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FINITE TIME EXTINCTION FOR NONLINEAR FRACTIONAL
EVOLUTION EQUATIONS AND RELATED PROPERTIES

JESÚS ILDEFONSO DÍAZ, TERESA PIERANTOZZI, LUIS VÁZQUEZ

Abstract. The finite time extinction phenomenon (the solution reaches an

equilibrium after a finite time) is peculiar to certain nonlinear problems whose

solutions exhibit an asymptotic behavior entirely different from the typical
behavior of solutions associated to linear problems. The main goal of this

work is twofold. Firstly, we extend some of the results known in the literature

to the case in which the ordinary time derivative is considered jointly with a
fractional time differentiation. Secondly, we consider the limit case when only

the fractional derivative remains. The latter is the most extraordinary case,
since we prove that the finite time extinction phenomenon still appears, even

with a non-smooth profile near the extinction time.

Some concrete examples of quasi-linear partial differential operators are
proposed. Our results can also be applied in the framework of suitable non-

linear Volterra integro-differential equations.

1. Introduction

The aim of this work is to extend some of the results already known in the
literature on the finite time extinction phenomenon [2] to the case in which the
ordinary time derivative is considered jointly with a real order differential operator
in time. To fix ideas, let Ω ⊂ RN , N ≥ 1, be a general open set, let Q∞ =
Ω × (0,+∞), Σ∞ = ∂Ω × (0,+∞), and consider a fractional evolution initial and
boundary-value problem formulated as follows:

a1
∂

∂t
u+ aα

∂α

∂tα
u+Au = f(x, t) in Q∞,

Bu = g(x, t) on Σ∞,

u(x, 0) = u0(x) on Ω.

(1.1)

Here, a1 ≥ 0, aα > 0, α ∈ (0, 1) and the operator ∂α/∂tα is a real order partial
derivative called fractional derivative in time; it coincides with the classical deriva-
tive for α = 1 and it is a non local in time (with delay) functional when α ∈ (0, 1).
Among the different definitions of real order differential operators given in the lit-
erature (see e.g. [20, 25, 27, 29]), we use the so called Riemann-Liouville fractional
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derivative:
∂α

∂tα
u(x, t) = (

∂

∂t
I1−α
t u)(x, t) =

∂

∂t

1
Γ(1− α)

∫ t

0

u(x, τ)
(t− τ)α

dτ, (1.2)

where t > 0 and (I1−α
t u)(x, t) is the Riemann-Liouville fractional integral of order

(1− α). A sufficient condition under which (1.2) exists (for a scalar function u(t))
is u ∈ C0([0, T ] : R) and u′ ∈ L1(0, T : R).

The term Au denotes a nonlinear operator (usually in terms of u and the partial
differentials of u), Bu denotes a boundary operator and the data f, g and u0 are
given functions. For simplicity, we are assuming that A and B are autonomous
operators, i.e., with time independent coefficients; nevertheless our treatment will
allow the case of systems of equations (where u(x, t) ∈ Rm with m > 1).

The most recurrent approach (see, e.g., [10] and [13] and the references therein)
is to study a possible stabilization as t → ∞ of a solution of this problem to a
time-independent state, as it it turns out to be of significant interest.

In the actual fact, the stationary solution to many other nonlocal evolution equa-
tions with different nonlinearities have been derived and studied in the literature;
see, e.g. the study of the non local evolution equation arising in population dispersal
in [3].

In this context it is usually assumed that:

f(x, t)→ f∞(x) and g(x, t)→ g∞(x) as t→ +∞, (1.3)

in some functional spaces and the main task is to prove that

u(x, t)→ u∞(x) as t→ +∞, (1.4)

in some topology of a suitable functional space, with u∞(x) solution of the station-
ary problem

Au∞ = f∞(x) in Ω,

Bu∞ = g∞(x) on ∂Ω.
(1.5)

Here we are interested in a stronger property. Starting by assuming that A0 = 0,
B0 = 0 and

f(x, t) = 0 ∀t ≥ Tf ,
g(x, t) = 0 ∀t ≥ Tg,

(1.6)

for some Tf < ∞ and Tg < ∞, we arrive to the following natural phenomenon of
the extinction in finite time:

Definition 1.1. Let u be a solution of the evolution boundary value problem (1.1).
We will say that u(x, t) possesses the property of extinction in a finite time if there
exists t∗ <∞ such that

u(x, t) ≡ 0 on Ω, ∀t ≥ t∗. (1.7)

Concretely, we will first prove the occurrence of the extinction in finite time for
(1.1) with a1 > 0 and aα > 0. Then, we will pass to consider the limit problem
obtained when a1 = 0 and aα > 0. The latter is the most extraordinary case,
since we prove that the finite time extinction phenomenon still appears, even with
a non-smooth profile near the extinction time.

The technique we will employ to derive (1.7) is an energy method [2, 15, 16],
whose main idea consists in deriving and studying suitable ordinary differential
inequalities for various types of energy.
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The plan of our paper is as follows. In the next section we introduce the concrete
model we will take under study. In Section 3 we prepare some material needed to
prove our main result included in Section 4, where the existence of the finite time
extinction phenomenon is demonstrated. Finally, we propose some other problems
to which our results on the finite time extinction can be applied. This paper contain
the details of a previous presentation by the authors in [17].

2. Model problem

Let us consider the following family of general problems:

a1
∂

∂t
u+ aα

∂α

∂tα
u− div

(
|∇u|p−2∇u

)
+ λβ(u) = f in Q∞

u = 0 on Σ∞
u(x, 0) = u0(x) in Ω.

(2.1)

where a1 ≥ 0, aα > 0, α ∈ (0, 1) and λ > 0, p > 1. In actual fact, if a1 = 0 the
initial condition must be understood as follows (see e.g. [20, Sec.3.2.2]):

lim
t→0

Γ(α)t1−αu(x, t) = lim
t→0

(I1−α
t u)(x, t) = u0(x).

Here, β(u) is the equivalent of the “feedback” term in the control theory.
There is a wide literature concerning problems like (2.1), also due to their rel-

evance in applications. Actually, Volterra integro-differential equations of convo-
lution type with completely monotone kernel arise naturally in several fields, as
in the theory of thermo-viscoelasticity, in the heat conduction in materials with
memory [24, 11, 23] or in the study of the nonlinear reaction-diffusion equation
with absorption: see, for instance, the monograph of Prüss [28] and the references
therein.

Under suitable conditions, we shall prove that the solution to (2.1) satisfies an
integral energy inequality leading to its extinction in a finite time.

3. Preliminaries

In this section, we present some lemmas establishing certain inequalities valid
for the Riemann-Liouville fractional time derivative, which will be used hereinafter.

Lemma 3.1. Let α ∈ (0, 1) and u ∈ C0([0, T ] : R), u′ ∈ L1(0, T : R) and u
monotone. Then

2u(t)
dαu

dtα
(t) ≥ dαu2

dtα
(t), a.e. t ∈ (0, T ]. (3.1)

Proof. Let us write the following equalities:

dαu2

dtα
(t) =

1
Γ(1− α)

∫ t

0

(u2)′(τ)
(t− τ)α

dτ +
u2(0)t−α

Γ(1− α)

= u2(t)
dα1
dtα
− 1

Γ(−α)

∫ t

0

(t− τ)−α−1

∫ t

τ

(u2)′(ξ)dξdτ ;

u(t)
dαu

dtα
(t) =

[ u(t)
Γ(1− α)

∫ t

0

(u)′(τ)
(t− τ)α

dτ +
u(t)u(0)t−α

Γ(1− α)

]
= u2(t)

dα1
dtα
− u(t)

Γ(−α)

∫ t

0

(t− τ)−α−1

∫ t

τ

u′(ξ)dξdτ.
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Figure 1. Function dαu2

dtα (t) vs. 2u(t)d
αu
dtα (t) for t ∈ (0, 5], u(t) =

e5/(1+t2) and different values of α.

Now, from u(ξ)u′(ξ) ≤ u(t)u′(ξ), a.e. ξ ∈ (0, t), we obtain

dαu2

dtα
(t) = u2(t)

dα1
dtα
− 1

Γ(−α)

∫ t

0

(t− τ)−α−1

∫ t

τ

2u(ξ)u′(ξ)dξdτ

≤ 2u2(t)
dα1
dtα
− 2u(t)

Γ(−α)

∫ t

0

(t− τ)−α−1

∫ t

τ

u′(ξ)dξdτ

= 2u(t)
dαu

dtα
(t) a.e. t ∈ (0, T ).

�

Remark 3.2. We notice that the inequality (3.1) can be trivially checked if α = 1.

Remark 3.3. We point out that (3.1), together with the initial condition u(0) = 0,
allows to conclude the monotonicity (or accretiveness) of the fractional differential
operator in a very direct way. This is in agreement with the result stated by
Stankovic and Atanackovic [31]. As well, it has to be highlighted that more sophis-
ticated proofs of said accretiveness had already been provided in the literature. At
this aim, see, for instance, the studies carried out in [8, 19] (also in [9, 11, 12]) on
the linear Volterra operator

(Lu)(t) =
d

dt

[
k0u(t) +

∫ t

0

k1(t− s)u(s)ds
]
, t > 0

in certain function spaces, where k0 ≥ 0 and k1 ∈ L1
loc(R+) is nonnegative and

nonincreasing. It has been shown that the operator L is m-accretive in Lp(0, T ;X)
and in Lp(R+;X), for any 1 ≤ p <∞ and where X denotes any Banach space.

Conjecture 3.4. Inequality (3.1) still holds under weaker hypothesis on u. Some
answers can be found in [1].

In fact, we considered a huge number of examples in the class of non-monotone
functions with just the regularity properties as in Lemma 3.1, and we observed
numerically that the validity of (3.1) is preserved. Figures 1–3 illustrate the results
of numerical simulations for some concrete functions (monotone and not). The
analytical approach is under study.

Now, we shall provide a more general version of Lemma 3.1:
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Figure 2. Function dαu2

dtα (t) vs. 2u(t)d
αu
dtα (t) for t ∈ (0, 5], u(t) =

sin(t) and different values of α.

Figure 3. Function dαu2

dtα (t) vs. 2u(t)d
αu
dtα (t) for t ∈ (0, 5], u(t) =

(t− 3)2 and different values of α.

Lemma 3.5. Given the Hilbert space H, let α ∈ (0, 1) and u ∈ L∞(0, T : H) such
that dα

dtαu ∈ L
1(0, T : H). Assume that ‖u(·)‖H is non-increasing (i.e. ‖u(t2)‖H ≤

‖u(t1)‖H for a.e. t1, t2 ∈ (0, T ) such that t1 ≤ t2). Then, there exists k(α) > 0
such that for almost every t ∈ (0, T ) we have that(

u(t),
dα

dtα
u(t)

)
≥ k(α)

( dα
dtα
‖u(t)‖2H

)
. (3.2)

Proof. We shall only give the details for H = R, since the general case can be
deduced from this one through easy generalizations of the arguments here employed.
Moreover, we shall refer to Lemma 3.1, which proves (3.2) for k(α) = 1/2 and u
satisfying some additional regularity hypothesis, to come to our conclusion.

Indeed, let us suppose we are given a non-increasing u satisfying u ∈ L∞(0, T : R)
such that dα

dtαu ∈ L
1(0, T : R). We always can construct a sequence of functions

un ∈ C∞([0, T ] : R) as follows:

un(t) =
∫

R
ρn(t− s)u(s)ds,
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where u denotes the extension by zero of u:

u(t) =

{
u(t) if t ∈ [0, T ]
0 if t ∈ R \ [0, T ]

(3.3)

and (ρn)n≥1 is a regularizing sequence called “mollifiers” (see, e.g., [7, Ch.IV]):

ρn ∈ C∞c (R), Supp ρn ⊂ B(0,
1
n

),∫
ρn = 1, ρn ≥ 0 in R.

Then, it is well known that, in particular, un ∈ C0([0, T ] : R), u′n ∈ L1(0, T : R)
and un → u. Moreover, u non-increasing implies that the distributional derivative
satisfies u′(t) ≤ 0 in D′(0, T ). Then, as ρn ≥ 0, taking convolutions in D′(0, T ), we
obtain

u′n = ρn ∗ u′ ≤ 0 in D′(0, T ),

and, since we know that u′n ∈ L1(0, T ), we can conclude that u′n(t) ≤ 0 for a.e.
t ∈ (0, T ). Moreover, it holds

dα

dtα
un(t) =

∫
R
ρn(s)

dα

dtα
u(t− s)ds,

and, because of that, we can conclude that dα

dtαun ∈ L
1(0, T ) and

dα

dtα
un →

dα

dtα
u in L1(0, T ) as n→ +∞.

Then, according to Lemma 3.1, for any n we have

un(t)
dα

dtα
un(t) ≥ k(α)(

dα

dtα
un(t)2); (3.4)

as a consequence, since

un
dα

dtα
un → u

dα

dtα
u

strongly in L1(0, T ), we obtain, from (3.4) that dα

dtαu(·)2 ∈ L1(0, T ) and (by the
dominated Lebesgue Theorem) that dα

dtαun(·)2 → dα

dtαu(·)2 in L1(0, T ). Passing
to the limit in (3.4) (since k(α) = 1/2 is independent of n) we obtain inequality
(3.2). �

Note that (3.2) implies dα

dtα ‖u(t)‖2H ∈ L1(0, T ), which is not straightforward to
see.

Remark 3.6. It worths to mention that several inequalities very close to (3.2)
already existed in the literature. Here, we will include just two examples. The first
one is the Shinbrot’s inequality [30]:∫ T

0

‖ d
α/2

dtα/2
u(t)‖2L2(V )dt ≤ sec

πα

2

∫ T

0

( dα
dtα

u(t), u(t)
)
dt (3.5)

holding under certain hypothesis on u and the domain V . The second one has been
proved by means of different methods by many authors (see, e.g., [10]):∫ t

0

u(t)
dα

dtα
u(t)dt ≥

∫ t

0

|u(t)|2dt. (3.6)
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Note that the independence from α in the right term of (3.6) is the main reason
why it could not serve to show the extinction in finite time for our problem.

4. Finite time extinction phenomenon

Now, let us present the main result of this paper:

Theorem 4.1. Let β(·) be any nondecreasing continuous function such that β(0) =
0. Then, for any f ∈ L1

loc(0,+∞ : L2(Ω)) and u0 ∈ L2(Ω), there exists a weak
solution of the problem (2.1). Assume also that β(s) = |s|σ−1s for some σ > 0 such
that either p < 2 and λ ≥ 0 and σ > 0 arbitrary, or σ < 1 and p > 1 arbitrary.
Additionally, let u0 ∈ H2(Ω), u0 ∈ L2σ(Ω) and f ∈ H1

loc(0,+∞ : L2(Ω)) satisfying
that ∃tf ≥ 0 such that f(x, t) ≡ 0 a.e. x ∈ Ω and a.e. t > tf . Then, there exists
t0 ≥ tf ≥ 0 such that u(x, t) ≡ 0 for a.e. x ∈ Ω and for any t ≥ t0.

Proof. The existence of a weak solution u ∈ C([0,+∞) : L2(Ω)) can be deduced
from the abstract results on Volterra intregro-differential equations with accretive
operators (see [4] and the long list of references herein included, which seems to be
started in 1963 by Friedman [18]), if you take k0 = a1, k1(t) = aα/t

α, G(u(t)) =
−div

(
|∇u|p−2∇u

)
+ β(u) and F (t, u(t)) = f(·, t). The operator G is m-accretive

(or, equivalently, maximal monotone) in H = L2(Ω), as it is already well known in
the literature (see, e.g., [15, Ch.IV]).

Now, let us start by considering the case a1 > 0. If we define the energy function

y(t) :=
∫

Ω

u(x, t)2dx = ‖u(·, t)‖2L2(Ω), (4.1)

then, multiplying by u and integrating on Ω the equation appearing in (2.1), (as in
[2, Sec.2, Ch.2 ]), we obtain, due to the Sobolev, Hölder and Young inequalities:

a1

2
dy

dt
+ aα

∫
Ω

∂αu

∂tα
(x, t)u(x, t)dx+ Cy(t)ν ≤ 0, (4.2)

for some C > 0 and ν ∈ (0, 1) (this is implied by the hypothesis on σ and p) and
for a.e. t ∈ (tf ,+∞).

Also, we know [12, p.98] that the operator:

u 7→ aα
∂αu

∂tα
(4.3)

generates contraction semigroups in E = Lr(0,+∞ : Lq(Ω)), with 1 < r, q < ∞
which are positive with respect to the usual cone E+ of positive functions.

In particular (4.3) generates a contraction semigroup in L2(Ω). So, since a1 > 0
we obtain that, for any t ≥ tf , the application t 7→ y(t) is non increasing, y ∈
C([tf ,+∞]) and dαy

dtα ∈ L
1(tf , T ).

Therefore, we are in conditions as to apply Lemma 3.5, and we obtain:

a1

2
d

dt
y +

aα
2
dα

dtα
y(t) + C y(t)ν ≤ 0 on (tf ,+∞)

y(tf ) = Y0.
(4.4)

Moreover, since the semigroup generated by the operator (4.3) is positive [al-
though it is non local], we have that

0 ≤ y(t) ≤ Y (t) for any t ∈ [tf ,+∞), (4.5)
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where Y (t) is a supersolution, i.e, Y (t) satisfies the inequality:
a1

2
d

dt
Y +

aα
2
dα

dtα
Y (t) + CY (t)ν ≥ 0 on (tf ,+∞)

Y (tf ) ≥ Y0.
(4.6)

Now, our conclusion comes from the fact that we can construct Y (t) satisfying
(4.6) and such that Y (t) ≡ 0 for all t ≥ tY , for some tY > tf . Indeed, let Y (t) be
a function satisfying

a1

2
Y ′(t) +

C

2
Y (t)ν = 0

Y (tf ) = Y0,
(4.7)

for instance,

Y (t) = k (tY − t)
1

1−ν
+

for some tY > tf and some k > 0.
Then, we may conclude that

a1

2
dY

dt
+
aα
2
dαY

dtα
(t) +

C

2
Y (t)ν +

C

2
Y (t)ν ≥ aα

2
dαY

dtα
(t) +

C

2
Y (t)ν ≥ 0

since
aα
2
dαY

dtα
(t) ≥ k∗(tY − t)

1
1−ν−α
+ , (4.8)

holds with k∗ < 0, and it is
ν

1− ν
≤ (1− α) + αν

(1− ν)
,

where ν ∈ (0, 1).
Let us prove (4.8) when t ≤ tY , since it is trivial when tY < t. To do that, we

have to write again the Riemann-Liouville fractional derivative in this equivalent
form

dα

dtα
(tY − t)

1
1−ν
+

= −1/(1− ν)
Γ(1− α)

∫ t

0

(tY − τ)
ν

1−ν
+

(t− τ)α
dτ +

tY t
−α

Γ(1− α)

≥ −1/(1− ν)
Γ(1− α)

∫ t

0

(tY − τ)
ν

1−ν
+

(t− τ)α
dτ

≥ 2α/(1− ν)
Γ(1− α)

∫ t

0

(tY − τ)
ν

1−ν
+

(tY − τ)α
dτ

= − 2α/(1− ν)
Γ(1− α)( 1

1−ν − α)
(tY − t)

1
1−ν−α
+ +

2α/(1− ν)
Γ(1− α)( 1

1−ν − α)
t

1
1−ν−α
Y

≥ − 2α/(1− ν)
Γ(1− α)( 1

1−ν − α)
(tY − t)

1
1−ν−α
+ = k∗(tY − t)

1
1−ν−α
+ ,

where we used the inequality

(t− τα) = [(tY − τ)− (tY − t)]α ≥ −2α(tY − τ)α,

and that 1
1−ν > 1. So, we have shown that when a1 > 0,

‖u(·, t)‖2L2(Ω) ≤ k (tY − t)
1

1−ν
+ ∀t ≥ tf , ν ∈ (0, 1). (4.9)
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Now let us pass to consider the limit case a1 = 0. At this aim, let uε be the
solution of (2.1) with a1 = ε > 0. Then, as we can prove that

uε → u∗ in L2(0,+∞ : L2(Ω)) as ε→ 0,

we obtain that the mapping

t 7→ y∗(t) := ‖u∗(·, t)‖2L2(Ω)

is also decreasing. Then, we can apply Lemma 3.1 and write for y∗ the same
inequality as in (4.4):

aα
2
dα

dtα
y∗(t) + C y∗(t)ν ≤ 0 on (tf ,+∞)

y(tf ) = W0.
(4.10)

As before, the conclusion comes now from the fact that we can construct a
supersolution W (t) satisfying

aα
2
dα

dtα
W (t) + CW (t)ν ≥ 0 on (tf ,+∞)

W (tf ) = W0,
(4.11)

and such that W (t) ≡ 0 for all t ≥ tW , for some tW > tF .
Indeed, let W (t) = h (tW − t)

α
1−ν
+ for some tW > tf and some h > 0. Then, as

before,
aα
2
dαW

dtα
(t) ≥ h∗(tW − t)

αν
1−ν
+ ,

with h∗ < 0, and

‖u∗(·, t)‖2L2(Ω) ≤ h (tW − t)
α

1−ν
+ ∀t ≥ tf . (4.12)

�

Remark 4.2. The decreasing behavior of the norm appearing in (4.9) for the case
a1 > 0 is actually the same as when the fractional derivative is not included in the
problem (2.1). However, what is more extraordinary is the decreasing behavior of
the norm (4.12) when a1 = 0 as, if α < 1− ν, we are dealing with a function W (t)
such that dαW

dtα (t) ∈ L∞(0,+∞) whereas W ′(t) /∈ L∞(0,+∞) although W ′(t) ∈
L1(0,+∞).

It should be highlighted that, even if in the literature [20, 27, 29] lots of cal-
culations refer to the exact expression of the fractional derivative of polynomial
functions, as far as we know, none of them leads to inequality (4.8) in the form as
we understand.

5. Other applications

5.1. Nonlinear heat equation with absorption for porous media. We con-
sider the model initial-boundary value problem for a nonlinear degenerate parabolic
equation with a single space variable [2]. Denote QT = Ω × (0, T ), Ω = (−L,L),
T ∈ R+. Let u(x, t) be a solution of the problem

a1
∂

∂t

(
u|u|γ−1

)
+ aα

∂α

∂tα
(
u|u|γ−1

)
−
(
|ux|p−2ux|

)
x

+ λu|u|σ−1 = f in QT

u(±L, t) = 0 t ∈ (0, T );

u(x, 0) = u0(x) in Ω.

(5.1)
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where a1 ≥ 0, aα > 0, α ∈ (0, 1), λ > 0, 0 < γ <∞, 1 ≤ p <∞ and σ > 0.
Notice that the equation

a1
∂

∂t
v + aα

∂α

∂tα
v − (γ1−p|v|m−1|vx|p−2vx)x + λv|v|q−1 = f(x, t) (5.2)

with the parameters

m = 1 +
(1− γ)(p− 1)

γ
, q =

σ

γ

can be transformed into (5.1) after the change of the unknown function v = u|u|γ−1.
Equation (5.2) with α = 1 is usually referred to as the nonlinear heat equation with
absorption.

The existence of a weak solution v ∈ C([0,+∞) : L1+γ(Ω)) to (5.2) can be de-
duced for any f ∈ H1

loc(0,+∞ : L1+γ(Ω)) and v0 ∈ L1+γ(Ω), as in Theorem 4.1 from
the abstract results on Volterra intregro-differential equations with accretive opera-
tors (see [4]), taking k0 = a1, k1(t) = aα/t

α, G(v(t)) = −(γ1−p|v|m−1|vx|p−2vx)x +
λv|v|q−1 and F (t, v(t)) = f(·, t). This operator G, as the usual p-Laplacian is also
m-accretive (or, equivalently, maximal monotone) in H = L1(Ω) (see, e.g., [15,
Ch.IV]).

Let us also assume that the solution u(x, t) of problem (5.1) is a weak solu-
tion from a suitable functional space, V (QT ), such that for almost all t ∈ (0, T )
the following energy equality, obtained multiplying by u and integrating on Ω the
equation included in (5.1), holds:

a1
γ

γ + 1
d

dt

∫
Ω

|u|γ+1dx+ aα

∫
Ω

u
∂α

∂tα
(
u|u|γ−1

)
dx

+
∫

Ω

(
|ux|p + λ|u|1+σ − fu

)
dx = 0.

(5.3)

Now, let us introduce the energy functions

y(t) =
∫

Ω

|u(x, t)1+γ |dx = ‖u(·, t)‖1+γ
L1+γ(Ω),

D(t) =
∫

Ω

|ux(x, t)p|dx = ‖u(·, t)‖pLp(Ω),

A(t) =
∫

Ω

|u(x, t)1+σ|dx = ‖u(·, t)‖1+σ
L1+σ(Ω)

which, for any given function u ∈ V (QT ), are defined for almost all t ∈ (0, T ) and
are in L1(0, T ).

With this notation, the energy equality (5.3) takes the form

a1
γ

γ + 1
d

dt
y + aα

∫
Ω

u
∂α

∂tα
(
u|u|γ−1

)
dx+D(t) + λA(t) =

∫
Ω

fu dx (5.4)

and in [2, pp 72-73] it is shown how to pass, when α = 1 and f(x, t) ≡ 0, from this
to the following ordinary differential inequality:

a1y
′ + Cyν ≤ 0, (5.5)

where C > 0 and 0 < ν < 1.
Also, we recall that from [12, p.98] the operator

u 7→ aα
∂αu

∂tα
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generates a contraction semigroup in L1+γ(Ω). So, since a1 > 0 we obtain that, for
any t ≥ tf (tf such that f(x, t) ≡ 0 for all t ≥ tf ), the mapping t 7→ y(t) is non
increasing, y ∈ C([tf ,+∞]) and dαy

dtα ∈ L
1(tf , T ).

Therefore, to obtain a fractional ordinary differential inequality for the general
case of α ∈ (0, 1), we just need a slightly different version of previous lemmas 3.1
and 3.5.

Lemma 5.1. Let α ∈ (0, 1) and u ∈ C0([0, T ] : R), u′ ∈ L1(0, T : R) with u
monotone. Then(γ + 1

γ

)
u(t)

dαu|u|γ−1

dtα
(t) ≥ dα|u|γ+1

dtα
(t), a.e. t ∈ (0, T ]. (5.6)

Proof. Note that the following equalities hold:

dα|u|γ+1

dtα
(t) =

1
Γ(1− α)

∫ t

0

(|u|γ+1)′(τ)
(t− τ)α

dτ +
|u|γ+1(0)t−α

Γ(1− α)

= |u|γ+1(t)
dα1
dtα
− 1

Γ(−α)

∫ t

0

(t− τ)−α−1

∫ t

τ

(|u|γ+1)′(ξ)dξdτ ;

u(t)
dαu|u|γ−1

dtα
(t) =

[ u(t)
Γ(1− α)

∫ t

0

(u|u|γ−1)′(τ)
(t− τ)α

dτ +
u(t)u(0)|u|γ−1(0)t−α

Γ(1− α)

]
= |u|γ+1(t)

dα1
dtα
− u(t)

Γ(−α)

∫ t

0

(t− τ)−α−1

∫ t

τ

(u|u|γ−1)′(ξ)dξdτ.

Now, from |u(ξ)|γ−1u(ξ)u′(ξ) ≤ |u(ξ)|γ−1u(t)u′(ξ), a.e. ξ ∈ (0, t), we obtain

dα|u|γ+1

dtα
(t)

= |u|γ+1(t)
dα1
dtα
− γ + 1

Γ(−α)

∫ t

0

(t− τ)−α−1

∫ t

τ

|u(ξ)|γ−1u((ξ))u′(ξ)dξdτ

≤ γ + 1
γ

[
|u|γ+1(t)

dα1
dtα
− γu(t)

Γ(−α)

∫ t

0

(t− τ)−α−1

∫ t

τ

|u(ξ)|γ−1u′(ξ)dξdτ
]

=
γ + 1
γ

u(t)
dαu|u|γ−1

dtα
(t) a.e. t ∈ (0, T ).

�

Then, gathering (5.4) and (5.5), by applying Lemma 5.1 we can write

a1y
′ + aα

dα

dtα
y + Cyν ≤ 0, (5.7)

whenever f(x, t) ≡ 0. From this, it is implied that the weak solution vanishes in a
finite time.

5.2. Higher-order parabolic equations. The non linear operator Au may con-
tain derivatives of order higher than two. Let us consider, for example, the initial
and boundary value problem

a1
∂

∂t
u+ aα

∂α

∂tα
u+ ∆

(
|∆u|p−2 ∆u

)
+ β(u) = f in Q∞

u = 0,
∂u

∂ν
= 0 on Σ∞

u(x, 0) = u0(x) in Ω.

(5.8)
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where a1 ≥ 0, aα > 0, α ∈ (0, 1), p ∈ (1, 2) and ν is the unit normal outer vector
to ∂Ω.

In fact, the existence of a weak solution u ∈ C([0,+∞) : L2(Ω)) can be proved
as in Theorem 4.1, when β(·) is any nondecreasing continuous function such that
β(0) = 0, for any f ∈ L1

loc(0,+∞ : L2(Ω)) and u0 ∈ L2(Ω).
Also, because of the embedding W 2,2

0 (Ω) ⊂ L2(Ω), it can be written

−(∆
(
|∆u|p−2 ∆u

)
, u)Ω = −‖∆u‖pLp(Ω) ≤ −C‖u‖

p
L2(Ω),

for some C < 0. Then assuming β(s) = |s|σ−1s for some σ > 0 and f ∈
H1

loc(0,+∞ : L2(Ω)) satisfying that ∃tf ≥ 0 such that f(x, t) ≡ 0 a.e. x ∈ Ω
and a.e. t > tf , it follows that the nonlinear differential equation

a1

2
dy

dt
+
aα
2
dαy

dtα
(t) + C∗ y(t)ρ ≤ 0

holds, for some C∗ > 0 and ρ ∈ (0, 1) (this is implied by the assumptions on σ and
p) and for a.e. t ∈ (tf ,+∞). Therefore, the finite time extinction of weak solutions
is provided.
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