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EXISTENCE OF SOLUTIONS FOR ELLIPTIC NONLINEAR
PROBLEMS ON THE UNIT BALL OF R3

KHADIJAH SHARAF

Abstract. We consider an elliptic PDE with critical nonlinearity involving
the Laplacian operator with zero Dirichlet boundary condition on the unit ball

of R3. We assume some perturbation conditions and obtain what seems to be

the first existence result for this problem.

1. Introduction and statement of the main result

Let B3 be the unit ball of R3, and let K : B3 → R be a given function. We
are looking for a map u : B3 → R satisfying the nonlinear PDE with zero Dirichlet
boundary condition

−∆u = K(x)u5

u > 0 in B3

u = 0 on ∂B3

(1.1)

This problem is so-called critical in the sense that lack of compactness occurs. It
is easy to see that a necessary condition for solving (1.1), is that K be positive
somewhere. In addition, when K = 1, Pohozaev [7] proved that the problem has
no solution. While many existence results have been established for the equivalent
problem of (1.1) in dimensions n ≥ 4, see (e.g [4, 5]), as far as we know, there is no
existence result for (1.1). The objective of this paper is to state conditions on K(x)
to provide the existence of solutions to (1.1). In this article we use the assumption

(A1) K(x) is a positive Morse function on B3 with ∂K
∂ν (x) < 0 for all x ∈ ∂B3,

where ν denotes the unit outward normal vector on ∂B3.
Let K denote the set of all critical points of K(x). For any y ∈ K, we denote by
ind(K, y) the Morse index of K at y. Our main result reads as follows:

Theorem 1.1. Under assumption (A1), if there exists `0 ∈ N such that
(i) 3− ind(K, y) 6= `0 + 1 for all y ∈ K, and
(ii)

∑
y∈K,3−ind(K,y)≤`0(−1)3−ind(K,y) 6= 1,

then (1.1) has a solution, provided K is close to 1.

Remark 1.2. Observe that for any `0 ≥ 3, condition (i) of Theorem 1.1 is satisfied.
In this case, the above sum will be over all critical points of K.
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Remark 1.3. Unlike the existence result in [4] for dimension 4, and in [5] for di-
mension ≥ 4, our result for dimension 3 does not use any condition about −∆K(y),
for y ∈ K.

2. Lack of compactness

Define

Σ =
{
u ∈ H1

0 (Ω) : ‖u‖ =
(∫

Ω

|∇u|2
)1/2

= 1
}
, and Σ+ =

{
u ∈ Σ, u ≥ 0

}
.

Let

J(u) =

∫
Ω
|∇u|2( ∫

Ω
K(x)u6

)1/3 , u ∈ H1
0 (Ω) \ {0}.

It is well known that if u is a critical point of J in Σ+, then J(u)3/4u is a solution of
(1.1). Since the Sobolev embedding H1

0 (Ω) ↪→ L6(Ω) is not compact, the functional
J does not satisfy the Palais-Smale condition on Σ+, and there are sequences which
do not satisfy the Palais-Smale condition. To describe those sequences, we introduce
some notation. For a ∈ Ω and λ > 0, let

δa,λ(x) = c0

( λ

1 + λ2|x− a|2
)1/2

,

where c0 > 0 chosen such that δa,λ is the family of solutions of the problem

−∆u = u5, u > 0 in R3.

Let P be the projection from H1(Ω) on H1
0 (Ω); that is for any f ∈ H1(Ω), P (f) is

the unique solution of
−∆u = ∆f in Ω,
u = 0 on ∂Ω.

(2.1)

For ε > 0 and p ∈ N∗, let

V (p, ε) =
{
u ∈ Σ+, : ∃a1, . . . , ap ∈ Ω, ∃λ1, . . . , λp > ε−1 and

α1, . . . , αp > 0 with ‖u−
p∑
i=1

αiPδai,λi
‖ < ε, εij < ε,∀i 6= j,

λidi > ε−1 and |J(u)3α4
iK(ai)− 1| < ε,∀i = 1, . . . , p

}
.

Here, di = d(ai, ∂Ω) and

εij =
(λi
λj

+
λj
λi

+ λiλj |ai − aj |2
)−1/2

.

The failure to satisfy the Palais-Smale condition can be described as follows.

Proposition 2.1 ([2]). Assume that (1.1) has no solutions. Let (uk)k be a sequence
in Σ+ such that Jε0(uk) is bounded and ∂J(uk) approaches zero. Then there exists
a positive integer p, a sequence (εk) with εk → 0 as k → +∞ and an extracted
subsequence of (uk)k, again denoted (uk)k, such that uk ∈ V (p, εk) for all k.

The following proposition gives a parametrization of V (p, ε).
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Proposition 2.2 ([2]). For all p ∈ N∗, there exists εp > 0 such that for any ε ≤ εp
and any u in V (p, ε), the problem

min
{
‖u−

p∑
i=1

αiPδai,λi
‖ : αi > 0, λi > 0, ai ∈ Ω

}
.

has a unique solution (up to a permutation). Thus, we can uniquely write u as

u =
p∑
i=1

αiPδai,λi
+ v,

where v ∈ H1
0 (Ω) and satisfies

〈v, ψ〉 = 0 for ψ ∈
{
Pδi,

∂Pδi
∂λi

,
∂Pδi
∂ai

, i = 1, . . . , p}. (2.2)

Here, Pδi = Pδai,λi , and 〈·, ·〉 denotes the inner product on H1
0 (Ω) associated to

the norm ‖ · ‖.

The following proposition deals with the v-part of u and shows that is negligible
with respect to the concentration phenomenon.

Proposition 2.3 ([1, 2]). There is a C1-map which to each (αi, ai, λi) such that∑p
i=1 αiPδai,λi

belonging to V (p, ε) associates v = v(αi, ai, λi), where v is the
unique solution of the minimization problem

min
{
J
( p∑
i=1

αiPδai,λi
+ v
)

: v ∈ H1
0 (Ω) and satisfies (2.2)

}
.

Moreover, there exists a change of variables v − v → V such that

J
( p∑
i=1

αiPδai,λi
+ v
)

= J
( p∑
i=1

αiPδai,λi
+ v
)

+ ‖V ‖2.

Definition 2.4 ([1]). A critical point of J at infinity is a limit of a non-compact
flow line u(s) of the gradient vector field (−∂J). By Propositions 2.1 and 2.2, u(s)
can be written as

u(s) =
∑p
i=1 αi(s)Pδai(s),λi(s) + v(s).

Denoting yi = lims→+∞ ai(s) and αi = lims→+∞ αi(s), we denote such critical
point at infinity by

p∑
i=1

αiPδyi,∞ or (y1, . . . , yp)∞ .

We point out that the topological argument that we will use in the proof of
Theorem 1.1 avoid all critical points at infinity which are in V (p, ε), p ≥ 2. For
this, we need the next proposition to characterize the critical points at infinity in
V (1, ε).

Proposition 2.5. Under assumption (A1), the critical points of J at infinity, in
V (1, ε), are

(y)∞ =
1

K(y)1/2
Pδ(y,∞), y ∈ K,

where K is the set of all critical points of K(x). Furthermore, the Morse index of
each (y)∞ is 3− ind(K, y).



4 K. SHARAF EJDE-2016/229

Proof. Let u = αPδ(a,λ) ∈ V (1, ε). It is proved in [4, Propositions 2.3 and 2.4] and
[5, Propositions 3.4 and 3.5] that for any n ≥ 4, we have

〈∂J(u), λ
∂Pδ(y,∞)

∂λ
〉 = J(u)

(
c1

∆K(a)
λ2

− c2
H(a, a)
λn−2

)
+ o
( 1
λ2

+
1

(λd)n−1

)
, (2.3)

〈∂J(u),
1
λ

∂Pδ(y,∞)

∂a
〉 = −J(u)

2(n−1)
n−2 c3

∇K(a)
λ

+ c4
1

λn−1

∂H(a, a)
∂a

+ o
( 1

(λd)n−1

)
,

(2.4)

where d = d(a, ∂B3) and H is the regular part of the Green’s function of the
Laplacian with Dirichlet boundary condition on B3. Their proof can be extended
in dimension 3. Indeed, it is known that

∂J(u) = 2J(u)
[
u+ J(u)3∆−1(Ku5)

]
.

Thus, for u = αPδ(a,λ), we obtain

〈∂J(u), αλ
∂Pδ(a,λ)

∂λ
〉

= 2J(u)α2
[
〈Pδ(a,λ), λ

∂Pδ(a,λ)

∂λ
〉 − J(u)3α4

∫
B3
KPδ5

(a,λ)λ
∂Pδ(a,λ)

∂λ
dx
]
.

Using that

Pδ(a,λ) = δ(a,λ) −
1

λ1/2
H(a, ·) +O(

1
λ

3
2 d

),

λ
∂Pδ(a,λ)

∂λ
= λ

∂δ(a,λ)

∂λ
+

1
2λ1/2

H(a, ·) +O(
1
λ

3
2 d

),

where d = d(a, ∂B3), we obtain

〈Pδ(a,λ), λ
∂Pδ(a,λ)

∂λ
〉 = c

H(a, a)
λ

+ o(
1
λ

).

Here c =
∫

B3
dz

(1+|z|2)
5
2

. Moreover, by expanding K(x) about a, we obtain∫
B3
KPδ5

(a,λ)λ
∂Pδ(a,λ)

∂λ
dx = K(a)〈Pδ(a,λ), λ

∂Pδ(a,λ)

∂λ
〉 − c̃∆K(a)

λ2
+ o(

1
λ2

),

where

c̃ =
∫

B3
|z|2 1− |z|2

(1 + |z|2)4
dz.

Using now that J(u)3α4 = 1
K(a) + o(1), estimate (2.3) follows.

Concerning (2.4), it follows from the same argument and the fact that

1
λ

∂Pδ(a,λ)

∂a
=

1
λ

∂δ(a,λ)

∂a
+

1
λ

3
2

H(a, .)
∂a

+O(
1

λ4d2
).

In [4, Theorem 3.1] and [5, Propositions 4.2], the authors showed that under con-
dition (A1), the boundary of a domain Ω does not have any effect in the existence
of critical points at infinity. Therefore, to establish our proof, it remains only to
focus on the existence of critical points at infinity in

Ṽ (1, ε) = {αPδ(a,λ) + v̄ ∈ V (1, ε), d(a, ∂B3) ≥ d0},
where d0 > 0 is small. The following Lemma studies the concentration phenomenon
of J in Ṽ (1, ε). Its proof will be given later.
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Lemma 2.6. There exists a pseudo-gradient W in Ṽ (1, ε) such that for any u =
αPδ(a,λ) ∈ Ṽ (1, ε) we have:

(i) 〈∂J(u),W (u)〉 ≤ −c
(

1
λ + |∇K(a)|

λ

)
,

(ii)

〈∂J(u+ v̄),W (u) +
∂v̄

∂(α, a, λ)
(W (u))〉 ≤ −c

( 1
λ

+
|∇K(a)|

λ

)
.

Moreover, the concentration λ(s) of the flow line of W increases and approaches
+∞, as a(s) approaches y, y ∈ K.

In the above Lemma, we observe that if the concentration point a(s) of the flow
line of the pseudo-gradient W enter in some neighborhood of any critical point y
of K(x), λ(s) increases on the flow line and approaches +∞. Thus, we obtain a
critical point at infinity. In this statement, the functional J can be expended after
a suitable change of variables as

J(αPδa,λ + v̄) = J(α̃P δea,eλ) =
S3

α̃4(K(x))1/2

(
1 +

1

λ̃

)
.

Thus, the index of such critical point at infinity is 3 − ind(K, y). Since J behaves
in this region as 1

(K(x))1/2 . This completes the proof. �

Proof of Lemma 2.6. Let δ > 0 be small enough, and set the cut-off function θ :
R→ R by

θ(t) =

{
1 if |t| ≤ δ/2
0 if |t| ≥ δ.

For u = αPδ(a,λ) ∈ Ṽ (1, ε), define

λ̇ = λ and ȧ =
1
λ

∇K(a)
|∇K(a)|

, a ∈ B3 \ K.

We set

W (u) = θ(|∇K(a)|)α∂Pδa,λ
∂λ

λ̇+
(

1− θ(|∇K(a)|)
)
α
∂Pδa,λ
∂a

ȧ.

We claim that

〈∂J(u),W (u)〉 ≤ −c
( 1
λ

+
|∇K(a)|

λ

)
. (2.5)

Indeed, |∇K(a)| ≤ δ, by expansion (2.3) we have

〈∂J(u), αλ
∂Pδa,λ
∂λ

〉 ≤ −c
λ
, (2.6)

since n = 3 and H(x, x) is smooth and positive on B3. Observe that in our case
|∇K(a)|

λ
≤ δ

λ
,

so we can include − |∇K(a)|
λ in the upper bound of (2.6) and therefore we obtain

〈∂J(u), αλ
∂Pδa,λ
∂λ

〉 ≤ −c
( 1
λ

+
|∇K(a)|

λ

)
. (2.7)

Now if |∇K(a)| ≥ δ
2 , by expansion (2.4) we obtain

〈∂J(u), α
1
λ

∇K(a)
|∇K(a)|

∂Pδa,λ
∂a

〉 ≤ −c |∇K(a)|
λ

+O
( 1
λ2

)
. (2.8)
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Observe that in our statement we have 1
λ2 = o

(
|∇K(a)|

λ

)
as λ approaches +∞.

Indeed,
1
λ2

λ

|∇K(a)|
≤ 2
δ

1
λ
.

Moreover, 1
λ ≤

2
δ
|∇K(a)|

λ . Therefore, we can include − 1
λ in the upper bound of (2.8)

and obtain

〈∂J(u), α
1
λ

∇K(a)
|∇K(a)|

∂Pδa,λ
∂a

〉 ≤ −c
( 1
λ

+
|∇K(a)|

λ

)
. (2.9)

Hence claim (2.5) is valid. This completes the proof of part (i) in Lemma 2.6.
Part (ii) follows as in [3, Appendix 2] from (i) and the following Lemma which

shows that ‖v̄‖2 is small with respect to the absolute value of the upper bound of
(i).

Lemma 2.7 ([5]). There exists c > 0 such that

‖v̄‖ ≤ c
( 1
λ

3
2

+
|∇K(a)|

λ
+

lnλ5/6

λ
5
6

)
.

This completes the proof of Lemma 2.6. �

3. Proof of Theorem 1.1

Let

J1(u) =
1( ∫

B3 u6dx
)3 , u ∈ Σ,

be the Euler Lagrange functional associated to Yamabe’s problem on B3. Let

S =
1( ∫

B3 δ
6
a,λdx

)3 ,
be the best Sobolev constant. S does not depend on a and λ. It is known that

S = inf
u∈Σ

J1(u).

For c ∈ R and for any function f on Σ, we define f c = {u ∈ Σ : f(u) ≤ c}. It is
easy to see that if ‖K − 1‖L∞(B3) is small enough, we have

JS+ S
4 ⊂ JS+ S

2
1 ⊂ JS+ 3S

4 . (3.1)

This is due to the fact that J(u) = J1(u)
(

1 + O
(
‖K − 1‖L∞(B3)

))
, with O

(
‖K −

1‖L∞(B3)

)
independent of u. Indeed,

J(u) =
1( ∫

B3 u6dx+
∫

B3(K − 1)u6dx
)3

= J1(u)
1[

1 +
( ∫

B3 u6dx
)−1 ∫

B3(K − 1)u6dx
]3

= J1(u)
[
1 +O

(
‖K − 1‖L∞(B3)

)]
.
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Now let (y1, . . . , yq)∞ be a critical point at infinity of q masses. It is known that
the level of J at (y1, . . . , yq)∞ is given by S

(∑q
k=1

1
K(y)1/2

)2/3, see [5]. Hence it
approaches qS as K is close to 1. Therefore, for ‖K − 1‖L∞(B3) small, we have:

All critical points at infinity of q-masses, q ≥ 2 are above S +
3
4
S, (3.2)

all critical points at infinity of J of one masse are below S +
S

4
. (3.3)

Arguing by contradiction and assume that (1.1) has no solution. Let `0 ∈ N be
the integer defined in Theorem 1.1. Define

X∞`0 = ∪y∈K,3−ei(y)≤`0W
∞
u (y)∞,

where W∞u (y)∞ is the closure of the unstable manifold of (−∂J) at the critical point
(y)∞, defined by adding to W∞u (y)∞ the unstable manifolds of critical points or
critical points at infinity dominated by (y)∞. These manifolds are then of dimension
less or equal to `0 − 1. Therefore X∞`0 define a stratified set of top dimension ≤ `0.
Without loss of generality, we may assume that it is equals to `0. From (3.3), we
can see that X∞`0 lies in JS+ S

4 . We claim that

X∞`0 is contractible in JS+ S
4 . (3.4)

Indeed, using the flow lines of (−∂J), from (3.2) and (3.3) it follows that

JS+ 3S
4 ' JS+ S

4 ,

where ' denotes retract by deformation. Hence by (2.3), we obtain

J
S+ S

2
1 ' JS+ S

4 .

It is known that JS+ S
2

1 and B3 have the same homotopy type. See [2, Remark 5]

and [6, Remark 3]. Thus, JS+ S
2

1 is contractible. This leads to the controllability of
JS+ S

4 . Hence claim (2.4) follows. Let

H : [0, 1]×X∞`0 → JS+ S
4

be a contraction of X∞`0 in JS+ S
4 and let Θ(X∞`0 ) = H([0, 1] × X∞`0 ). Θ(X∞`0 ) is

a contractible stratified set of dimension `0 + 1. Deform Θ(X∞`0 ). By dimension
argument and under assumption (i) of Theorem 1.1, we obtain

Θ(X∞`0 ) ' X∞`0 . (3.5)

Apply now the Euler-Poincaré characteristic of both sides of (3.5), we obtain

1 =
∑

y∈K,3−ei(y)≤`0

(−1)3−ei(y).

Such equality contradicts assumption (ii) of Theorem 1.1. This completes the proof.
of Theorem 1.1.

Remark 3.1. Any function K of the form K = 1 + εK0, where K0 ∈ C2(B3),
having more than one local maximum on B3, no critical points of Morse index 2
and satisfying ∂K0

∂ν < 0 on ∂B3, satisfies the assumptions of Theorem 1.1 for ε > 0
small enough.
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Next, we provide an explicit example of function K = 1 + εK0 satisfying the
conditions of Theorem 1.1. For this, we construct a C2-function K0 on B3 having
only three critical points y1, y2 and y3 which are nondegenerate with ind(K, y1) =
ind(K, y2) = 3 and ind(K, y3) = 0. Moreover, it satisfies ∂K

∂ν < 0 on ∂B3. In that
case, K satisfies the hypothesis of Theorem 1.1, for ε positive small enough and
fore `0 = 1. To define K0, let y1 = (1/2, 0, 0), y2 = (−1/2, 0, 0) and y3 = 0R3 . For
ρ = 1/8, we define the cut-off function φ : R+ → R by

φ(t) =


1 if t ≤ ρ
0 if t ≥ 2ρ
φ′(t) < 0 if ρ < t < 2ρ.

For x ∈ B3, we define

K0(x)

= −φ(‖x− y1‖2)‖x− y1‖2 − φ(‖x− y2‖2)‖x− y2‖2 + φ(‖x− y3‖2)‖x− y3‖2

−
[
1− φ(‖x− y1‖2)− φ(‖x− y2‖2)− φ(‖x− y3‖2)

]
‖x‖2.

Observe that inside the balls B(yi, ρ), i = 1, 2, 3, we have

K0(x) =

{
−‖x− yi‖2 if i = 1, 2;
‖x− yi‖2 if i = 3.

Therefore, yi, i = 1, 2 are nondegenerate critical points of Morse index 3 and y3

is a nondegenrate critical points of Morse index 0. Recall that a critical point y
of a function f is said nondegenerate if the Hessian matrix of f at y, Hessy f is
nondegenrate, in that case the Morse index of f at y, ind(f, y) is defined as the
number of negative eigenvalues of Hessy f . Observe also that outside of B(yi, ρ),
i = 1, 2, 3, we have K0(x) = −‖x‖2. Therefore, for any x ∈ ∂B3 we have

∂K

∂ν
(x) = −2〈x, x〉 = −2, (3.6)

since ν(x) = x for all x ∈ ∂B3.

Remark 3.2. Theorem 1.1 can be extended in dimension n ≥ 4 as follows. We
assume that for every y ∈ K, we have

∆K(y) 6= 0, if n ≥ 5,
1
3

∆K(y)− 8H(y, y) 6= 0 if n = 4.

Let K+ = {y ∈ K : −∆K(y) > 0} if n ≥ 5 and K+ = {y ∈ K : − 1
3∆K(y) +

8H(y, y) > 0} if n = 4. Then, under the assumption (3.6), Theorem 1.1 is valid in
dimension n ≥ 4 by replacing K by K+.

Remark 3.3. We point out that the results of this note hold if we replace Bn by
any smooth bounded contractible domain Ω of Rn, n ≥ 3. therefore, the question
related to the existence of solution under the assumptions of Theorem 1.1 (or the
assumptions in Remark 3.2) on a non contractible domain remains open.



EJDE-2016/229 EXISTENCE OF SOLUTONS 9

References

[1] A. Bahri; Critical point at infinity in some variational problems, Pitman Res. Notes Math,
Ser 182, Longman Sci. Tech. Harlow 1989.

[2] A. Bahri, J. M. Coron; On a nonlinear elliptic equation involving the critical Sobolev expo-

nent: The effect of topology of the domain, Comm. Pure Appli. Math. 41 (1988), 255-294.
[3] A. Bahri; An invariant for yamabe-type flows with applications to scalar curvature problems

in high dimensions, A celebration of J. F. Nash Jr., Duke Math. J. 81 (1996), 323-466.

[4] M. Ben Ayed, M. Hammami; On a variational problem involving critical Sobolev growth in
dimension four, Advances in Differential Equations, 9, (2004), 415-446.

[5] Z. Bouchech, H. Chtioui; Multiplicity and existence results for a nonlinear elliptic equation
with Sobolev exponent, Advanced Nonlinear Studies, 10, (2010), 537-572.

[6] J. M. Coron; Topologie et cas limite del injections de Sobolev, C. R. Acad. Sc. Paris 299,

(1984), 209-212.
[7] S. Pohozaev; Eigenfunctions of the equation ∆u+ λf(u) = 0, Soviet Math. Dokl. 6, (1965),

1408-1411.

[8] K. Sharaf, H. Alharthy, S. Altharwi; Conformal transformation of metrics on the n-ball,
Nonlinear Analysis: TMA, 95, (2014), 246-262.

Khadijah Sharaf

Department of mathematics, King Abdulaziz University, P.O. 80230, Jeddah, Kingdom

of Saudi Arabia
E-mail address: kh sharaf@yahoo.com


	1. Introduction and statement of the main result
	2. Lack of compactness
	3. Proof of Theorem ??
	References

