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POSITIVE SOLUTIONS OF MULTI-POINT BOUNDARY VALUE
PROBLEMS

YOUYUAN YANG, QIRU WANG

Abstract. This article concerns the boundary value problem consisting of
the nonlinear differential equation

u′′ + g(t)f(t, u(t)) = 0, t ∈ (0, 1)

and the multi-point boundary conditions

u(0) = αu′(0),

u(1) =
mX

i=1

βiu(ηi) +

mX
i=1

γiu
′(ηi),

where 0 ≤ α ≤ ∞, 0 < η1 < η1 < η2 < · · · < ηm < 1, βi > 0, γi < 0

(i = 1, 2, . . . ,m). By using the fixed point index theory, we establish the
existences of at least one positive solution and at least two positive solutions.

1. Introduction

We consider the boundary value problem (BVP) consisting of the nonlinear dif-
ferential equation

u′′ + g(t)f(t, u(t)) = 0, t ∈ (0, 1) (1.1)

and the multi-point boundary conditions

u(0) = αu′(0), (1.2)

u(1) =
m∑
i=1

βiu(ηi) +
m∑
i=1

γiu
′(ηi), (1.3)

where 0 ≤ α ≤ ∞, 0 < η1 < η1 < η2 < · · · < ηm < 1, βi > 0, γi < 0 (i =
1, 2, . . . ,m).

Boundary value problems of ordinary differential equations arise in a variety
of areas of applied mathematics and physics [9, 10]. Since Il’in and Moiseev [4]
first studied the existence of solutions for a linear boundary value problem, more
and more papers have been devoted to studying the existence of positive solutions
of BVPs. Many phenomena can be modeled by (1.1) such as the Emden-Fowler
equation, the Thomas-Fermi equation, etc, see [11].
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In 1999, Ma [7] studied the three-point boundary value problem consisting of
(1.1) and

u(0) = 0, u(1) = αu(η), 0 < η < 1, αη < 1. (1.4)

In 2001, Ma [8] discussed (1.1) and Neumann boundary conditions at t = 0 as
follows:

u′(0) = 0, u(1) =
m∑
i=1

βiu(ηi). (1.5)

He used the theorem on compression and expansion of a cone to discuss the existence
of positive solutions when f is either sublinear or superlinear.

In 2001, Webb [11] studied the three-point boundary value problems consisting
of (1.1) and either (1.4) or

u′(0) = 0, u(1) = αu(η), 0 < η < 1, α < 1. (1.6)

He applied the classical fixed point index theory to prove the existence of at least
two positive solutions.

In 2004, Zhang and Sun [14] considered the m-point boundary value problem of
(1.1) and

u(0) = 0, u(1) =
m∑
i=1

βiu(ηi), (1.7)

where βi > 0,
∑m
i=1 βi < 1, 0 < ηi < 1 (i = 1, 2, . . . ,m). The existences of one

positive solution and multiple positive solutions were obtained by means of fixed
point index theorem under some conditions concerning the first eigenvalue with
respect to the linear operator.

Karakostas and Tsamatos [5] considered the second order ordinary differential
equation

(p(t)x′(t))′ + µ(t)f(x(t)) = 0, t ∈ [0, 1], (1.8)

associated with the nonlocal boundary conditions

x′(0) =
∫ 1

0

x′(s)dsdg(s), x(1) = −
∫ 1

0

x′(s)dsdh(s), (1.9)

or

x′(1) =
∫ 1

0

x′(s)dsdg1(s), x(0) = −
∫ 1

0

x′(s)dsdh1(s). (1.10)

They used the Krasnoselskii’s fixed point theorem on a suitable cone, several ex-
istence results for multiple positive solutions of a Fredholm integral equation are
provided. In 2006, Webb and Lan [12] discussed the existence of multiple positive
solutions of a second order differential of the form

x′′(t) + g(t)f(t, x(t)) = 0, t ∈ [0, 1], (1.11)

under a variety of boundary conditions which include separated boundary condi-
tions and non-local boundary conditions known as m-point boundary conditions
boundary conditions.

In 2014, Wong and Kong [13] considered the differential equation u′′+f(t, u(t)) =
0 with the following multi-point boundary conditions

cos θu(0) = sin θu′(0) (1.12)
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and

u(1) =
m∑
i=1

βiu(ηi) +
m∑
i=1

γiu
′(ηi), (1.13)

where βi, γi ∈ R, 0 < η1 < η1 < η2 < · · · < ηm < 1. They used the Leray Schauder
Nonlinear Alternative to obtain the existence of one non-trivial solution.

Motivated by these facts, we shall use the kernel function and the fixed point
index theorem to obtain the existences of at least one positive solution and at
least two positive solutions for boundary value problems (1.1)–(1.3). This paper is
organized as follows: after the introduction, some preliminary results are stated in
Section 2, and main results are shown in Section 3.

2. Preliminaries

We start by presenting our results via the Hammerstein integral equation

Tu(t) := u(t) =
∫ 1

0

k(t, s)g(s)f(s, u(s))ds t ∈ [0, 1]. (2.1)

In the Banach space C[0, 1], with the norm ‖u‖ = max0≤t≤1 |u(t)|, we set P =
{u ∈ C[0, 1] : u(t) ≥ 0, t ∈ [0, 1]}. P is a positive cone in C[0, 1]. Throughout this
paper, the partial ordering is always given by P . We denote by Br = {u ∈ C[0, 1] |
‖u‖ < r, r > 0} the open ball of radius r. We make the following assumptions:

(A1) Function g : [0, 1]→ [0,∞) is continuous, g(t) 6≡ 0, and
∫ 1

0
g(t)dt <∞;

(A2) Function f : [0, 1] × R+ → R+ satisfies Carathéodory conditions, that is,
f(·, u)is measurable for each fixed u ∈ R+, f(t, ·) is continuous for almost
every t ∈ [0, 1], and for each r > 0 there exists φr ∈ L∞[0, 1] such that
0 ≤ f(t, u) ≤ φr for all u ∈ [0, r] and almost all t ∈ [0, 1];

(A3) 0 < ∆ < 1 + α, ∆ = 1 + α(1−
∑m
i=1 βi)−

∑m
i=1 γi −

∑m
i=1 βiηi.

A function u is said to be a positive solution of (1.1) if u ∈ C[0, 1] ∩ C2(0, 1),
u(t) > 0, t ∈ (0, 1) and satisfies (1.8). We set

k1(t, s) =

{ (1−t)(s+α)
1+α , 0 ≤ s ≤ t ≤ 1,

(1−s)(t+α)
1+α , 0 ≤ t ≤ s ≤ 1,

and for i = 1, 2, . . . ,m,

k̃i(t, s) =

{
− (βi(ηi−s)+γi)(t+α)

∆ , 0 ≤ s ≤ ηi, t ∈ [0, 1],
0 ηi ≤ s ≤ 1, t ∈ [0, 1],

k(t, s) = k1(t, s) +
m∑
i=1

k̃i(t, s) +
(1 + α−∆)(t+ α)(1− s)

(1 + α)∆
.

Obviously, k(t, s) is continuous on [0, 1]× [0, 1] and k(t, s) ≥ 0(0 ≤ t, s ≤ 1) by the
assumption (A3). We define a linear operator

Lu(t) :=
∫ 1

0

k(t, s)g(s)u(s)ds, t ∈ [0, 1]. (2.2)

Lemma 2.1 ([2]). Let E be a Banach space, and P be a cone in E, and Ω(P ) be
a bounded open set in P . Suppose that T : Ω(P ) → P is a completely continuous
operator.
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(1) If there exists u0 ∈ P\{θ} such that

u− Tu 6= µu0, ∀u ∈ ∂Ω(P ), µ ≥ 0,

then the fixed point index i(T,Ω(P ), P ) = 0.
(2) If Tu 6= µu for all u ∈ ∂Ω(P ), µ ≥ 1, then i(T,Ω(P ), P ) = 1.
(3) Let P1 be an open set in E such that P̄1 ⊂ P . If i(T,Ω(P ), P ) = 1 and

i(T,Ω(P1), P ) = 0, Then T has a fixed point in P̄1\P . The same result
holds if i(T,Ω(P ), P ) = 0 and i(T,Ω(P1), P ) = 1.

Lemma 2.2 ([1]). Let E be a Banach space, and P be a cone in E, and Ω(P ) be
a boundary open set in P . Suppose that T : Ω(P ) → P is a completely continuous
operator.

(1) If ‖Tu‖ > ‖u‖ for all u ∈ ∂Ω(P ), then the fixed point index i(T,Ω(P ), P ) =
0;

(2) If θ ∈ Ω(P ) and ‖Tu‖ ≤ ‖u‖ for all u ∈ ∂Ω(P ), then the fixed point index
i(T,Ω(P ), P ) = 1.

Lemma 2.3 ([6]). Under hypotheses (A1)–(A3), the map T defined in (2.1) maps
P to P and is completely continuous operator.

It is easy to prove that the linear operator L : C[0, 1] → C[0, 1] is completely
continuous and L(P ) ⊂ P . We shall use the well known Krein-Rutman theorem
[3].

Lemma 2.4. Suppose that L : [0, 1] → C[0, 1] is a completely continuous linear
operator and L(P ) ⊂ P . If there exist Ψ ∈ C[0, 1]\(−P ) and a constant c > 0 such
that cLΨ ≥ Ψ, then the spectral radius r(L) 6= 0 and L has a positive eigenfunction
ϕ1 corresponding to its first eigenvalue λ1 = (r(L))−1, that is ϕ1 = λ1Lϕ1.

Lemma 2.5 ([14]). Suppose that (A1)–(A3) are satisfied, then for the operator L
defined by (2.2), the spectral radius r(L) 6= 0 and L has a positive eigenfunction
corresponding to its first eigenvalue λ1 = (r(L))−1.

3. Main results

In this article, we use the following definitions:

f̄(u) := sup
t∈[0,1]

f(t, u), f(u) := inf
t∈[0,1]

f(t, u),

f0 = lim sup
u→0+

f̄(u)/u, f0 = lim inf
u→0+

f(u)/u,

f∞ = lim sup
u→∞

f(u)/u, f∞ = lim inf
u→∞

f(u)/u.

Theorem 3.1. If λ1 < f0 <∞, then there exists R1 > 0 such that i(T,BR∩P, P ) =
0 for each R ∈ (0, R1].

Proof. If λ1 < f0 <∞, let ε > 0 satisfy f0 > (λ1 +ε)u and then there exists R1 > 0
such that

f(t, u) ≥ (λ1 + ε)u, ∀u ∈ [0, R1], and almost all t ∈ [0, 1]. (3.1)

Let R ∈ (0, R1]. We show that u 6= Tu + βϕ1 for all β ≥ 0, u ∈ ∂BR ∩ P , where
ϕ1 ∈ P is the positive eigenfunction of L with ‖ϕ1‖ = 1 corresponding to the
eigenvalue 1/r(L), which implies that i(T,BR1 ∩ P, P ) = 0. In fact, if not, then
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there exist u with ‖u‖ = R and β ≥ 0 such that u = Tu + βϕ1, it implies that
u ≥ βϕ1 and Lu ≥ βLϕ1 ≥ β 1

λ1
ϕ1. Together with (3.1), we have

u ≥ (λ1 + ε)Lu+ βϕ1 ≥ (λ1 + ε)
β

λ1
ϕ1 + βϕ1 > 2βϕ1.

Repeating the process leads to u ≥ nβϕ1 for n ∈ N, a contradiction with ‖u‖ = R.
Hence, we have i(T,BR ∩ P, P ) = 0. �

Theorem 3.2. If 0 < f0 < λ1, then there exists r1 > 0 such that i(T,Br∩P, P ) = 1
for each r ∈ (0, r1].

Proof. If 0 < f0 < λ1, let ε > 0 satisfy f0 < (λ1 − ε)u and then there exists r1 > 0
such that

f(t, u) ≤ (λ1 − ε)u, ∀u ∈ [0, r1], and almost all t ∈ [0, 1]. (3.2)

Let r ∈ (0, r1]. We show that Tu 6= βu for u ∈ ∂Br ∩ P and β ≥ 1, which implies
the result. In fact, if it does not hold, then there exist u ∈ ∂Br ∩ P, β ≥ 1 such
that Tu = βu, and

βu(t) =
∫ 1

0

k(t, s)g(s)f(s, u(s))ds ≤ (λ1 − ε)
∫ 1

0

k(t, s)g(s)u(s)ds ≤ (λ1 − ε)Lu(t).

Thus, we have u(t) ≤ (λ1 − ε)Lu(t) which indicates

u(t) ≤ (λ1 − ε)L[(λ1 − ε)Lu(t)] = (λ1 − ε)2L2u(t),

and iterating gives u(t) ≤ (λ1 − ε)nLnu(t) for n ∈ N. It follows that

1 ≤ (λ1 − ε)n‖Ln‖.
We can see 1 ≤ (λ1 − ε) limn→∞ ‖Ln‖1/n = (λ1 − ε) 1

λ1
< 1. This is obviously a

contradiction. Hence, we have i(T,Br ∩ P, P ) = 1. �

Theorem 3.3. If 0 < f∞ < λ1, then there exists r2 > r1 such that i(T,Br∩P, P ) =
1 for each r > r2, where r1 is the same as in Theorem 3.2.

Proof. If 0 < f∞ < λ1, let ε > 0 satisfy f∞ < λ1 − ε and then there exists r0 such
that

f(t, u) < (λ1 − ε)u, ∀u ≥ r0.

By assumption (A2) , there exists φr0 ∈ L∞[0, 1] such that

f(t, u) < φr0 , ∀u ∈ [0, r0].

Hence, we have
f(t, u) < (λ1 − ε)u+ φr0 , ∀u ∈ R+.

Since λ1 is the first eigenvalue of L, the first eigenvalue of L1, (I/(λ1 − ε) − L)−1

exists. Let

M = sup
u∈B̄r2∩P

∫ 1

0

(
max

0≤t,s≤1
k(t, s)

)
g(s)φr0ds

and
r2 = (I/(λ1 − ε)− L)−1(M/(λ1 − ε)).

We show that for each r > r2, Tu 6= βu, u ∈ ∂Br ∩P and β ≥ 1, which implies the
result. In fact, if it does not hold, then there exist u ∈ ∂Br ∩ P and β ≥ 1 such
that Tu = βu, and then

u(t) = (λ1 − ε)Lu(t) +M,
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(I/(λ1 − ε)− L)u(t) ≤M/(λ1 − ε),
u(t) ≤ (I/(λ1 − ε)− L)−1(M/(λ1 − ε)) = r2.

Thus, we have ‖u‖ ≤ r2 < r, a contradiction. Further, we have i(T,BR ∩ P, P ) =
0. �

We define the operator

L̃u(t) :=
∫ b

a

k(t, s)g(s)u(s)ds, t ∈ [0, 1], (3.3)

where [a, b] ⊂ [0, 1]. Then L̃ is a completely continuous linear operator and L̃(P ) ⊆
P . So r(L̃) is an eigenvalue of L̃ with corresponding eigenfunction ϕ̃1 in P . Let
λ̃1 := 1/r(L̃). Note that λ̃1 ≥ λ1, so the condition in the following theorem is more
stringent than if we could use r(L).

Theorem 3.4. If λ̃1 < f∞ < ∞, then there exists R2 > R0 such that i(T,BR ∩
P, P ) = 0 for each R > R2.

Proof. If λ̃1 < f∞ < ∞, we let R > 0 satisfy f∞ > λ̃1 + ε , and then there exists
u > R2 such that

f(t, u) > (λ̃1 + ε)u, ∀u > R2 and almost all t ∈ [0, 1].

Let R > R2, we show that u 6= Tu+βϕ̃1 for all β ≥ 0, which indicates u ∈ ∂BR∩P .
If it does not hold, we have u(t) = Tu(t) + βϕ̃1. Then

u(t) = Tu(t) + βϕ̃1 ≥
∫ b

a

k(t, s)g(s)f(s, u(s))ds+ βϕ̃1

> (λ̃1 + ε)L̃u(t) + βϕ̃1

> (λ̃1 + ε)
1
λ̃1

βϕ̃1 + βϕ̃1

> 2βϕ̃1

and iterating gives

u(t) ≥ nβϕ̃1(t) for t ∈ [a, b], n ∈ N.
Hence, ϕ̃1(t) is strictly positive on [a, b]. This is a contradiction. So we have
i(T,BR ∩ P, P ) = 0 for each R > R2. �

Theorem 3.5. Suppose that (A1)–(A3) hold together with one of the following two
conditions:

(1) 0 ≤ f0 < λ1(L) and λ̃1(L̃) < f∞ ≤ ∞;
(2) 0 ≤ f∞ < λ1(L) and λ1(L) < f0 ≤ ∞.

Then the multi-point boundary value problem (1.1)-(1.3) has at least a positive
solution.

Proof. When (1) holds, by Theorems 3.2 and 3.4, there exist r1 and r2 > r1 such
that i(T,Br1 , P ) = 1 and i(T,Br2 , P ) = 0. Since r2 > r1, we have (Br1 ∩ P ) ⊂
(Br2 ∩ P ). By applying the additivity of Lemma 2.1, we have

i(T, (Br2 ∩ P )\(Br1 ∩ P ), P ) = i(T,Br2 ∩ P, P )− i(T,Br1 ∩ P, P ) = −1 6= 0.

Then T has at least one fixed point on (Br2 ∩ P )\(Br1 ∩ P ). The proof for (2) is
similar, we omit it. �
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Theorem 3.6. Suppose that (A1)–(A3) hold together with one of the following two
conditions:

(1) 0 ≤ f0 < λ1(L), f(t, u) > η1r0, where η1 =
∫ b
a
g(s)ds for some r0 > 0,

0 ≤ f∞ < λ1(L);
(2) λ1(L) < f0 ≤ ∞, f(t, u) < η2R0, where η2 = ∆

(1+α)
R 1
0 g(s)ds

for some

R0 > 0, λ̃1(L̃) < f∞ ≤ ∞.

Then the multi-point boundary value problem (1.1)-(1.3) has at least two positive
solutions.

Proof. Under assumption (1), there exist 0 < r1 < r0 and r2 > r0 such that
i(T,Br1 ∩P, P ) = 1, (0 ≤ u ≤ r1) and i(T,Br2 ∩P, P ) = 1, (0 ≤ u ≤ r2). Next, we
suppose that T has no fixed point on ∂Br1 ∩ P and ∂Br2 ∩ P . If not, the proof is
completed.

For f(t, u) > η1r0, u ∈ ∂Br0 ∩ P , we have

Tu(t) ≥
∫ b

a

k1(t, s)g(s)f(s, u(s))ds >
∫ b

a

k1(s, s)g(s)ηr0ds = r0, t ∈ [0, 1].

Then ‖Tu‖ > ‖u‖, so i(T,Br0 ∩ P, P ) = 0. By Lemma 2.1, we have

i(T, (Br0 ∩ P )\(Br1 ∩ P ), P ) = i(T,Br0 ∩ P, P )− i(T,Br1 ∩ P, P )
= −1 6= 0,

and

i(T, (Br2 ∩ P )\(Br0 ∩ P ), P ) = i(T,Br2 ∩ P, P )− i(T,Br0 ∩ P, P )
= 1 6= 0.

Then T has at least two fixed points on (Br0∩P )\(Br1∩P ) and (Br2∩P )\(Br0∩P ).
This means that the multi-point boundary value problem (1.1)-(1.3) has at least
two positive solutions.

Under assumption (2), there exist 0 < R1 < R0 and R2 > R0 such that i(T,BR1∩
P, P ) = 1, (0 ≤ u ≤ R1) and i(T,BR2 ∩P, P ) = 1, (0 ≤ u ≤ R2). Next, we suppose
that T has no fixed point on ∂BR1 ∩P and ∂BR2 ∩P . If not, the proof is complete.

For f(t, u) < η2R0, u ∈ ∂BR0 ∩ P , we have

Tu(t) =
∫ 1

0

k1(t, s)g(s)f(s, u(s))ds+
∫ 1

0

m∑
i=1

k̃i(t, s)g(s)f(s, u(s))ds

+
∫ 1

0

(1 + α−∆)(t+ α)(1− s)
(1 + α)∆

g(s)f(s, u(s))ds

≤
∫ 1

0

k1(t, s)g(s)f(s, u(s))ds

+
∫ 1

0

(1 + α−∆)(t+ α)(1− s)
(1 + α)∆

g(s)f(s, u(s))ds

<

∫ 1

0

g(s)f(s, u(s))ds+
1 + α−∆

∆

∫ 1

0

g(s)f(s, u(s))ds

=
1 + α

∆

∫ 1

0

g(s)f(s, u(s))ds
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<
1 + α

∆

∫ 1

0

g(s)η2R0ds

= R0, t ∈ [0, 1].

Then ‖Tu‖ ≤ ‖u‖, so i(T,BR0 ∩ P, P ) = 0. By applying Lemma 2.1, we have

i(T, (BR0 ∩ P )\(BR1 ∩ P ), P ) = i(T,BR0 ∩ P, P )− i(T,BR1 ∩ P, P )
= −1 6= 0,

and

i(T, (BR2 ∩ P )\(BR0 ∩ P ), P ) = i(T,BR2 ∩ P, P )− i(T,BR0 ∩ P, P )
= 1 6= 0.

Then T has at least two fixed points on (BR0 ∩P )\(BR1 ∩P ) and (BR2 ∩P )\(BR0 ∩
P ). This means that the multi-point boundary value problem (1.1)-(1.3) has at least
two positive solutions. �

Remark 3.7. If we use the change of variable t→ 1− t in (1.2) and (1.3), we have

u(1) = αu′(1), (3.4)

u(0) =
m∑
i=1

βiu(ηi) +
m∑
i=1

γiu
′(ηi), (3.5)

where 0 ≤ α ≤ ∞, 0 < η1 < η1 < η2 < · · · < ηm < 1, βi > 0 and γi < 0
(i = 1, 2, . . . ,m). We can use the similar method to obtain an analogous result.

Remark 3.8. Let α = 0, γi = 0 (i = 1, 2, . . . ,m), then the boundary conditions
(1.2) and (1.3) reduce to (1.7). Under the same conditions, if α = ∞ and γi = 0
(i = 1, 2 . . .m), we can also derive the same results as presented in [12].
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4. Addendum posted by the editor on February 7, 2017

Professors J. Webb and K. Lan, the authors in reference [2], sent to the editors
the following statements on August 25, 2016.

(1) There is lack of ethics by the authors by repeating, almost verbatim, large
parts from reference [12], without given the proper credit:

Theorem 3.1 is Theorem 3.4 of [12], Theorem 3.2 is Theorem 3.2 of [12], Theorem
3.3 is Theorem 3.3 of [12] (with an added typo at end of proof), Theorem 3.5 is
Theorem 4.1 of [12].

(2) Theorem 3.4 is attempting to prove Theorem 3.5 of [12] but for that proof one
has to work in a smaller cone K (exactly as in [12]) which requires extra knowledge
of (a, b) and k(t, s) which are not stated in this paper.

(3) Theorem 3.6 is attempting to prove Theorem 4.4 of [12] but has several
mistakes. One is that the conditions (1) are not written properly, they must be
pointwise conditions, the range of u must be specified, but when written correctly
they are impossible to satisfy, which is why one has to work in the smaller cone K.
A second is that an upper bound on k1 is used as if it was a lower bound. A third
is confusing index =1 and index =0, which leads to other index mis-statements.

(4) Remark 3.7 has a sign error on derivative terms.

The editor contacted the authors who did not accept item (1), and did not want
to send a suggested apology. The authors sent corrections for items (2)-(4), but
these corrections were deemed insufficient. Two more rounds of corrections were
also insufficient; so the editor decided to post this note.

End of addendum.
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