r0 = r0(θ) > 0 such that for all z satisfying arg(z − z0) = θ and r = |z − z0| < r0,
we have

|f
(k)(z)
f(z)

| ≤ λ[
1

r2+ε
Tz0(

r

γ
, f) log Tz0(

r

γ
, f)]k (k ∈ N). (2.5)

Proof. Set g(w) = f(z0 − 1
w ). g(w) is meromorphic in C and by Lemma 2.1, we

have (2.1) and (2.2). We have f(z) = g(w) such that w = 1
z0−z ; then f ′(z) =

1
(z0−z)2 g

′(w) and then
f ′(z)
f(z)

=
1

(z0 − z)2
g′(w)
g(w)

. (2.6)

By Lemma 2.1, we have

|g
′(w)
g(w)

| ≤ λ[T (γR, g) log T (γR, g)], R /∈ E1;

and by Lemma 2.2 and (2.6), we obtain

|f
′(z)
f(z)

| ≤ λ[
1
r2
Tz0(

1
γR

, f) log Tz0(
1
γR

, f)]

≤ λ[
1
r2
Tz0(

r

γ
, f) log Tz0(

r

γ
, f)], r /∈ E∗1 .

where 1
r = R /∈ E1 ⇔ r /∈ E∗1 and

∫ r0
0

χE∗1
t dt =

∫∞
1/r0

χE1
T dT <∞.

We have f ′′(z) = 1
(z0−z)4 g

′′(w) + 2
(z0−z)3 g

′(w); and so

f ′′(z)
f(z)

=
1

(z0 − z)4
g′′(w)
g(w)

+
2

(z0 − z)3
g′(w)
g(w)

.

and by Lemma 2.1 and Lemma 2.2, we obtain

|f
′′(z)
f(z)

| ≤ λ
[ 1
r2
Tz0(

r

γ
, f) log Tz0(

r

γ
, f)
]2

r /∈ E∗1 .

In general, we can obtain

f (k)(z) =
1

(z0 − z)2k
g(k)(w) +

ak−1

(z0 − z)2k−1
g(k−1)(w) + · · ·+ a1

(z0 − z)k+1
g′(w),

where aj (j = 1, 2, . . . , k − 1) are integers; and thus

f (k)(z)
f(z)

=
1

(z0 − z)2k
g(k)(w)
g(w)

+
ak−1

(z0 − z)2k−1

g(k−1)(w)
g(w)

+ . . .

+
a1

(z0 − z)k+1

g′(w)
g(w)

.

(2.7)
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Also by suing Lemma 2.1 and Lemma 2.2 with (2.7), for r = |z − z0| < r0, we
obtain ∣∣f (k)(z)

f(z)

∣∣ ≤ λ[ 1
r2
Tz0(

r

γ
, f) log Tz0(

r

γ
, f)
]k

r /∈ E∗1 .

Now for (2.5) we can use the same method as above and by using Lemma 2.1 and
Lemma 2.2 with (2.7), we obtain, for r = |z−z0| < r0 and arg(z−z0) ∈ [0, 2π)\E∗2 ,

|f
(k)(z)
f(z)

| ≤ λ
[ 1
r2+ε

Tz0(
r

γ
, f) log Tz0(

r

γ
, f)
]k
,

where θ ∈ E2 ⇔ 2π − θ ∈ E∗2 (E∗2 ⊂ [0, 2π) has a linear measure zero). �

The following lemma is a particular case of Lemma 2.4.

Lemma 2.5. Let f be a non constant meromorphic function in C− {z0} of finite
order σ(f, z0) <∞; let ε > 0 be a given constant. Then the following two statements
hold.

(i) There exists a set E∗1 ⊂ (0, r0] that has finite logarithmic measure
∫ r0
0

χE∗1
t dt <

∞ such that for all r = |z − z0| ∈ (0, r0]\E∗1 , we have

|f
(k)(z)
f(z)

| ≤ 1
rk(σ+2+ε)

, (k ∈ N). (2.8)

(ii) There exists a set E∗2 ⊂ [0, 2π) that has a linear measure zero such that
for all θ ∈ [0, 2π)\E∗2 there exists a constant r0 = r0(θ) > 0 such that for all z
satisfying arg(z − z0) = θ and r = |z − z0| < r0, the inequality (2.8) holds.

The question which arises here is the following: can we get similar estimations
on | f

(k)(z)
f(z) | in (2.4), (2.5) and (2.8) for a non constant function that is meromorphic

only on a bounded region of the form {z ∈ C : 0 < |z − z0| ≤ r0}?

Lemma 2.6. Let h be a non constant analytic function in C − {z0} of order
σ(f, z0) > α > 0. Then, there exists a set F ⊂ (0, r0] of infinite logarirhmic
measure

∫ r0
0

χF
t dt =∞ such that for all r ∈ F and |h(z)| = Mz0(r, h), we have

log |h(z)| > 1
rα
.

Proof. By the definition of σ(f, z0), there exists a decreasing sequence {rm} → 0
satisfying m

m+1rm > rm+1 and

lim
m→∞

log logMz0(rm, f)
− log rm

> α.

Then, there exists m0 such that for all m > m0 and for a given ε > 0 small enough,
we have

logMz0(rm, f) >
1

rα+ε
m

. (2.9)

There exists m1 such that for all m > m1, and for any r ∈ [ m
m+1rm, rm] and for a

given ε > 0, we have ( m

m+ 1
)α+ε

> rε. (2.10)

By (2.9) and (2.10), for all m > m2 = max{m0,m1} and for any r ∈ [ m
m+1rm, rm],

we have

logMz0(r, f) > logMz0(rm, f) >
1

rα+ε
m

>
1

rα+ε
(

m

m+ 1
)α+ε >

1
rα
.
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Set F = ∪∞m=m2
[ m
m+1rm, rm]; then we have

∞∑
m=m2

∫ rm

m
m+1 rm

dt

t
=
∑
m>m2

log
m+ 1
m

=∞.

�

We recall a particular case of an important result due to Chiang and Hayman in
[6].

Lemma 2.7 ([6]). Let Aj be meromorphic functions in C and f be a meromorphic
solution of (1.15), assuming that not all coefficients Aj are constants. Given a real
constant γ > 1, and denoting T (R) :=

∑k−1
j=0 T (R,Aj), we have

logm(R, f) < T (R){logR log T (R)}γ .

We can transform this result near a singular point as follows.

Lemma 2.8. Let Aj be meromorphic functions in C − {z0} and f be a mero-
morphic solution of (1.15) in C − {z0}, assuming that not all coefficients Aj are
constants. Given a real constant γ > 1, and denoting Tz0(r) := Tz0(r,A0) +∑k−1
j=1

∑k−1
i=j Tz0(r,Ai) +O(log 1

r ), we have

logmz0(r, f) < Tz0(r){log
1
r

log(Tz0(r))}γ .

Proof. Set g(w) = f(z0− 1
w ); g(w) is meromorphic in C. We have f(z) = g(w) such

that w = 1
z0−z ; then f ′(z) = 1

(z0−z)2 g
′(w) = w2g′(w), f ′′(z) = w4g′′(w)+2w3g′(w).

In general, we can obtain that

f (k)(z) = w2kg(k)(w) + ak−1w
2k−1g(k−1)(w) + · · ·+ a1w

k+1g′(w), (2.11)

where aj (j = 1, 2, . . . , k − 1) are integers. Substituting (2.11) in (1.15), we obtain

g(k)(w) +Bk−1(w)g(k−1)(w) + · · ·+B1(w)g′(w) +B0(w)g(w) = 0,

such that B0(w) = 1
w2kA0(z0 − 1

w ) and for j 6= 0, Bj(w) =
∑k−1
i=j

cij
wnij

Ai(z0 − 1
w )

where cij and nij are integers with 0 < nij ≤ 2k. Since Aj(z0− 1
w ) (j = 0, 1, . . . , k−

1) are meroporphic functions in C, then Bj(w) are meromorphic functions in C and
by Lemma 2.7, we have

logm(R, g) < T (R,B){logR log T (R,B)}γ , (2.12)

where T (R,B) =
∑k−1
j=0 T (r,Bj). By (2.3), we have

m(R, g) = m(
1
R
, f) = mz0(r, f) (2.13)

and by Lemma 2.2, we obtain that

T (R,B) ≤ T
(
R,A0(z0 +

1
w

)
)

+
k−1∑
j=1

k−1∑
i=j

T
(
R,Ai(z0 +

1
w

)
)

+O(logR)

≤ Tz0(r,A0) +
k−1∑
j=1

k−1∑
i=j

Tz0(r,Ai) +O(log
1
r

).

(2.14)
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From (2.12)–(2.14), we conclude that

logmz0(r, f) < Tz0(r)
{

log
1
r

log(Tz0(r))
}γ
.

�

Lemma 2.9. Let A(z) be analytic function in C − {z0} with σ(A, z0) < n. Set
g(z) = A(z) exp{ a

(z0−z)n } (n ≥ 1 is an integer), a = α + iβ 6= 0, z0 − z = reiϕ,
δa(ϕ) = α cos(nϕ) + β sin(nϕ), and H = {ϕ ∈ [0, 2π) : δa(ϕ) = 0} (obviously, H is
of linear measure zero).

Then for any given ε > 0 and any ϕ ∈ [0, 2π)\H, there exists r0 > 0 such that
for 0 < r < r0, we have

(i) if δa(ϕ) > 0, then

exp{(1− ε)δa(ϕ)
1
rn
} ≤ |g(z)| ≤ exp{(1 + ε)δa(ϕ)

1
rn
}, (2.15)

(ii) if δa(ϕ) < 0, then

exp{(1 + ε)δa(ϕ)
1
rn
} ≤ |g(z)| ≤ exp{(1− ε)δa(ϕ)

1
rn
}. (2.16)

Proof. Set h(w) := g(z0− 1
w ) = A(z0− 1

w ) exp{awn}, where A(z0− 1
w ) is a analytic

function in C of order σ = σ(A, z0) < n. We have

| exp{awn}| = | exp{ a

(z0 − z)n
}| = exp{δa(ϕ)

rn
}.

Using the analogous lemma in C (see [5, 22]), we get (2.15) and (2.16). �

3. Proof of main results

Proof of Theorem 1.1. From (1.10), we can write

|B(z)||e
b

(z0−z)n | ≤ |f
′′

f
|+ |A(z)||e

a
(z0−z)n | |f

′

f
|. (3.1)

Case 1. arg a 6= arg b: then there exist (ϕ1, ϕ2) ⊂ [0, 2π) such that for arg(z0−z) =
ϕ ∈ (ϕ1, ϕ2) we have δb(ϕ) > 0 and δa(ϕ) < 0. Since max{σ(A, z0), σ(B, z0)} < n,
then by Lemma 2.9, (2.5) and (3.1), we obtain

exp{(1− ε)δb(ϕ)
1
rn
} ≤ λ

r2(2+ε)
[Tz0(

r

γ
, f)]4 exp{(1− ε)δa(ϕ)

1
rn
}. (3.2)

From (3.2), it is easy to obtain that σ2(f, z0) ≥ n. In the other side, by Lemma
2.8, we can get σ2(f, z0) ≤ n. Thus we conclude that σ2(f, z0) = n.

Case 2. a = cb (0 < c < 1): then there exist (ϕ1, ϕ2) ⊂ [0, 2π) such that for
arg(z0 − z) = ϕ ∈ (ϕ1, ϕ2) we have δa(ϕ) = cδb(ϕ) > 0.

Since max{σ(A, z0), σ(B, z0)} < n, by Lemma 2.9, (2.5) and (3.1), we obtain

exp{(1− ε)δb(ϕ)
1
rn
} ≤ λ

r2(2+ε)
[
Tz0(

r

γ
, f)
]4 exp{(1 + ε)cδb(ϕ)

1
rn
}. (3.3)

From (3.3) and by taking 0 < ε < 1−c
1+c , we obtain that σ2(f, z0) ≥ n. By Lemma

2.8, we have σ2(f, z0) ≤ n. Thus we conclude that σ2(f, z0) = n. �
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Proof of Theorem 1.3. Using the change of variable w = 1
z0−z and setting g(w) =

f(z), we get f ′(z) = 1
(z0−z)2 g

′(w) = w2g′(w), f ′′(z) = w4g′′(w) + 2w3g′(w). Then
the differential equation (1.12) becomes

g′′(w) + e−wg′(w) + cg(w) = 0. (3.4)

By Theorem 1.2, if (3.4) possesses a solution g 6≡ 0 of finite order, then c = −k2

where k is a positive integer. Conversely, for each positive integer k, the equation
(1.11) with c = −k2, possesses a solution g which is a polynomial in ew of degree
k. By Remark 2.3, we have σ(f, z0) = σ(g). So, if the differential equation (1.12)
possesses a solution f(z) 6≡ 0 of finite order σ(f, z0) <∞ then c = −k2. Conversely,
for each positive integer k, the equation (1.12) with c = −k2, possesses a solution
f which is a polynomial in e

1
(z0−z) of degree k. �

Proof of Theorem 1.6. From (1.15), we can write

|A0(z)| ≤ |f
(k)

f
|+ |Ak−1(z)||f

(k−1)

f
|+ · · ·+ |A1(z)||f

′

f
|. (3.5)

Using (1.13), (1.14) and (2.5) in (3.5), for arg(z0 − z) = θ ∈ (θ1, θ2) ⊂ [0, 2π) and
|z0 − z| = r near enough to 0, we obtain

exp{ α
rµ
} ≤ λ

rk(2+ε)
[
Tz0(

r

γ
, f)
]2k exp{ β

rµ
}. (3.6)

From (3.6), we obtain that σ(f, z0) ≥ µ. �

Proof of Theorem 1.7. From (1.15), we can write

|A0(z)| ≤ |f
(k)

f
|+ |Ak−1(z)||f

(k−1)

f
|+ · · ·+ |A1(z)||f

′

f
|. (3.7)

Set max{σ(Aj , z0) : j 6= 0} < β < α < σ(A0, z0). For any given ε > 0, there exists
r0 > 0 such that for all r satisfying r0 ≥ r > 0, we have

|Aj(z)| ≤ exp{ 1
rβ+ε

}, j = 1, 2, . . . , k − 1. (3.8)

By taking β + ε < α < σ(A0, z0), and by Lemma 2.6, there exists a set F ⊂ (0, r0]
of infinite logarirhmic measure such that for all r ∈ F and |A0(z)| = Mz0(r,A0),
we have

|A0(z)| > exp{ 1
rα
}. (3.9)

Using (3.8)–(3.9) with (2.4) in (3.7), we obtain

exp{ 1
rα
} ≤ λ

r2k
[
Tz0(

r

γ
, f)
]2k exp{ 1

rβ+ε
}. (3.10)

From (3.10), we obtain that σ(f, z0) ≥ α.
On the other hand, applying Lemma 2.8 with (1.15), we obtain that σ(f, z0) ≤

σ(A0, z0). Since α ≤ σ(f, z0) ≤ σ(A0, z0) holds for every α < σ(A0, z0), then we
conclude that σ(f, z0) = σ(A0, z0). �
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