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FILTER REGULARIZATION FOR AN INVERSE PARABOLIC
PROBLEM IN SEVERAL VARIABLES

TUAN NGUYEN HUY, MOKHTAR KIRANE, LONG DINH LE, THINH VAN NGUYEN

Abstract. The backward heat problem is known to be ill possed, which has
lead to the design of several regularization methods. In this article we apply

the method of filtering out the high frequencies from the data for a parabolic

equation. First we identify two properties that if satisfied they imply the
convergence of the approximate solution to the exact solution. Then we provide

examples of filters that satisfy the two properties, and error estimates for their

approximate solutions. We also provide numerical experiments to illustrate
our results.

1. Introduction

The forward heat conduction problem consists of predicting the temperature of
an object at a future time from the present temperature, boundary conditions,
and heat source. On the other hand, the backward heat problem is an inverse
problem that consists of recovering the temperature at a past time from the present
temperature. Inverse problems are of great importance in engineering applications,
and aim to detect a previous status from its present information. They can be
applied to several areas such as image processing, mathematical finance, mechanics
of continuous media, etc. The equation ut−b(t)∆u = f(x, t) is a simple form of the
well-known advection-convection equation that appears in groundwater pollution
problems and have been studied in [3].

In this article, we consider the problem of finding a function u(x, t) from the
given data u(x, T ) = g(x) in the parabolic problem

∂u

∂t
− b(t)L[u] = f(x, t), (x, t) ∈ Ω× (0, T )

u|∂Ω = 0, t ∈ (0, T )

u(x, T ) = g(x), x ∈ Ω .

(1.1)

Here Ω is a bounded open domain in Rn with smooth boundary ∂Ω; b(t), g(x),
f(x, t) are given functions; and L is a symmetric elliptic operator. As an example
of operator L we have the negative Laplacian −∆ = −(uxx + uyy + . . . ).

It is well-known that the backward problem is ill-posed; i.e., its solution may
not exist, and if it exists, it does not depend continuously on the given data. In
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fact, small noise on the measured data may lead to solutions with large errors.
This makes the numerical computation difficult, hence a regularization process is
needed.

Many studies have been devoted to the regularization of (1.1). For one dimension
with b(t) = 1 and f(x, t) = 0, we have the following: John [17] introduced a the
idea of prescribing a bound on the solution at t = T with relation on the final data
g. Lattes and Lions [18], Showalter [29], and Ewing [11] used quasi-reversibility
method. Ames and Epperson [2], and Miller [24] used the least squares methods
with Tikhonov regularization. Lee and Sheen [20, 21] used a parallel method for
backward parabolic problems. Among other researcher in this area, we have: Clark
and Oppenheimer [7], Ames et al [2], Denche and Bessila [8], Tautenhahn et al
[36], Melnikova et al [22, 23], Fu [14, 15], Yildiz et al [37, 38]. When f(x, t) is not
necessarily zero, (1.1) has been regularized by Trong et al [32, 33]. When b(t) is
not necessarily constant, (1.1) has been studied in [19, 34, 39].

All the above studies are for the one-dimensional problems. A filter regulariza-
tion for a 3-dimensional Helmholtz equation was studied in [31]. Here apply a filter
regularization to the backward problem of a multi-dimensional parabolic equation.
This can be seen as an extension of the work in [25, 34].

The outline of the rest of this article is as follows. In the next section, we establish
the existence and uniqueness of a solution to (1.1). In Section 3, we present the
theoretical foundations of the filter regularization, and state two conditions (3.4)
and (3.5) that if satisfied, approximate solutions converge to the exact solution.
Also error estimates are presented there. In Section 4, we consider four regularizing
filters, and present numerical experiments for two of those filters.

2. Inverse problem

We assume that b : [0, T ] → R is a differentiable function, and that there exist
constants b1, b2, c1 such that

0 < b1 ≤ b(t) ≤ b2, 0 < b′(t) ≤ c1 for all t ∈ [0, T ]. (2.1)

Also we assume that f ∈ L2((0, T );L2(Ω)) and g ∈ L2(Ω). In the space L2(Ω) we
denote the norm by ‖ · ‖, and the inner product by 〈·, ·〉.

First, we recall some properties of the elliptic operator L on a bounded open
domain Ω with Dirichlet boundary conditions (see [10, Section 6.5]).

• Each eigenvalue of L is real, and the family of eigenvalues {λp}∞p=1 satisfies
0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞ as p→∞.

• There exists an orthonormal basis {Xp}∞p=1 for the space L2(Ω), where
Xp ∈ H1

0 (Ω) is an eigenfunction corresponding to λp; i.e., for n ∈ N,

L[Xp](x) = λpXp(x), for x ∈ Ω

Xp(x) = 0, for x ∈ ∂Ω .

For 0 ≤ q < ∞, let gp =
∫

Ω
g(x)Xp(x)dx. Then we denote by Sq(Ω) the space of

functions g ∈ L2(Ω) satisfying
∞∑
p=1

(1 + λ)2q|gp|2 <∞, (2.2)

with the norm ‖g‖2Sq(Ω) =
∑∞
p=1(1 + λp)2q|gp|2. When q = 0, Sq(Ω) = L2(Ω) (see

[5, Chapter V], [14, page 179]).
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As is well known, the forward problem
∂u

∂t
− b(t)L[u] = f(x, t), (x, t) ∈ Ω× (0, T )

u|∂Ω = 0, t ∈ (0, T )

u(x, 0) = g(x), x ∈ Ω ,

(2.3)

with f ∈ L2((0, T );L2(Ω)) and g ∈ L2(Ω), has a unique solution. However, for
the backward problem (1.1), with f ∈ L2((0, T );L2(Ω)) and g ∈ L2(Ω), there is no
guarantee that the solution exists.

Next we obtain a solution by the Fourier series method. For a fixed t, we use the
eigenfunctions of the Laplacian to write Fourier series for f , g, and u. Then (1.1)
determines an ordinary first-order differential equation for the Fourier coefficients.
Then the coefficients of the solution to this equation at time T are equated to
coefficients of g. This process yields the following result.

Theorem 2.1. Problem (1.1) has a unique solution if and only if
∞∑
p=1

exp
(

2λp
∫ T

t

b(ξ)dξ
)[
gp −

∫ T

0

exp
(
− λp

∫ T

s

b(ξ)dξ
)
fp(s)ds

]2
<∞, (2.4)

where

gp =
∫

Ω

g(x)Xp(x)dx, fp(s) =
∫

Ω

f(x, s)Xp(x)dx. (2.5)

In this case the exact solution is

u(x, t) =
∞∑
p=1

exp
(
λp

∫ T

t

b(ξ)dξ
)[
gp −

∫ T

0

exp
(
− λp

∫ T

s

b(ξ)dξ
)
fp(s)ds

]
. (2.6)

Remark 2.2. Examples of functions f and g satisfying (2.4) are given in the
section for numerical experiments. When b(t) = 1 and f(x, t) = 0, problem (1.1)
has a unique solution if and only if

∞∑
p=1

e2Tλp |〈g(·), Xp(·)〉|2 <∞,

as stated in [7, Lemma 1].
The proof of uniqueness uses the bounds in (2.1) and is similar to the one in [12,

Corollary 2.6] and [19, page 434]; so we omit it.

In spite of the solution to problem (1.1) begin unique, it is still ill-posed and some
regularization methods are necessary. In the next section, we use a regularization
method for solving the problem.

3. Filter regularization method

In this section, we assume that the measured data f ε and gε belong to L2(Ω)
and satisfy

2‖gε − g‖2 + 2
∥∥∫ T

0

|f ε(·, s)− f(·, s))| ds
∥∥2 ≤ ε2. (3.1)

The main idea of the filter method is to multiply f ε and gε by functions Rf (α, p)
and Rg(α, p), respectively. These two function are called regularizing filters, and α a
regularization parameter. If these two functions approach zero as p→∞, the effect
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that “high frequency” data have on the solution will be diminished. For simplicity
we set R(α, p) = Rf (α, p) = Rg(α, p). Therefore, the approximate solution is

U εα(x, t) =
∞∑
p=1

exp
(
λp

∫ T

t

b(ξ)dξ
)
R(α, p)

×
[
gεp −

∫ T

t

exp
(
− λp

∫ T

s

b(ξ)dξ
)
fp(s)ds

]
Xp(x) ,

(3.2)

where fp and gp are defined by (2.5).

Theorem 3.1. Assume that for the exact solution u of (1.1) there exist constants
Mp and E such that

∞∑
p=1

M2
p |〈u(x, t), Xp(x)〉|2 ≤ E2 ∀t ∈ [0, T ] . (3.3)

Also assume that there exist functions K1(α) and K2(α) such that

exp
(
λp

∫ T

t

b(ξ)dξ
)
|R(α, p)| ≤ K1(α) (3.4)

|R(α, p)− 1| ≤ K2(α)Mp (3.5)

for all p ∈ N and all t ∈ [0, T ]. Then U εα, defined by (3.2), satisfies

‖U εα(·, t)− u(·, t)‖L2(Ω) ≤ K1(α)ε+K2(α)E. (3.6)

A filter R(α, p) is admissible if α(ε), K1(α) and K2(α) tend to zero as ε tends
to zero. By Theorem 3.1 this implies the convergence of the approximate solution
to the exact solution,

lim
ε→0
‖U εα(·, t)− u(·, t)‖L2(Ω) = 0 ,

for any t ∈ [0, T ].

Proof of Theorem 3.1. The strategy is to define a function Uα and use the triangle
inequality. Let

Uα(x, t) =
∞∑
p=1

R(α, p) exp
(
λp

∫ T

t

b(ξ)dξ
)

×
[
gp −

∫ T

t

exp
(
− λp

∫ T

s

b(ξ)dξ
)
fp(s)ds

]
Xp(x).
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Then we have
‖U εα(·, t)− Uα(·, t)‖2

=
∞∑
p=1

|R(α, p)|2 exp
(

2λp
∫ T

t

b(ξ)dξ
)

×
(
gεp − gp −

∫ T

t

e−λp

R T
s
b
(
f εp(s)− fp(s)

)
ds
)2

≤
∞∑
p=1

|R(α, p)|2 exp
(

2λp
∫ T

t

b(ξ)dξ
)

× 2
(

(gεp − gp)2 +
(∫ T

t

|f εp(s)− fp(s)|ds
)2)

≤ |K1(α)|22
(
‖gε − g‖2 +

∥∥ ∫ T

t

|f ε(·, s)− f(·, s)| ds
∥∥2
)

(3.7)

Here we used that (α + β)2 ≤ 1
2 (α2 + β2) and that e−λp

R T
s
b ≤ 1 because λp and

b are non-negative. The squared integral is estimated using Fubini’s theorem as
follows. Let φ(x) =

∫ T
0
h(x, s) ds then the Fourier coefficients satisfy

φp =
∫

Ω

∫ T

t

h(x, s) dsXp(x) dx =
∫ T

t

∫
Ω

h(x, s)Xp(x) dx ds =
∫ T

t

hp(s) ds

By Parseval’s equality,

‖φ‖2 =
∞∑
p=1

φ2
p =

∞∑
p=1

(∫ T

0

hp(s) ds
)2

=
∥∥ ∫ T

0

h(·, s) ds‖2 .

From (3.1) and (3.7), we have

‖U εα(·, t)− Uα(·, t)‖ ≤ K1(α)ε (3.8)

From the definition of Uα, we have

‖Uα(·, t)− u(·, t)‖2 =
∞∑
p=1

[R(α, p)− 1]2 exp
(

2λp
∫ T

t

b(ξ)dξ
)

×
[
gp −

∫ T

t

exp
(
− λp

∫ T

s

b(ξ)dξ
)
fp(s)ds

]2
=
∞∑
p=1

[R(α, p)− 1]2|〈u(x, t), Xp(x)〉|2

≤ |K2(α)|2
∞∑
p=1

M2
p |〈u(x, t), Xp(x)〉|2

≤ |K2(α)|2E2.

This inequality, (3.8), and the triangle inequality complete the proof. �

Remark 3.2. Assumption (3.3) holds naturally when Mp = λkp for any k > 0. In
this case

∞∑
p=1

M2
p |〈u(x, t), Xp(x)〉|2 =

∞∑
p=1

λ2k
p |〈u(x, t), Xp(x)〉|2 = E2 = ‖u‖2Sk(Ω) ,
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where Sk(Ω) is defined in Section 2.

Next we present specific filters and their regularized solutions.

Proposition 3.3. As in [19], let

R1(α, p) =
1

1 + α exp
(
λp
∫ T

0
b(ξ)dξ

) ,
and α(ε) = ε(1−m)b1/b2 with m ∈ (0, 1) and b1 and b2 as in (2.1). Then R1 satisfies
(3.4) and (3.5) with

K1(α) = α−b2/b1 , K2(α) =

∫ T
0
b(ξ)dξ

ln
(
λ1

∫ T
0
b(ξ)dξ/α

) , Mp = λp .

From [19, Lemma 2], we have

R1(α, p) exp
(
λp

∫ T

t

b(ξ)dξ
)

=
exp

(
− λp

∫ t
0
b(ξ)dξ

)
α+ exp

(
− λp

∫ T
0
b(ξ)dξ

)
≤ α

b2t
b1
− b2

b1

≤ α−b2/b1 = K1(α) .

To verify condition (3.5), we apply the elementary estimate
1

αz + e−Mz
≤ M

α ln(M/α)
for M > 0 and α small enough. Therefore,

|R1(α, p)− 1| = α

α+ exp
(
− λp

∫ T
0
b(ξ)dξ

)
=

αλp

αλp + λp exp
(
− λp

∫ T
0
b(ξ)dξ

)
≤ αλp

αλp + λ1 exp
(
− λp

∫ T
0
b(ξ)dξ

)
≤

∫ T
0
b(ξ)dξ

ln
(
λ1

∫ T
0
b(ξ)dξ/α

)λp = K2(α)Mp·

Proposition 3.4. For k ≥ 1, Let

R2(α, p) =
1

1 + ελkp exp
(
λp
∫ T

0
b(ξ)dξ

) .
Then R2 satisfies (3.4) and (3.5) with α(ε) = ε,

K1(α) = b4ε
−1
(

ln
(b3
ε

))−k
, K2(α) = b4

(
ln
(b3
ε

))−k
, Mp = λkp ,

where b3 = (b2T )k/k and b4 = (kb2T )k.

To prove the above proposition, we need the following Lemma.

Lemma 3.5. For M, ε, x > 0, k ≥ 1, we have the inequality

1
εxk + e−Mx

≤ (kM)k

ε lnk(Mk

kε )
.
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Proof. Let f(x) = 1
εxk+e−Mx . Then

f ′(x) =
εkxk−1 −Me−Mx

−(εxk + e−Mx)2
.

The only critical point x0 satisfies xk−1
0 eMx0 = M

kε and yields a maximum. Hence

f(x) ≤ 1
εxk0 + e−Mx0

=
1

εxk0 + kε
M xk−1

0

.

By using the inequality eMx0 ≥Mx0, we obtain

M

kε
= xk−1

0 eMx0 ≤
(eMx0

M

)(k−1

eMx0 =
1

Mk−1
ekMx0 ·

This gives ekMx0 ≥ Mk

kε and kMx0 ≥ ln(M
k

kε ). Therefore x0 ≥ 1
kM ln(M

k

kε ). Hence,
we obtain

f(x) ≤ 1
εxk0
≤ (kM)k

ε lnk(Mk

kε )
.

�

Proof of Proposition 3.4. Condition (3.4) is obtained as follows

R2(ε, p) exp
(
λp

∫ T

t

b(ξ)dξ
)

=
exp

(
− λp

∫ t
0
b(ξ)dξ

)
ελkp + exp

(
− λp

∫ T
0
b(ξ)dξ

)
≤ 1
ελkp + exp

(
− b2Tλp

) .
Using the inequality

1
εxk + e−b2Tx

≤ (kTb2)kε−1
(

ln(
(b2T )k

kε
)
)−k

= b4ε
−1
(

ln(
b3
ε

)
)−k

,

we conclude that

R2(ε, p) exp
(
λp

∫ T

t

b(ξ)dξ
)
≤ b4ε−1

(
ln(

b3
ε

)
)−k

= K1(ε) .

We derive Condition (3.5) as follows

|R2(ε, p)− 1| =
ελkp

ελkp + exp
(
− λp

∫ T
0
b(ξ)dξ

)
≤ ελkpb4ε−1

(
ln
(b3
ε

))−k
= b4

(
ln(

b3
ε

)
)−k

= K2(ε)Mp .

�

Proposition 3.6. Let

R3(α, p) =

{
1, if λp ≤ 1/α,
0, if λp > 1/α .

where α = b2T/ ln(1/ε). Then R3 satisfies (3.4) and (3.5) with α(ε) = ε,

K1(α) = ε−1, K2(α) = α, Mp = λp·
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Proof. Condition (3.4) is obtained as

R3(α, p) exp
(
λp

∫ T

t

b(ξ)dξ
)

=

{
exp

(
λp
∫ T
t
b(ξ)dξ

)
, if λp ≤ 1/α

0, if λp > 1/α

≤ exp
( 1
α

∫ T

t

b(ξ)dξ
)
≤ ε−1 .

Condition (3.5) follows from

|R3(α, p)− 1| =

{
0, if λp ≤ 1/α
1, if λp > 1/α

≤ αλp = K2(α)Mp .

�

Proposition 3.7. Let

R4(α, p) = exp
(
− αλ2

p

∫ T

0

b(ξ)dξ
)
.

Then R4 satisfies (3.4) and (3.5) with α(ε) = ε,

K1(α) = exp
(∫ T

0
b(ξ)dξ
4α

)
, K2(α) = α, Mp = λ2

p .

Proof. Conditions (3.4) and (3.5) follow from

R4(α, p) exp
(
λp

∫ T

t

b(ξ)dξ
)

= exp
(

(λp − αλ2
p)
∫ T

t

b(ξ)dξ
)

≤ exp
(∫ T

0
b(ξ)dξ
4α

)
= K1(α),

where we used that λp − αλ2
p ≤ 1

4α . Using the inequality 1− e−z ≤ z for z > 0, we
obtain

|R4(α, p)− 1| = 1− exp
(
− αλ2

p

∫ T

0

b(ξ)dξ
)
≤ αλ2

p

∫ T

0

b(ξ)dξ ≤ K2(α)Mp ,

where Mp = λ2
p. �

4. Numerical experiments

Since numerical experiments were implemented for filter R1 in [19], we implement
experiments only for R2 and R3. The efficiency of the methods is observed by
comparing the errors between numerical and exact solutions. In both examples, we
choose the exponent k = 1, and consider (1.1) in a two-dimensional region. Let
Ω = (0, a)× (0, b) be an open rectangle in R2, and T > 0. Let us consider

ut − b(t)
(
uxx + uyy

)
= f(x, y, t), (x, y) ∈ Ω, t ∈ [0, T ]

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ [0, T ]

u(x, y, T ) = g(x, y), (x, y) ∈ Ω.

The eigenfunctions and eigenvalues of the Laplacian are

ψmn(x, y) =
2√
ab

sin
(mπx

a

)
sin
(nπy
b

)
,
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Figure 1. Exact solution at t = 0, and t = 1

Table 1. Absolute error estimate for mesh resolution M = N =
127, ∆x = 2.7559E − 02, ∆y = 3.1496E − 02.

ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

t δ1,2 δ1,3 δ1,2 δ1,3 δ1,2 δ1,3 δ1,2 δ1,3

0.00 5.616E-01 7.045E-01 7.263E-02 1.338E-01 2.878E-02 7.796E-02 3.954E-02 6.457E-02

0.11 2.034E-01 3.487E-01 2.678E-02 3.911E-02 9.921E-03 2.116E-02 2.078E-02 1.995E-02

0.22 1.432E-01 4.184E-01 1.976E-02 1.085E-01 6.500E-03 2.284E-02 1.299E-02 1.356E-02

0.33 1.120E-01 3.563E-01 1.635E-02 1.512E-01 4.972E-03 4.830E-02 8.450E-03 1.552E-02

0.44 9.195E-02 2.867E-01 1.418E-02 1.584E-01 4.096E-03 6.950E-02 5.649E-03 2.551E-02

0.55 7.775E-02 2.307E-01 1.263E-02 1.494E-01 3.540E-03 8.006E-02 3.905E-03 3.573E-02

0.66 6.709E-02 1.882E-01 1.144E-02 1.352E-01 3.167E-03 8.281E-02 2.855E-03 4.296E-02

0.77 5.875E-02 1.559E-01 1.047E-02 1.203E-01 2.907E-03 8.104E-02 2.279E-03 4.704E-02

0.88 5.205E-02 1.311E-01 9.669E-03 1.066E-01 2.718E-03 7.696E-02 2.011E-03 4.866E-02

0.99 4.654E-02 1.118E-01 8.978E-03 9.441E-02 2.575E-03 7.189E-02 1.917E-03 4.860E-02

λmn =
(mπ
a

)2 +
(nπ
b

)2
,

for (m,n) ∈ N2. When

b(t) =
1

100 + exp(t2)

this problem has exact solution

u(x, y, t) = e−t(x
2+y2) sin

( xy

a+ t

)
(a− x)(b− y) .

For the numerical computations we use a = 7, b = 8, and T = 1. The source
function f and the final datum g(x, y) = u(x, y, T ) are such that u is the exact
solution of the problem.
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Figure 2. Numerical solutions at t = 0 for filters R2 (left) and
R3 (right) with ε = 10−1, ε = 10−2, ε = 10−4 (from top to bottom)

For the measured data f ε and gε, we use a random number generator rand() in
(−1, 1),

gε(x, y) = g(x, y) +
ε

π
rand(), f ε = f .
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At a given ε and t, the absolute error between the exact solution and the regularized
solutions is estimated by

δ1,l =
(∑M

i=1

∑N
j=1 |ul,ε(xi, yj , t)− u(xi, yj , t)|2

(M)(N)

)1/2

. (4.1)

Regularized solutions by filter R2 correspond to l = 2, and by filter R3 to l = 3. We
choose a calculation grid of 127 × 127 interior points, with xi = iπ/I, yj = jπ/J ,
and ul,ε(x, y, t). See Table 1.

Figure 1 shows the exact solution while Figure 2 shows the regularized solutions
at t = 0. From Table 1 we see that overall filter R2 gives a better approximation
than filter R3. Both regularized solutions converge to the exact solution at t = 0.
However, when t close to 1 (t = 0.99) the solution from filter R3 is strongly oscil-
lating and slowly converges to the exact solution. In comparison the convergence
rate of filter R2 is significant better than the convergence rate of the filter R3.
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