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ANALYSIS OF A NONLINEAR SURFACE WIND WAVES
MODEL VIA LIE GROUP METHOD

BEN GAO

Abstract. This article focuses on two aspects. Firstly, symmetry analysis is
performed for a nonlinear equation which can model surface wind wave pat-

terns in nature. As a byproduct, the similarity reductions and exact solutions

of the equation are constructed based on the optimal systems. Secondly, the
explicit solutions are considered by the power series method. Moreover, the

convergence of the power series solutions are shown.

1. Introduction

Manna [6] studied the surface wind waves qualitative behavior, represented by
the nonlinear equation

uxt = − 3g
hc0

u− uuxx + (ux)2, (1.1)

where u(x, t) is considered as an unidirectional surface wave propagating in the
x-direction on a fluid medium involved in a large scale flow. h is the unperturbed
initial depth, g is the acceleration of gravity, c0 is the wind velocity and subscripts
denote partial derivatives. For the sake of providing more information to understand
(1.1), some works have been devoted to study (1.1) [6, 12]. The author in [6]
provided some peakon solutions with amplitude, velocity, and width in interrelation
and static compacton solutions with amplitude and width in interrelation for (1.1).
The exact explicit traveling wave solutions of (1.1) are given by using the method of
dynamical systems in [12]. However, as the authors known, the Lie group analysis
and explicit power series solutions of (1.1) are left as open problems.

The application of Lie transformation group theory for the construction of so-
lutions of nonlinear partial differential equations (PDEs) is one of the most active
fields of research in the theory of nonlinear PDEs and applications [3, 4, 5, 7, 11].
The main idea of Lie group method is to transform solutions of a system of dif-
ferential equations to other solutions. Once the symmetry group of a system of
differential equations has be determined, one can directly use the defining property
of such a group and construct new solutions to the system from known ones.

The rest of article is arranged as follows: Section 2 concentrates on symmetries
of (1.1); in Section 3, the similarity reductions for (1.1) are dealt with and exact
solutions are provided by using Lie group method; in Section 4, the explicit solutions
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for the reduced equations are obtained by using the power series method; the last
section contains a conclusion of our work.

2. Lie point symmetry

In this section, we apply Lie point symmetry method for (1.1), and obtain its
infinitesimal generators, commutation table of Lie algebra.

First of all, let us consider a one-parameter Lie symmetry group admitted by
(1.1) with an infinitesimal operator of the form

X = ξ∂x + τ∂t + φ∂u. (2.1)

where ξ, τ, φ are functions of x, t, u respectively and are called infinitesimals of the
symmetry group.

The classical infinitesimal Lie invariance criterion for (1.1) with respect to the
operator (2.1) reads as in [2, 7],

prX(2)
[
uxt +

3g
hc0

u+ uuxx − (ux)2
]

= 0

for any u solves (1.1). Here, the symbol prX(2) is the usual 2 th-order prolongation
of the operator [2, 7], in this situation,

prX(2) = X + φ(1)
x

∂

∂ux
+ φ(2)

xx

∂

∂uxx
+ φ

(2)
xt

∂

∂uxt
,

where

φ(1)
x = Dxφ− uxDxξ − utDxτ,

φ(2)
xx = D2

x(φ− ξux − τut) + ξuxxx + τuxxt,

φ
(2)
xt = DxDt(φ− ξux − τut) + ξuxxt + τuxtt,

and Dx, Dt stand for the total derivative operators, for example,

Dt =
∂

∂t
+ ut

∂

∂u
+ utx

∂

∂ux
+ utt

∂

∂ut
+ . . . .

Substituting prX(2) into (1.1) and splitting it with respect to the different order
derivatives of u, one obtains a system of linear over-determining equations for the
unknown functions ξ, τ and φ. We can find the following equations for the symmetry
group of (1.1)

ξx = −τt, ξt = ξu = 0,
τx = τu = 0, τtt = 0,

φ = −2uτt.
(2.2)

Solving above (2.2), we obtain

ξ = −c1x+ c3, τ = c1t+ c2, φ = −2c1u,

where c1, c2, c3 and c4 are arbitrary constants, we find that (1.1) admits the oper-
ators

X1 = −x∂x + t∂t − 2u∂u, X2 = ∂t, X3 = ∂x.

It is easy to check that {X1, X2, X3} is closed under the Lie bracket. In fact, we
have

[X1, X1] = [X2, X2] = [X3, X3] = 0,

[X1, X2] = −[X2, X1] = −X2, [X1, X3] = −[X3, X1] = X3,
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[X2, X3] = −[X3, X2] = 0.

Furthermore, to obtain their adjoint representation, employing the following Lie
series

Ad(exp(εXi))Xj = Xj − ε[Xi, Xj ] +
1
2
ε2[Xi, [Xi, Xj ]]− . . . ,

we can compute the following results

Ad(exp(εXi))Xi = Xi, i = 1, 2, 3, Ad(exp(εX1))X2 = eεX2,

Ad(exp(εX2))X1 = X1 − εX2, Ad(exp(εX1))X3 = e−εX3,

Ad(exp(εX3))X1 = X1 + εX3, Ad(exp(εX2))X3 = X3,

Ad(exp(εX3))X2 = X2,

where ε is an arbitrary constant.
Based on the adjoint representation of the infinitesimal operators, we obtain the

optimal systems of (1.1) as follows,

{X1, X2, X3, X3 + aX2},
where a is an arbitrary constant.

Remark 2.1. The optimal systems of (1.1) can also be obtained using the results
of the paper [9].

3. Similarity reductions and exact solutions

The symmetry group properties are very useful for the construction of invari-
ant solutions of the differential equation under study. Next, We will consider the
following similarity reductions and group-invariant solutions for (1.1) based on the
optimal system.
Case 1: Reduction by X1. Integrating the characteristic equation for X1, we get
similarity variables

z = tx, p =
u

x2
,

and the group-invariant solution is p = f(z), that is,

u = x2f(tx). (3.1)

Substituting this expression into (1.1), we obtain
3g
hc0

f − 2f2 + 3f ′ − z2f ′2 + zf ′′ + z2ff ′′ = 0 (3.2)

where f ′ = df
dz .

Case 2: Reduction by X2. Similarly, we have u = f(z) in which z = x. Substitut-
ing it into (1.1), we obtain

3g
hc0

f − f ′2 + ff ′′ = 0 (3.3)

where f ′ = df
dz .

Case 3: For generator X3, we have z = t, u = f(z). The corresponding reduction
equation is

3g
hc0

f = 0. (3.4)

Therefore, (1.1) has a solution u = 0. Obviously, the solution is not meaningful.
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Case 4: For generator X3+aX2, we have z = −ax+t, u = f(z). The corresponding
reduction equation is

3g
hc0

f − a2f ′2 − af ′′ + a2ff ′′ = 0 (3.5)

where f ′ = df
dz .

4. Explicit power series solutions

In Section 4, we obtained the reduced equations by using symmetry analysis. The
power series can be used to treat differential equations, including many complicated
differential equations with nonconstant coefficients [1]. In this section, we solve the
nonlinear ODEs (3.2), (3.3), and (3.5) by the power series method.

4.1. Explicit solutions to (3.2). Now, we seek a solution of (3.2) in a power
series of the form

f(z) =
∞∑
n=0

pnz
n, (4.1)

where the coefficients pn (n = 0, 1, 2, . . . ) are constants to be determined. Substi-
tuting (4.1) into (3.2), we have

3g
hc0

∞∑
n=0

pnz
n − 2

∞∑
n=0

n∑
k=0

pkpn−kz
n + 3

∞∑
n=0

(n+ 1)pn+1z
n

− z2
∞∑
n=0

n∑
k=0

(k + 1)(n+ 1− k)pk+1pn+1−kz
n + z

∞∑
n=0

(n+ 1)(n+ 2)pn+2z
n

+ z2
∞∑
n=0

n∑
k=0

(k + 1)(k + 2)pn−kpk+2z
n = 0.

(4.2)

From this equality, comparing coefficients, we have

p1 =
1
3
p0(2p0 −

3g
hc0

),

p2 =
1
8
p1(4p0 −

3g
hc0

).
(4.3)

Generally, for n ≥ 2, we have

pn+1 =
1

(n+ 1)(n+ 3)

{
2pn−1p1 −

( 3g
hc0
− 2p0

)
pn

+
n−2∑
k=0

[2pkpn−k + (k + 1)(n− 1− k)pk+1pn−1−k

− (k + 1)(k + 2)pn−2−kpk+2]
}
.

(4.4)

In view of this equality, we can obtain all the coefficients pi(i ≥ 3) of the power
series (4.1), e.g.,

p3 =
1
15

(3p2
1 −

3g
hc0

p2 + 2p0p2). (4.5)

Therefore, for arbitrary chosen constant number p0, the other terms of the se-
quence {pn}∞n=0
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can be determined by (4.3) and (4.4). This implies that for (3.2), there is a power
series solution (4.1) with the coefficients constructed by (4.3) and (4.4).

Now we show that the convergence of the power series solution (4.1) of (3.2). In
fact, from (4.4), we have

|pn+1|≤M [|pn−1|+ |pn|+
n−2∑
k=0

(|pk||pn−k|+ |pk+1||pn−1−k|+ |pn−2−k||pk+2|)],

for n = 2, 3, . . . , where M = max{|p1|, | 3g
hc0
− 2p0|, 1}.

Now, we define a power series R = R(z) =
∑∞
n=0 rnz

n by

ri = |pi|, i = 0, 1, 2,

and

rn+1 = M [rn−1 + rn +
n−2∑
k=0

(rkrn−k + rk+1rn−1−k + rn−2−krk+2)]

where n = 2, 3, . . . . Then, it is easily seen that

|pn|≤rn, n = 0, 1, 2, . . . .

Thus, the series R = R(z) =
∑∞
n=0 rnz

n is a majorant series of (4.1). Next, we
show that the series R = R(z) has a positive radius of convergence.

R(z) = r0 + r1z + r2z
2 +

∞∑
n=2

rn+1z
n+1

= r0 + r1z + r2z
2 +M

( ∞∑
n=2

rn−1z
n+1 +

∞∑
n=2

rnz
n+1

+
∞∑
n=2

n−2∑
k=0

rkrn−kz
n+1 +

∞∑
n=2

n−2∑
k=0

rk+1rn−1−kz
n+1

+
∞∑
n=2

n−2∑
k=0

rn−2−krk+2z
n+1
)

= r0 + r1z + r2z
2 +M [z2(R− r0) + z(R− r0 − r1z)

+ zR(R− r0 − r1z) + z(R− r0)2 + zR(R− r0 − r1z)].
Consider now the implicit functional equation with respect to the independent
variable z,

F (z,R) = R− r0 − r1z − r2z2 −M [z2(R− r0) + z(R− r0 − r1z)
+ zR(R− r0 − r1z) + z(R− r0)2 + zR(R− r0 − r1z)].

Since F is analytic in the neighborhood of (0, r0) and F (0, r0) = 0, FR(0, r0) = 1 6=
0. if we choose the parameter r0 = |p0| properly. By the implicit function theorem
[10], we see that R = R(z) is analytic in a neighborhood of the point (0, r0) and
with the positive radius. This implies that the power series (4.1) converges in a
neighborhood of the point (0, r0). This completes the proof.

Hence, the power series solution (4.1) for (3.2) is an analytic solution. The power
series solution of (3.2) can be written as

f(z) = p0 + p1z + p2z
2 +

∞∑
n=2

pn+1z
n+1



6 B. GAO EJDE-2016/228

= p0 +
1
3
p0(2p0 −

3g
hc0

)z +
1
8
p1(4p0 −

3g
hc0

)z2 +
∞∑
n=2

1
(n+ 1)(n+ 3)

{2pn−1p1

− (
3g
hc0
− 2p0)pn +

n−2∑
k=0

[2pkpn−k + (k + 1)(n− 1− k)pk+1pn−1−k

− (k + 1)(k + 2)pn−2−kpk+2]}zn+1.

Furthermore, the explicit power series solution of (1.1) is

u(x, t) = p0x
2 + p1tx

3 + p2t
2x4 +

∞∑
n=2

pn+1t
n+1xn+3

= p0x
2 +

1
3
p0(2p0 −

3g
hc0

)tx3 +
1
8
p1(4p0 −

3g
hc0

)t2x4

+
∞∑
n=2

1
(n+ 1)(n+ 3)

{2pn−1p1

− (
3g
hc0
− 2p0)pn +

n−2∑
k=0

[2pkpn−k + (k + 1)(n− 1− k)pk+1pn−1−k

− (k + 1)(k + 2)pn−2−kpk+2]}tn+1xn+3,

where p0 is an arbitrary constant, the other coefficients pn(n ≥ 1) depend on (4.3)
and (4.4) completely.

4.2. Explicit solutions to (3.3). Similarly, we seek a solution of (3.3) in a power
series of the form (4.1). Substituting it into (3.3), and comparing coefficients, we
have

p2 =
1

2p0
(p2

1 −
3g
hc0

p0). (4.6)

Generally, for n ≥ 1, we have

pn+2 =
1

(n+ 1)(n+ 2)p0

{ n−1∑
k=0

(k + 1)[(n+ 1− k)pk+1pn+1−k

− (k + 2)pn−kpk+2] + (n+ 1)p1pn+1 −
3g
hc0

pn

}
.

(4.7)

In view of (4.6) and (4.7), we can obtain all the coefficients pi(i ≥ 3) of the
power series (4.1), e.g.,

p3 =
p1

6p0
(2p2 −

3g
hc0

), p4 =
p2

12p0
(2p2 −

3g
hc0

).

Therefore, for arbitrary chosen constant numbers p0 6= 0 and p1, the other terms
of the sequence {pn}∞n=0 can be determined by (4.6) and (4.7). This implies that
for (3.3), there is a power series solution (4.1) with the coefficients constructed by
(4.6) and (4.7).

4.3. Explicit solutions to (3.5). Now, we seek a solution of (3.5) in a power
series of the form (4.1). Substituting (4.1) into (3.5), and comparing coefficients,
we have

p2 =
1

2a(ap0 − 1)
(a2p2

1 −
3g
hc0

p0). (4.8)
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Generally, for n ≥ 1, we have

pn+2 =
1

(n+ 1)(n+ 2)a(ap0 − 1)

×
{
a2

n−1∑
k=0

(k + 1)[(n+ 1− k)pk+1pn+1−k − (k + 2)pn−kpk+2]

+ a2(n+ 1)p1pn+1 −
3g
hc0

pn

}
.

(4.9)

In view of (4.8) and (4.9), we can obtain all the coefficients pn(n ≥ 3) of the power
series (4.1), e.g.,

p3 =
p1

6a(ap0 − 1)
(2a2p2 −

3g
hc0

), p4 =
p2

12a(ap0 − 1)
(2a2p2 −

3g
hc0

).

Thus, for arbitrary chosen constant numbers a 6= 0, p0 6= 1
a and p1, the other

terms of the sequence {pn}∞n=0 can be constructed by (4.8) and (4.9). This implies
that for (3.5), there is a power series solution (4.1) with the coefficients determined
by (4.8) and (4.9).

Furthermore, the explicit power series solution of (1.1) is

u(x, t) = p0 + p1(−ax+ t) + p2(−ax+ t)2 +
∞∑
n=1

pn+2(−ax+ t)n+2

= p0 + p1(−ax+ t) +
1

2a(ap0 − 1)
(a2p2

1 −
3g
hc0

p0)(−ax+ t)2

+
∞∑
n=1

1
(n+ 1)(n+ 2)a(ap0 − 1)

{
a2

n−1∑
k=0

(k + 1)[(n+ 1− k)pk+1pn+1−k

− (k + 2)pn−kpk+2] + a2(n+ 1)p1pn+1 −
3g
hc0

pn

}
(−ax+ t)n+2,

where a 6= 0, p0 6= 1
a and p1 are arbitrary constants, the other coefficients pn(n ≥ 2)

depend on (4.8) and (4.9) completely.

Remark 4.1. The proofs of convergence of the power series solutions to (3.3), (3.5)
are similar to the one of (3.2). The details are omitted here. Furthermore, such
power series solutions can greatly enrich the solutions of the (1.1) and converge
quickly, so it is convenient for computations in both theory and applications.

Remark 4.2. The solutions of equations (3.3) and (3.5) (obviously, it is sufficiently
to consider only the case a = 1) in the explicit form can also be found without using
the power series method (see the handbook [8]) and read as

f(z) = f(x) = becx − d

c2
+

d2

4bc4
e−cx,

and

f(z) = becz − (
d

c2
− 1) +

d

4bc2
(
d

c2
− 1)e−cz(fora = 1),

where d = 3g
hc0

, b 6= 0, c 6= 0.
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Conclusions. In this article, We present Lie approach for a nonlinear surface wind
waves model. As a byproduct, new invariant solutions are constructed based on
the optimal systems which may exert potential applications about the problems of
physical phenomena. Moreover, we apply the power series method to obtain the
explicit solutions of (1.1). It can be seen that the Lie symmetry analysis and the
power series method are very efficient to research the explicit solutions of PDEs.
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