EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR SEMILINEAR EQUATIONS ON EXTERIOR DOMAINS

JOSEPH A. IAIA

Abstract

In this article we study radial solutions of $\Delta u+K(r) f(u)=0$ on the exterior of the ball of radius $R>0$ centered at the origin in \mathbb{R}^{N} where f is odd with $f<0$ on $(0, \beta), f>0$ on $(\beta, \delta), f \equiv 0$ for $u>\delta$, and where the function $K(r)$ is assumed to be positive and $K(r) \rightarrow 0$ as $r \rightarrow \infty$. The primitive $F(u)=\int_{0}^{u} f(t) d t$ has a "hilltop" at $u=\delta$. We prove that if $K(r) \sim r^{-\alpha}$ with $\alpha>2(N-1)$ and if $R>0$ is sufficiently small then there are a finite number of solutions of $\Delta u+K(r) f(u)=0$ on the exterior of the ball of radius R such that $u \rightarrow 0$ as $r \rightarrow \infty$. We also prove the nonexistence of solutions if R is sufficiently large.

1. Introduction

In this article we study radial solutions of

$$
\begin{gather*}
\Delta u+K(r) f(u)=0 \quad \text { in } \Omega, \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega \tag{1.2}\\
u \rightarrow 0 \quad \text { as }|x| \rightarrow \infty \tag{1.3}
\end{gather*}
$$

where $x \in \Omega=\mathbb{R}^{N} \backslash B_{R}(0)$ is the complement of the ball of radius $R>0$ centered at the origin.

We assume there exist β, δ with $0<\beta<\delta$ such that $f(0)=f(\beta)=f(\delta)=0$ and $F(u)=\int_{0}^{u} f(s) d s$ where:
(H1) f is odd and locally Lipschitz, $f<0$ on $(0, \beta), f>0$ on $(\beta, \delta), f \equiv 0$ on (δ, ∞), and $F(\delta)>0$.
We note it follows that $F(u)=\int_{0}^{u} f(s) d s$ is even and has a unique positive zero, γ, with $\beta<\gamma<\delta$ such that
(H2) $F<0$ on $(0, \gamma), F>0$ on (γ, ∞), and F is strictly monotone on $(0, \beta)$ and on (β, δ).
In earlier papers [5]-6] we studied (1.1), (1.3) when $\Omega=\mathbb{R}^{N}$ and $K(r) \equiv 1$. In [7] we studied (1.1)- 1.3) with $K(r) \equiv 1$ and $\Omega=\mathbb{R}^{N} \backslash B_{R}(0)$. In that paper we proved existence of an infinite number of solutions - one with exactly n zeros for each nonnegative integer n such that $u \rightarrow 0$ as $|x| \rightarrow \infty$. Interest in the topic for this paper comes from recent papers [4, 11, 13, about solutions of differential equations on exterior domains.

[^0]When f grows superlinearly at infinity - i.e. $\lim _{u \rightarrow \infty} \frac{f(u)}{u}=\infty$, and $\Omega=\mathbb{R}^{N}$ then problem (1.1)-1.3) has been extensively studied [1]-[2], [10, 12, 14]. The type of nonlinearity addressed here has not been studied as extensively [5]- [7].

Since we are interested in radial solutions of (1.1)-1.3 we assume that $u(x)=$ $u(|x|)=u(r)$ where $x \in \mathbb{R}^{N}$ and $r=|x|=\sqrt{x_{1}^{2}+\cdots+x_{N}^{2}}$ so that u solves

$$
\begin{gather*}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+K(r) f(u(r))=0 \quad \text { on }(R, \infty) \text { where } R>0 \tag{1.4}\\
u(R)=0, \quad u^{\prime}(R)=b>0 \tag{1.5}
\end{gather*}
$$

We assume that there exist constants $c_{1}>0, c_{2}>0$, and $\alpha>0$ such that
(H3) $c_{1} r^{-\alpha} \leq K(r) \leq c_{2} r^{-\alpha}$ for $\alpha>2(N-1)$ on $[R, \infty)$.
In addition, we assume that
(H4) K, K^{\prime} are continuous on $[R, \infty), \lim _{r \rightarrow \infty} \frac{r K^{\prime}}{K}=-\alpha$, and $\frac{r K^{\prime}}{K}+2(N-1)<0$ on $[R, \infty)$.
Note that (H4)implies $r^{2(N-1)} K(r)$ is nonincreasing. In papers [8]-9] we have discussed the case when $0<\alpha<2(N-1)$.

Theorem 1.1. Let $N \geq 2$ and $\alpha>2(N-1)$. Assuming (H1)-(H4) then if R is sufficiently large then there are no solutions of (1.4)-(1.5) such that $\lim _{r \rightarrow \infty} u(r)=$ 0.

Theorem 1.2. Let $N>2$ and $\alpha>2(N-1)$. Assuming (H1)-(H4) and given a nonnegative integer n then if $R>0$ is sufficiently small then there are constants $b_{i}>0$ and solutions u_{i} with $0 \leq i \leq n$ of (1.4)-1.5 with $b=b_{i}$ such that $\lim _{r \rightarrow \infty} u_{i}(r)=0$ and u_{i} has i zeros on (R, ∞).

An important step in proving this result is showing that solutions can be obtained with more and more zeros by choosing b appropriately. Intuitively it can be of help to interpret 1.4 as an equation of motion for a point $u(r)$ moving in a doublewell potential $F(u)$ subject to a damping force $-\frac{N-1}{r} u^{\prime}$. This potential however becomes flat at $u= \pm \delta$. According to (1.5) the system has initial position zero and initial velocity $b>0$. We will see that if $b>0$ is sufficiently small then the solution will "fall" into the well at $u=\beta$ and - due to damping - it will be unable to leave the well whereas if $b>0$ is sufficiently large the solution will reach the top of the hill at $u=\delta$ and will continue to move to the right indefinitely. For an appropriate value of b - which we denote $b^{* *}$ - the solution will reach the top of the hill at $u=\delta$ as $r \rightarrow \infty$. For values of b slightly less than $b^{* *}$ the solutions will not make it to the top of the hill at $u=\delta$ and they will nearly stop moving. Thus the solution "loiters" near the hilltop at $F(\delta)$ on a sufficiently long interval and will usually "fall" into the positive well at $u=\beta$ or the negative well at $u=-\beta$ after passing the origin a finite number of times, say n. For the right value of b - which we denote as b_{n} - the solution comes to rest at the local maximum of the function $F(u)$ at the origin as $r \rightarrow \infty$ after passing the origin n times.

In contrast to this is a double-well potential that goes off to infinity as $|u| \rightarrow \infty$ - for example $F(u)=u^{2}\left(u^{2}-4\right)$. Here the solutions of (1.4)-(1.5) behave quite differently. As b increases the number of zeros of u increases as $b \rightarrow \infty$. Thus the number of times that u reaches the local maximum of $F(u)$ at the origin increases as the parameter b increases. See for example [10, 12, 14].

2. Preliminaries and Proof of Theorem 1.1

Proof of Theorem 1.1. We observe since $\alpha>2(N-1)$, by 1.4 and (H4)

$$
\begin{equation*}
\left(\frac{1}{2} \frac{u^{\prime 2}}{K}+F(u)\right)^{\prime}=-\frac{u^{\prime 2}}{2 r K}\left(2(N-1)+\frac{r K^{\prime}}{K}\right) \geq 0 \tag{2.1}
\end{equation*}
$$

Hence $\frac{1}{2} \frac{u^{\prime 2}}{K}+F(u)$ is nondecreasing. Now suppose there is a solution of 1.4)-1.5 such that $\lim _{r \rightarrow \infty} u(r)=0$. Then u must have a first local maximum, M, such that $u^{\prime}>0$ on $[R, M)$. Then since $\frac{1}{2} \frac{u^{\prime 2}}{K}+F(u)$ is nondecreasing we see that

$$
\frac{1}{2} \frac{u^{\prime 2}}{K}+F(u) \leq F(u(M)) \quad \text { on }(R, M)
$$

Rewriting this and using (H3) we see that

$$
\frac{\left|u^{\prime}\right|}{\sqrt{2} \sqrt{F(u(M))-F(u)}} \leq \sqrt{K} \leq \sqrt{c_{2}} r^{-\alpha / 2} \quad \text { on }(R, M)
$$

Integrating on (R, M) and noting that $\alpha>2$ (since $\alpha>2(N-1)$ and $N \geq 2)$ gives

$$
\begin{equation*}
\int_{0}^{u(M)} \frac{d t}{\sqrt{2} \sqrt{F(u(M))-F(t)}} \leq \frac{\sqrt{c_{2}}}{\frac{\alpha}{2}-1}\left(R^{1-\frac{\alpha}{2}}-M^{1-\frac{\alpha}{2}}\right) \leq \frac{\sqrt{c_{2}}}{\frac{\alpha}{2}-1} R^{1-\frac{\alpha}{2}} \tag{2.2}
\end{equation*}
$$

In addition, since $\frac{1}{2} \frac{u^{\prime 2}}{K}+F(u)$ is nondecreasing we see that $0<\frac{1}{2} \frac{b^{2}}{K(R)} \leq F(u(M))$ so $u(M)>\gamma$. Further it follows from (H1)-(H2) that $F(u(M)) \leq F(\delta)$ and $F(t) \geq$ $-F_{0}$ for all $t \geq 0$ where $F_{0}>0$ and therefore $F(u(M))-F(t) \leq F(\delta)+F_{0}$. Therefore 2.2 implies

$$
\begin{equation*}
\frac{\gamma}{\sqrt{2} \sqrt{F(\delta)+F_{0}}} \leq \frac{\sqrt{c_{2}}}{\frac{\alpha}{2}-1} R^{1-\frac{\alpha}{2}} \tag{2.3}
\end{equation*}
$$

We note that the left-hand side of (2.3) is positive and independent of R but that the right-hand side goes to zero as $R \rightarrow \infty$ since $\alpha>2$. Thus we see that if R is sufficiently large then (2.3) is violated hence there are no solutions u of $1.4-1.5$ such that $\lim _{r \rightarrow \infty} u(r)=0$ if R is sufficiently large. This completes the proof.

For the remainder of this paper we assume $\alpha>2(N-1)$ and $N>2$. Now we make the change of variables

$$
u(r)=w\left(r^{2-N}\right)
$$

Then $(1.4)-1.5$ becomes

$$
\begin{equation*}
w^{\prime \prime}+h(t) f(w)=0 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
w\left(R^{2-N}\right)=0, \quad w^{\prime}\left(R^{2-N}\right)=-\frac{b R^{N-1}}{N-2}<0 \tag{2.5}
\end{equation*}
$$

where $h(t)=T\left(t^{\frac{1}{2-N}}\right)$ and $T(r)=\frac{r^{2(N-1)} K(r)}{(N-2)^{2}}$. Then from (H3) and (H4) we see:

$$
\begin{equation*}
h(t)=T\left(t^{\frac{1}{2-N}}\right) \sim \frac{t^{q}}{(N-2)^{2}} \quad \text { for } 0<t \leq R^{2-N}, \tag{2.6}
\end{equation*}
$$

where

$$
q=\frac{\alpha-2(N-1)}{N-2}>0, \quad \lim _{t \rightarrow 0^{+}} \frac{t h^{\prime}(t)}{h(t)}=q
$$

In addition, it follows from (H3)-(H4) that

$$
\begin{equation*}
\frac{c_{1}}{(N-2)^{2}} t^{q} \leq h(t) \leq \frac{c_{2}}{(N-2)^{2}} t^{q} \text { and } h^{\prime}>0 \quad \text { for } 0<t \leq R^{2-N} \tag{2.7}
\end{equation*}
$$

Since we are seeking solutions of 1.4$)-(1.5)$ with $\lim _{r \rightarrow \infty} u(r)=0$ we see that this is equivalent to seeking solutions of (2.4)-(2.5) with $\lim _{t \rightarrow 0^{+}} w(t)=0$. Instead though we now attempt to solve 2.4 with initial conditions at $t=0$ instead of $t=R^{2-N}$,

$$
\begin{equation*}
w(0)=0, \quad w^{\prime}(0)=a>0 \tag{2.8}
\end{equation*}
$$

(We note that we will occasionally write $w(t)=w(t, a)$ to emphasize the dependence of w on a).

We attempt now to show that if $R>0$ is sufficiently small and n is a nonnegative integer then there are $a_{i}>0$ with $a_{0}<a_{1}<\cdots<a_{n}$ such that $w\left(R^{2-N}, a_{i}\right)=0$ and $w\left(t, a_{i}\right)$ has i zeros on $\left(0, R^{2-N}\right)$.

To proceed we temporarily extend the definition of the function h so that

$$
h(t)=h\left(R^{2-N}\right)+\frac{h^{\prime}\left(R^{2-N}\right)}{q R^{(2-N)(q-1)}}\left[t^{q}-R^{(2-N) q}\right] \text { for } t>R^{2-N} .
$$

Note then that 2.7) holds on $(0, \infty)$.
A useful function in the analysis of $(2.4)-2.5$ is

$$
\begin{equation*}
E(t)=\frac{1}{2} \frac{w^{2}(t)}{h(t)}+F(w(t)) \quad \text { for } t>0 \tag{2.9}
\end{equation*}
$$

Using (2.4), we obtain

$$
\begin{equation*}
E^{\prime}(t)=-\frac{w^{\prime 2} h^{\prime}}{2 h^{2}} \leq 0 \quad \text { since } h^{\prime}>0 \text { for } t>0 \tag{2.10}
\end{equation*}
$$

Thus E is nonincreasing. Also note that $\lim _{t \rightarrow 0^{+}} E(t)=+\infty$. We also observe using 2.4,

$$
\begin{equation*}
\frac{1}{2} w^{\prime 2}+h(t) F(w)=\frac{1}{2} a^{2}+\int_{0}^{t} h^{\prime}(s) F(w) d s \tag{2.11}
\end{equation*}
$$

Another useful equation is obtained by integrating 2.4) on $(0, t)$ and using 2.8 which gives

$$
\begin{equation*}
w^{\prime}(t)=a-\int_{0}^{t} h(x) f(w(x)) d x \tag{2.12}
\end{equation*}
$$

Integrating again on $(0, t)$ gives

$$
\begin{equation*}
w(t)=a t-\int_{0}^{t} \int_{0}^{s} h(x) f(w(x)) d x d s \tag{2.13}
\end{equation*}
$$

3. Proof of Theorem 1.2

From the standard theory of ordinary differential equations there exists a unique solution of 2.4, 2.8 on $[0,2 \epsilon)$ for some $\epsilon>0$. Since E is nonincreasing then $\frac{1}{2} \frac{w^{\prime 2}(t)}{h(t)}+F(w(t))=E(t) \leq E(\epsilon)$ for $t>\epsilon$ from which it follows that w and w^{\prime} are uniformly bounded on compact subsets of $[0, \infty)$ and thus the solution $w(t)$ of (2.4), 2.8) exists on all of $[0, \infty)$ and varies continuously with respect to a on compact subsets of $[0, \infty)$.

Lemma 3.1. Let $\alpha>2(N-1), N>2$, and let w satisfy 2.4, 2.8. Suppose (H1)-(H4) hold. Then there exists an $r_{a}>0$ such that $w\left(r_{a}\right)=\beta$ and $0<w<\beta$ on ($0, r_{a}$). Also, $r_{a} \rightarrow \infty$ as $a \rightarrow 0^{+}$. In addition, $|w(t, a)|<\delta$ if $a>0$ is sufficiently small.

Proof. By 2.8 we have $w^{\prime}(0)=a>0$ so it follows that w is initially increasing. If $0<w<\beta$ for all $t>0$ then $f(w)<0$ by (H1) and we see from (2.13) that $w(t)>a t$. Thus $w(t)$ exceeds β for large enough t contradicting that $0<w<\beta$. Thus there is an $r_{a}>0$ such that $w\left(r_{a}\right)=\beta$ and $0<w<\beta$ on $\left(0, r_{a}\right)$.

For the next part of the lemma we note first that if $|w(t, a)|<\gamma$ for all $t \geq 0$ then there is nothing to prove since $\gamma<\delta$. So suppose now that there exists $s_{a}>0$ such that $\left|w\left(s_{a}\right)\right|=\gamma$ and $|w|<\gamma$ on $\left(0, s_{a}\right)$. Evaluating 2.11) at $t=s_{a}$ gives

$$
\begin{equation*}
\frac{1}{2} w^{\prime 2}\left(s_{a}\right) \leq \frac{1}{2} a^{2} \tag{3.1}
\end{equation*}
$$

since $F\left(w\left(s_{a}\right)\right)=F(\gamma)=0$ and $F(w) \leq 0$ on $\left(0, s_{a}\right)$. Using (3.1) and the fact that E is nonincreasing gives

$$
\begin{equation*}
F(w) \leq \frac{1}{2} \frac{w^{\prime 2}}{h(t)}+F(w)=E(t) \leq E\left(s_{a}\right)=\frac{1}{2} w^{2}\left(s_{a}\right) \leq \frac{1}{2} a^{2} \text { for } t \geq s_{a} \tag{3.2}
\end{equation*}
$$

Thus if $\epsilon>0$ and $a>0$ is sufficiently small then we see from (H2) and (3.2) that $|w|<\gamma+\epsilon<\delta$ for $t \geq 0$. This proves the last statement in Lemma 3.1

Next observe from (H1) that $|f(w)| \leq C_{1}|w|$ for all w for some $C_{1}>0$. Using this along with 2.7) in 2.13 and estimating gives

$$
|w(t)| \leq a t+\frac{C_{1} c_{2}}{(N-2)^{2}} t^{q+1} \int_{0}^{t}|w(s)| d s
$$

Applying the Gronwall inequality [3] we then obtain

$$
\begin{equation*}
|w| \leq a\left(t+p(t) \int_{0}^{t} s e^{P(t)-P(s)} d s\right) \tag{3.3}
\end{equation*}
$$

where:

$$
P(t)=\int_{0}^{t} p(s) d s=\int_{0}^{t} \frac{C_{1} c_{2} s^{q+1}}{(N-2)^{2}} d s=\frac{C_{1} c_{2} t^{q+2}}{(q+2)(N-2)^{2}}
$$

Evaluating (3.3) at $t=r_{a}$ gives

$$
\begin{equation*}
\beta \leq a\left(r_{a}+p\left(r_{a}\right) \int_{0}^{r_{a}} s e^{P\left(r_{a}\right)-P(s)} d s\right) \tag{3.4}
\end{equation*}
$$

It follows from (3.4) and since $p(t), P(t)$ are continuous that $r_{a} \rightarrow \infty$ as $a \rightarrow 0^{+}$. This completes the proof.

Lemma 3.2. Let $\alpha>2(N-1), N>2$, and let w satisfy (2.4), (2.8). Suppose (H1)-(H4) hold. If $a>0$ is sufficiently large then there exists $a t_{a}>0$ such that $w\left(t_{a}\right)=\delta$ and $w(t)<\delta$ on $\left[0, t_{a}\right)$.

Proof. It follows from (H1) that $|f(w)| \leq C_{2}$ for some $C_{2}>0$ so by 2.7) and (2.12):

$$
w^{\prime} \geq a-\frac{C_{2} c_{2} t^{q+1}}{(q+1)(N-2)^{2}} \quad \text { for } t \geq 0
$$

Integrating on $(0, t)$ gives

$$
w(t) \geq a t-\frac{C_{2} c_{2} t^{q+2}}{(q+2)(q+1)(N-2)^{2}} \quad \text { for } t \geq 0
$$

Thus for large enough a we have

$$
w(1) \geq a-\frac{C_{2} c_{2}}{(q+2)(q+1)(N-2)^{2}} \geq \delta
$$

Therefore $w(t)$ exceeds δ if $a>0$ is sufficiently large. This completes the proof.
Let
$S=\left\{a>0:\right.$ there is a $t_{a}>0$ such that $w\left(t_{a}, a\right)=\delta$ and $0<w<\delta$ on $\left.\left(0, t_{a}\right)\right\}$.
By Lemma 3.2 the set S is nonempty and from Lemma 3.1 the set S is bounded from below by a positive constant. Now we let:

$$
0<a^{*}=\inf S
$$

Lemma 3.3. Let $\alpha>2(N-1), N>2$, and let w satisfy 2.4, 2.8. Suppose (H1)-(H4) hold. Then $w\left(t, a^{*}\right) \rightarrow \delta$ as $t \rightarrow \infty$ and $w^{\prime}\left(t, a^{*}\right)>0$ on $[0, \infty)$.
Proof. We first show $w\left(t, a^{*}\right)<\delta$ on $[0, \infty)$. If not then there is a $t_{a^{*}}>0$ such that $w\left(t_{a^{*}}, a^{*}\right)=\delta$ and $w\left(t, a^{*}\right)<\delta$ on $\left[0, t_{a^{*}}\right)$. Thus $w^{\prime}\left(t_{a^{*}}, a^{*}\right) \geq 0$. In fact $w^{\prime}\left(t_{a^{*}}, a^{*}\right)>0$ for if $w^{\prime}\left(t_{a^{*}}, a^{*}\right)=0$ then by uniqueness of solutions of initial value problems $w\left(t, a^{*}\right) \equiv \delta$ contradicting that $w\left(0, a^{*}\right)=0$. So since $w^{\prime}\left(t_{a^{*}}, a^{*}\right)>0$ and $w\left(t_{a^{*}}, a^{*}\right)=\delta$ then there is an $x_{a^{*}}>t_{a^{*}}$ such that $w\left(x_{a^{*}}, a^{*}\right)>\delta+\epsilon$ for some $\epsilon>0$. Now for $a<a^{*}$ but a close to a^{*} then by continuity with respect to initial conditions we have $w\left(x_{a^{*}}, a\right)>\delta$ contradicting the definition of a^{*}. Thus $w\left(t, a^{*}\right)<\delta$ on $[0, \infty)$. Next we show

$$
\begin{equation*}
E\left(t, a^{*}\right) \geq F(\delta) \quad \text { for all } t>0 \tag{3.5}
\end{equation*}
$$

So suppose not. Then there is a $t_{0}>0$ such that $E\left(t_{0}, a^{*}\right)<F(\delta)$. By continuity with respect to initial conditions $E\left(t_{0}, a\right)<F(\delta)$ for $a>a^{*}$ and a close to a^{*}. However, for $a>a^{*}$ there is a $t_{a}>0$ such that $w\left(t_{a}, a\right)=\delta$ and $w^{\prime}\left(t_{a}, a\right)>0$ so therefore since $f(w) \equiv 0$ for $w>\delta$ (by (H1)) then by 2.4) it follows that $w(t, a)=w^{\prime}\left(t_{a}, a\right)\left(t-t_{a}\right)+\delta \geq \delta$ for $t \geq t_{a}$ and thus $E(t, a) \geq F(\delta)$ for all $t>t_{a}$. Then since E is nonincreasing (by 2.10) it follows that $E(t, a) \geq F(\delta)$ for all $t>0$ contradicting that $E\left(t_{0}, a\right)<F(\delta)$. Thus $E\left(t, a^{*}\right) \geq F(\delta)$ for $t>0$.

Next we show $w^{\prime}\left(t, a^{*}\right)>0$ for $t \geq 0$. First, since $w^{\prime}(0, a)=a>0$ we see that $w^{\prime}(t, a)>0$ for small $t>0$. Suppose then there is an $M>0$ such that $w^{\prime}\left(M, a^{*}\right)=$ 0 and $w^{\prime}\left(t, a^{*}\right)>0$ on $[0, M)$. Then from 2.4 we have $w^{\prime \prime}\left(M, a^{*}\right) \leq 0$ and so $f\left(w\left(M, a^{*}\right)\right) \geq 0$. Thus $w\left(M, a^{*}\right) \geq \beta$. Also since we showed at the beginning of the proof that $w\left(t, a^{*}\right)<\delta$ for $t \geq 0$ it follows that $\beta \leq w\left(M, a^{*}\right)<\delta$ and since F is increasing on (β, δ) (by (H2)) then $E\left(M, a^{*}\right)=F\left(w\left(M, a^{*}\right)\right)<F(\delta)$. On the other hand it follows from (3.5) that $E\left(M, a^{*}\right) \geq F(\delta)$ and so we obtain a contradiction. Thus, $w^{\prime}\left(t, a^{*}\right)>0$ on $[0, \infty)$.

It now follows from Lemmas 3.1 and 3.2 that there is an L with $\beta<L \leq \delta$ such that $\lim _{t \rightarrow \infty} w\left(t, a^{*}\right)=L$. From 2.4 we see that $\frac{w^{\prime \prime}\left(t, a^{*}\right)}{h(t)} \rightarrow-f(L)$ as $t \rightarrow \infty$. If $f(L) \neq 0$ then $\left|w^{\prime \prime}\right| \geq \epsilon_{0} h(t)>0$ for large $t>0$ and for some $\epsilon_{0}>0$. Since $h(t) \sim t^{q}$ with $q>0$ then integrating the inequality $\left|w^{\prime \prime}\right| \geq \epsilon_{0} h(t)>0$ twice on $\left(t_{0}, t\right)$ where t_{0} is large we see that $|w| \rightarrow \infty$ contradicting that $w\left(t, a^{*}\right) \rightarrow L$. Thus
$f(L)=0$ and since $\beta<L \leq \delta$ it follows from (H1) that $L=\delta$. This completes the proof.

Next we let

$$
\begin{equation*}
a^{* *}=\inf \left\{a: w^{\prime}(t, a)>0 \text { for } t \geq 0 \text { and } \lim _{t \rightarrow \infty} w(t, a)=\delta\right\} \tag{3.6}
\end{equation*}
$$

By Lemma 3.3 we see that

$$
a^{*} \in\left\{a: w^{\prime}(t, a)>0 \text { for } t \geq 0 \text { and } \lim _{t \rightarrow \infty} w(t, a)=\delta\right\}
$$

Thus the set on the right-hand side of (3.6) is nonempty and by Lemma 3.1 it is bounded from below by a positive constant. Thus $0<a^{* *} \leq a^{*}$ and a similar argument as in Lemma 3.3 shows that $w\left(t, a^{* *}\right) \rightarrow \delta$ as $t \rightarrow \infty$ and $w^{\prime}\left(t, a^{* *}\right)>0$ for $t \geq 0$.

Lemma 3.4. Let $\alpha>2(N-1), N>2$, and let w satisfy (2.4), 2.8). Suppose (H1)-(H4) hold. If $0<a<a^{* *}$ then $w(t, a)$ has a local maximum, $M_{a}>0$, and $M_{a} \rightarrow \infty$ as $a \rightarrow\left(a^{* *}\right)^{-}$. In addition, $w\left(M_{a}, a\right)<\delta$ and $w\left(M_{a}, a\right) \rightarrow \delta$ as $a \rightarrow\left(a^{* *}\right)^{-}$.

Proof. If $a<a^{* *}$ and $w^{\prime}(t, a)>0$ for $t \geq 0$ then we see as in Lemma 3.3 that $w(t, a) \rightarrow \delta$ contradicting the definition of $a^{* *}$. Thus there exists $M_{a}>0$ such that $w^{\prime}(t, a)>0$ on $\left[0, M_{a}\right)$ and $w^{\prime}\left(M_{a}, a\right)=0$. Then $w^{\prime \prime}\left(M_{a}, a\right) \leq 0$ and so $f\left(w\left(M_{a}, a\right)\right) \geq 0$. Thus $w\left(M_{a}, a\right) \geq \beta$. Since we know $w(t, a)$ does not attain the value δ because $a<a^{* *} \leq a^{*}$ we therefore have $\beta \leq w\left(M_{a}, a\right)<\delta$. Now if the $\left\{M_{a}\right\}$ were bounded then a subsequence would converge to some $M_{a^{* *}}$ and so by the Arzela-Ascoli theorem a subsequence of $w(t, a)$ and $w^{\prime}(t, a)$ would converge uniformly to $w\left(t, a^{* *}\right)$ and $w^{\prime}\left(t, a^{* *}\right)$ on $\left[0, M_{a^{* *}}+1\right]$ as $a \rightarrow\left(a^{* *}\right)^{-}$and $w^{\prime}\left(M_{a^{* *}}, a^{* *}\right)=0$ contradicting $w^{\prime}\left(t, a^{* *}\right)>0$ from the remarks after Lemma 3.3. Thus $M_{a} \rightarrow \infty$ as $a \rightarrow\left(a^{* *}\right)^{-}$.

Also, as $a \rightarrow\left(a^{* *}\right)^{-}$with $a<a^{* *}$ we know $w(t, a)$ must get arbitrarily close to δ by continuity with respect to initial conditions and so $w\left(M_{a}, a\right) \rightarrow \delta$ as $a \rightarrow\left(a^{* *}\right)^{-}$. This completes the proof.

Lemma 3.5. Let $\alpha>2(N-1), N>2$, and let w satisfy (2.4), 2.8). Suppose (H1)-(H4) hold. Given a positive integer n if $0<a<a^{* *}$ and a is sufficiently close to $a^{* *}$ then $w(t, a)$ has at least n zeros on $(0, \infty)$. In addition denoting the nth zero as $z_{n}(a)$ then $z_{n}(a)<R^{2-N}$ if R is sufficiently small and a is sufficiently close to $a^{* *}$ with $a<a^{* *}$.

Proof. From Lemma 3.4 we know that for a sufficiently close to $a^{* *}$ with $a<a^{* *}$ then w has a local maximum M_{a} and $w\left(M_{a}\right)>\gamma>\beta$. From 2.4 it follows that $w^{\prime \prime}<0$ while $w>\beta$ and since $w^{\prime}\left(M_{a}\right)=0$ it follows that there exists $y_{a}>M_{a}$ such that $w\left(y_{a}\right)=\beta$. Thus there is an x_{a} with $M_{a}<x_{a}<y_{a}$ such that $w\left(x_{a}\right)=\gamma$.

From (2.10) we have

$$
\frac{1}{2} \frac{w^{\prime 2}}{h(t)}+F(w)=E(t) \leq E\left(M_{a}\right)=F\left(w\left(M_{a}, a\right)\right) \quad \text { for } t \geq M_{a}
$$

Rewriting this gives

$$
\begin{equation*}
\frac{\left|w^{\prime}\right|}{\sqrt{h}} \leq \sqrt{2} \sqrt{F\left(w\left(M_{a}, a\right)\right)-F(w)} \tag{3.7}
\end{equation*}
$$

Now it follows from 2.6 that $0<\frac{t h^{\prime}}{h} \leq c_{3}$ for some $c_{3}>0$ and $t>0$. Then from this and 2.7 we see that

$$
\begin{equation*}
0<\frac{h^{\prime}}{h^{3 / 2}}=\frac{t h^{\prime}}{h} \frac{1}{t h^{1 / 2}} \leq \frac{c_{3}(N-2)}{\sqrt{c_{1}}} \frac{1}{t^{\frac{q}{2}+1}} . \tag{3.8}
\end{equation*}
$$

Thus from (2.10), (3.7)-3.8), and (H3)

$$
\begin{align*}
-E^{\prime} & =\frac{w^{2} h^{\prime}}{2 h^{2}}=\frac{\left|w^{\prime}\right|}{2 \sqrt{h}} \frac{h^{\prime}}{h^{3 / 2}}\left|w^{\prime}\right| \\
& \leq \frac{c_{3}(N-2)}{\sqrt{2 c_{1}}} \sqrt{F\left(w\left(M_{a}, a\right)\right)-F(w)} \frac{1}{t^{\frac{q}{2}+1}}\left|w^{\prime}\right| \tag{3.9}
\end{align*}
$$

Suppose now that $M_{a}<s<t$ and that $w^{\prime}<0$ on $\left(M_{a}, t\right)$. Then integrating 3.9) on (M_{a}, t) and estimating we obtain

$$
\begin{equation*}
E\left(M_{a}, a\right)-E(t, a) \leq \frac{c_{3}}{\sqrt{2 c_{1}}} \frac{(N-2)}{M_{a}^{\frac{q}{2}+1}} \int_{w(t, a)}^{w\left(M_{a}, a\right)} \sqrt{F\left(w\left(M_{a}, a\right)\right)-F(y)} d y \tag{3.10}
\end{equation*}
$$

Let us assume $w(t, a)>0$ and $w^{\prime}(t, a)<0$ for $t>M_{a}$. Then $\left[w(t, a), w\left(M_{a}, a\right)\right] \subset$ $[0, \delta]$ and the integrand in 3.10 is bounded hence the integral in 3.10 is bounded independent of a. Thus the right-hand side of 3.10 goes to 0 as $a \rightarrow\left(a^{* *}\right)^{-}$ because $M_{a} \rightarrow \infty$ from Lemma 3.4 and the integral is uniformly bounded. Thus since $E\left(M_{a}, a\right)=F\left(u\left(M_{a}, a\right)\right) \rightarrow F(\delta)$ as $a \rightarrow\left(a^{* *}\right)^{-}$by Lemma3.4 it follows from (3.10) that $E(t, a) \rightarrow F(\delta)$ as $a \rightarrow\left(a^{* *}\right)^{-}$. Thus $E(t, a) \geq \frac{1}{2} F(\delta)$ for a close to $a^{* *}$ and $a<a^{* *}$. In particular on $\left(x_{a}, t\right)$ where $0<w(t, a)<\gamma$ it follows that $F(w) \leq 0$ so

$$
\begin{equation*}
\frac{1}{2} \frac{w^{\prime 2}(t, a)}{h(t)} \geq \frac{1}{2} \frac{w^{\prime 2}(t, a)}{h(t)}+F(w(t, a))=E(t, a) \geq \frac{1}{2} F(\delta) \quad \text { on }\left(x_{a}, t\right) \tag{3.11}
\end{equation*}
$$

hence from 2.6 and (H3)-(H4),

$$
-w^{\prime}(t, a) \geq \frac{\sqrt{c_{1} F(\delta)}}{N-2} t^{q / 2} \quad \text { on }\left(x_{a}, t\right)
$$

and so integrating on $\left(x_{a}, t\right)$ gives

$$
w(t, a) \leq \gamma-\frac{\sqrt{c_{1} F(\delta)}}{(N-2)\left(\frac{q}{2}+1\right)}\left(t^{\frac{q}{2}+1}-x_{a}^{\frac{q}{2}+1}\right) \rightarrow-\infty \quad \text { as } t \rightarrow \infty
$$

which contradicts that $w>0$. Thus there exists $z_{a}>x_{a}$ such that $w\left(z_{a}, a\right)=0$ and $w(t, a)>0$ on $\left(0, z_{a}\right)$. By uniqueness of solutions of initial value problems we have $w^{\prime}\left(z_{a}, a\right)<0$ and so while $-\beta<w(t, a)<0$ then $w^{\prime \prime}<0$ by 2.4 and so we see that there is a $Y_{a}>z_{a}$ such that $w\left(Y_{a}, a\right)=-\beta$. Now if $w(t, a)$ does not have a local minimum for $t>Y_{a}$ then we can show in a similar way as we did in Lemma 3.3 that $w \rightarrow L$ but now where $L<-\beta$ and $f(L)=0$ implying $L=-\delta$. But since E is nonincreasing and F is even this would imply $F(\delta)=F(-\delta) \leq \lim _{t \rightarrow \infty} E(t, a) \leq$ $E\left(M_{a}, a\right)=F\left(w\left(M_{a}, a\right)\right)$ and hence by (H2) we have $w\left(M_{a}, a\right) \geq \delta$. But recall from Lemma 3.4 that since $a<a^{* *}$ then $w\left(M_{a}, a\right)<\delta$ thus we obtain a contradiction. Therefore it must be the case that $w(t, a)$ has a local minimum, $m_{a}>z_{a}$, and in a similar way as in Lemma 3.4 it is possible to show $m_{a} \rightarrow \infty$ and $w\left(m_{a}, a\right) \rightarrow-\delta$ as $a \rightarrow\left(a^{* *}\right)^{-}$. Also as we did at the beginning of this lemma we can show that $w(t, a)$ has a second zero $z_{2, a}>z_{a}$ if a is sufficiently close to $a^{* *}$ and $a<a^{* *}$. Similarly
we can show that $w(t, a)$ has any desired (finite) number of zeros by choosing a sufficiently close to $a^{* *}$ with $a<a^{* *}$. This completes the proof.

Thus we see that $z_{k}(a)$ the k th zero of $w(t, a)$ on $(0, \infty)$ is defined as long as a is sufficiently close to $a^{* *}$ with $a<a^{* *}$. It follows from continuous dependence of solutions on initial conditions that $z_{k}(a)$ is a continuous function of a. In addition $\lim _{a \rightarrow\left(a^{* *}\right)^{-}} z_{k}(a)=\infty$. This follows for if the $z_{k}(a)$ were bounded then for a subsequence (again labeled a) we would have $z_{k}(a) \rightarrow z^{* *}$ and by the Arzela-Ascoli theorem $w\left(z^{* *}, a^{* *}\right)=0$ contradicting that $w\left(t, a^{* *}\right)>0$ on $(0, \infty)$.

Finally suppose R is sufficiently small and $a<a^{* *}$ is sufficiently close to $a^{* *}$ so that $z_{k}(a)<R^{2-N}$. Then since we know $z_{k}(a)$ is continuous with $z_{k}(a)<$ $R^{2-N}<\infty$ and $\lim _{a \rightarrow\left(a^{* *}\right)^{-}} z_{k}(a)=\infty$ then it follows from the intermediate value theorem that there is a smallest value of a denoted a_{k} such that $z_{k}\left(a_{k}\right)=R^{2-N}$. Thus $w\left(t, a_{k}\right)$ is a solution of (2.4) with k zeros on $\left(0, R^{2-N}\right]$. Now we let $b_{k}=$ $(2-N) R^{1-N} w^{\prime}\left(R^{2-N}, a_{k}\right)$ and then finally if we let $u_{k}\left(r, b_{k}\right)=(-1)^{k} w\left(r^{2-N}, a_{k+1}\right)$ then $u_{k}\left(r, b_{k}\right)$ is a solution of (1.4)-1.5) with $b=b_{k}$, with k zeros on (R, ∞), and $\lim _{r \rightarrow \infty} u_{k}\left(r, b_{k}\right)=0$. This completes the proof.

References

[1] H. Berestycki, P.L. Lions; Non-linear scalar field equations I \& II, Arch. Rational Mech. Anal., Volume 82, 313-375, 1983.
[2] M. Berger, Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
[3] G. Birkhoff, G. C. Rota; Ordinary Differential Equations, Ginn and Company, 1962.
[4] A. Castro, L. Sankar, R. Shivaji; Uniqueness of nonnegative solutions for semipositone problems on exterior domains, Journal of Mathematical Analysis and Applications, Volume 394, Issue 1, 432-437, 2012.
[5] J. Iaia, H. Warchall, F. B. Weissler; Localized solutions of sublinear elliptic equations: loitering at the hilltop, Rocky Mountain Journal of Mathematics, Volume 27, Number 4, 1131-1157, 1997.
[6] J. Iaia; Localized solutions of a semilinear elliptic equation: loitering at the hilltop; Electronic Journal of the Qualitative Theory of Differential Equations, No. 12, 1-15, 2006.
[7] J. Iaia; Loitering at the hilltop on exterior domains, Electronic Journal of the Qualitative Theory of Differential Equations, Volume 82, 1-11, 2015.
[8] J. Iaia; Existence and Nonexistence for Semilinear Equations on Exterior Domains, submitted to the Journal of Partial Differential Equations, Jan. 2016.
[9] J. Iaia; Existence for Semilinear Equations on Exterior Domains, submitted to the Electronic Journal of the Qualitative Theory of Differential Equations, June 2016.
[10] C. K. R. T. Jones, T. Kupper; On the infinitely many solutions of a semi-linear equation, SIAM J. Math. Anal., Volume 17, 803-835, 1986.
[11] E. Lee, L. Sankar, R. Shivaji; Positive solutions for infinite semipositone problems on exterior domains, Differential and Integral Equations, Volume 24, Number 9/10, 861-875, 2011.
[12] K. McLeod, W. C. Troy, F. B. Weissler; Radial solutions of $\Delta u+f(u)=0$ with prescribed numbers of zeros, Journal of Differential Equations, Volume 83, Issue 2, 368-373, 1990.
[13] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.
[14] W. Strauss; Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55, 149-162, 1977.

Joseph A. Iaia
Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX
76203-1430, USA
E-mail address: iaia@unt.edu

[^0]: 2010 Mathematics Subject Classification. 34B40, 35B05.
 Key words and phrases. Exterior domains; semilinear; superlinear; radial.
 (C) 2016 Texas State University.

 Submitted July 20, 2016. Published August 22, 2016.

