Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 243, pp. 1-10.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

LYAPUNOV-TYPE INEQUALITIES FOR ODD ORDER LINEAR DIFFERENTIAL EQUATIONS

SOUGATA DHAR, QINGKAI KONG

Abstract

In this article, we obtain Lyapunov-type inequalities for certain odd order linear boundary-value problems. Our inequalities involve integrals of both $q_{+}(t)$ and $q_{-}(t)$ in addition to that of $|q(t)|$. The Green's function for even order boundary-value problems plays a key role in our proofs. Also, using the Fredholm alternative theorem, we obtain a criterion for the existence and uniqueness of solutions to the corresponding nonhomogeneous linear boundaryvalue problems.

1. INTRODUCTION

For the second-order linear differential equation

$$
\begin{equation*}
x^{\prime \prime}+q(t) x=0 \tag{1.1}
\end{equation*}
$$

with $q \in C([a, b], \mathbb{R})$, the following result is known as the Lyapunov inequality, see [3, 13].

Theorem 1.1. Assume (1.1) has a solution $x(t)$ satisfying $x(a)=x(b)=0$ and $x(t) \neq 0$ for $t \in(a, b)$. Then

$$
\begin{equation*}
\int_{a}^{b}|q(t)| d t>\frac{4}{b-a} \tag{1.2}
\end{equation*}
$$

It was first noticed by Wintner 21] and later by several other authors that inequality 1.2 can be improved by replacing $|q(t)|$ by $q_{+}(t):=\max \{0, q(t)\}$, the nonnegative part of $q(t)$, to become

$$
\begin{equation*}
\int_{a}^{b} q_{+}(t) d t>\frac{4}{b-a} \tag{1.3}
\end{equation*}
$$

An extension of (1.3), due to Hartman [11, Chapter XI], to the more general equation

$$
\begin{equation*}
\left(r(t) x^{\prime}\right)^{\prime}+q(t) x=0 \tag{1.4}
\end{equation*}
$$

with $q, r \in C([a, b], \mathbb{R})$ and $r(t)>0$ for $t \in[a, b]$, is as follows.

[^0]Theorem 1.2. Assume 1.4 has a solution $x(t)$ satisfying $x(a)=x(b)=0$ and $x(t) \neq 0$ for $t \in(a, b)$. Then

$$
\begin{equation*}
\int_{a}^{b} q_{+}(t) d t>\frac{4}{\int_{a}^{b} r^{-1}(t) d t} \tag{1.5}
\end{equation*}
$$

The above Lyapunov inequalities have been improved by replacing $\int_{a}^{b} q_{+}(t) d t$ by some integrals of $q(t)$ on parts of or the whole interval $[a, b]$, see Harris and Kong [10], Brown and Hinton [2] for the details.

Lyapunov-type inequalities have been further developed for higher order linear and half-linear differential equations by many authors. The reader is referred to Cakmak [4, 5, He and Tang [12], Pachpatte [14, 15], Parhi and Panigrahi [17, 18], Panigrahi [16], Tiryaki, Unal and Cakmak [20], Yang [23], Yang and Lo [22], and Zhang and He [24] for the higher order linear case. Also, Pinasco [19] provided an excellent survey on various Lyapunov-type inequalities.

Among the above, Parhi and Panigrahi [17] established the Lyapunov-type inequalities for the third-order linear differential equation

$$
\begin{equation*}
x^{\prime \prime \prime}+q(t) x=0 \tag{1.6}
\end{equation*}
$$

with $-\infty<a<b<c<\infty$ and $q \in C([a, c], \mathbb{R})$.
Theorem 1.3. Assume 1.6) has a solution $x(t)$ satisfying $x(a)=x(b)=x(c)=0$ and $x(t) \neq 0$ for $t \in(a, b) \cup(b, c)$. Then

$$
\begin{equation*}
\int_{a}^{c}|q(t)| d t>\frac{4}{(c-a)^{2}} \tag{1.7}
\end{equation*}
$$

Recently, Dhar and Kong [7] obtained Lyapunov-type inequalities for third-order half-linear differential equations. Restricted to the linear equation (1.6), inequality 1.7) becomes

$$
\begin{equation*}
\max _{\xi \in[a, c]}\left\{\int_{a}^{\xi} q_{-}(s) d s+\int_{\xi}^{c} q_{+}(s) d s\right\}>\frac{4}{(c-a)^{2}} \tag{1.8}
\end{equation*}
$$

Clearly, (1.8) improves 1.7) by replacing $|q(t)|$ in the integral of the left-hand side by $q_{-}(t)$ and $q_{+}(t)$, the negative and positive pars of q, respectively. In a different direction, the constant 4 on the right-hand side of 1.7 has been improved based on the Green's function for a corresponding second-order Dirichilet problem. In particular, motivated by the approach in Aktas, Cakmak, and Tiryaki [1], Dhar and Kong [8] obtained the following result.

Theorem 1.4. Assume (1.6) has a solution $x(t)$ satisfying $x(a)=x(b)=x(c)=0$ and $x(t) \neq 0$ for $t \in(a, b) \cup(b, c)$. Then one of the following holds:
(a) $\int_{a}^{c} q_{-}(t) d t>\frac{8}{(c-a)^{2}}$,
(b) $\int_{a}^{c} q_{+}(t) d t>\frac{8}{(c-a)^{2}}$,
(c) $\int_{a}^{b} q_{-}(t) d t+\int_{b}^{c} q_{+}(t) d t>\frac{8}{(c-a)^{2}}$.

As a result,

$$
\int_{a}^{c}|q(t)| d t>\frac{8}{(c-a)^{2}}
$$

In this article, we use some ideas from [1] and [8] for third-order equations to derive Lyapunov-type inequalities for odd order equations. More specifically, we use the Green's function for even order linear boundary value problems (BVPs) to obtain Lyapunov-type inequalities for certain types of BVPs associated with odd order linear equations. Furthermore, by using the Fredholm alternative theorem, we obtain a criterion for the existence and uniqueness of solutions to nonhomogeneous linear boundary value problems of odd order.

2. Main Results

We let $-\infty<a<b<\infty$ and consider the odd order linear differential equation

$$
\begin{equation*}
x^{(2 n+1)}+(-1)^{n-1} q(t) x=0 \tag{2.1}
\end{equation*}
$$

with $n \in \mathbb{N}$ and $q \in C([a, b], \mathbb{R})$. To simplify the notation, in the following, we denote

$$
\begin{equation*}
S_{n}=\sum_{j=0}^{n-1} \sum_{k=0}^{j} 2^{2 k-2 j}\binom{n-1+j}{j}\binom{j}{k} B(n+1, n+k-j) \tag{2.2}
\end{equation*}
$$

where $B(\alpha, \beta)=\int_{0}^{1} z^{\alpha-1}(1-z)^{\beta-1} d z$ is the Beta function for $\alpha, \beta>0$.
Theorem 2.1. Assume 2.1 has a nontrivial solution $x(t)$ satisfying

$$
\begin{equation*}
x^{(i+1)}(a)=x^{(i+1)}(b)=0, \quad i=0,1, \ldots, n-1 \tag{2.3}
\end{equation*}
$$

and $x(c)=0$ for $c \in[a, b]$. Then

$$
\begin{equation*}
\int_{a}^{b}|q(t)| d t>\frac{2^{2 n}(2 n-1)!}{(b-a)^{2 n} S_{n}} \tag{2.4}
\end{equation*}
$$

Proof. As shown in [6], the Green's function for the BVP

$$
\begin{gather*}
y^{(2 n)}+(-1)^{n-1} h(t)=0 \\
y^{(i)}(a)=y^{(i)}(b)=0, \quad i=0,1, \ldots, n-1 \tag{2.5}
\end{gather*}
$$

is

$$
G(t, s)=\left\{\begin{array}{l}
\frac{1}{(2 n-1)!}\left(\frac{(t-a)(b-s)}{b-a}\right)^{n} \sum_{j=0}^{n-1}\binom{n+j-1}{j}(s-t)^{n-j-1}\left(\frac{(b-t)(s-a)}{b-a}\right)^{j} \tag{2.6}\\
\quad a \leq t \leq b \\
\frac{1}{(2 n-1)!}\left(\frac{(s-a)(b-t)}{b-a}\right)^{n} \sum_{j=0}^{n-1}\binom{n+j-1}{j}(t-s)^{n-j-1}\left(\frac{(t-a)(b-s)}{b-a}\right)^{j} \\
a \leq s \leq t \leq b
\end{array}\right.
$$

Hence the solution $y(t)$ of BVP 2.5 satisfies

$$
\begin{equation*}
y(t)=\int_{a}^{b} G(t, s) h(s) d s \tag{2.7}
\end{equation*}
$$

We note that for the solution $x(t)$ of 2.1), $y(t):=x^{\prime}(t)$ satisfies 2.5 with $h(t)=$ $q(t) x(t)$. By 2.7

$$
\begin{equation*}
x^{\prime}(t)=\int_{a}^{b} G(t, s) q(s) x(s) d s \tag{2.8}
\end{equation*}
$$

Integrating 2.8 from c to t and noting that $x(c)=0$, we have

$$
\begin{equation*}
x(t)=\int_{c}^{t} \int_{a}^{b} G(\tau, s) q(s) x(s) d s d \tau=\int_{a}^{b}\left(\int_{c}^{t} G(\tau, s) d \tau\right) q(s) x(s) d s \tag{2.9}
\end{equation*}
$$

It is easy to see that $G(t, s) \geq 0$ on $[a, b] \times[a, b]$. It follows that

$$
\begin{equation*}
|x(t)|=\left|\int_{a}^{b}\left(\int_{c}^{t} G(\tau, s) d \tau\right) q(s) x(s) d s\right| \leq \int_{a}^{b}\left(\int_{a}^{b} G(\tau, s) d \tau\right)|q(s) \| x(s)| d s \tag{2.10}
\end{equation*}
$$

We first show that for $s \in[a, b]$

$$
\begin{equation*}
\int_{a}^{b} G(\tau, s) d \tau \leq \frac{(b-a)^{2 n} S_{n}}{2^{2 n}(2 n-1)!} \tag{2.11}
\end{equation*}
$$

where S_{n} is defined in 2.2 . In fact,

$$
\begin{equation*}
\int_{a}^{b} G(\tau, s) d \tau=\int_{a}^{s} G(\tau, s) d \tau+\int_{s}^{b} G(\tau, s) d \tau \tag{2.12}
\end{equation*}
$$

We consider each integral separately. To ease the notation, we denote

$$
\begin{equation*}
A_{j}(s)=\frac{1}{(2 n-1)!}\binom{n+j-1}{j} \frac{(b-s)^{n}(s-a)^{j}}{(b-a)^{n+j}} \tag{2.13}
\end{equation*}
$$

Then from (2.6),

$$
\begin{align*}
\int_{a}^{s} G(\tau, s) d \tau & =\int_{a}^{s}(\tau-a)^{n} \sum_{j=0}^{n-1} A_{j}(s)(s-\tau)^{n-j-1}(b-\tau)^{j} d \tau \tag{2.14}\\
& =\sum_{j=0}^{n-1} A_{j}(s) \int_{a}^{s}(\tau-a)^{n}(s-\tau)^{n-j-1}(b-\tau)^{j} d \tau
\end{align*}
$$

We write

$$
(b-\tau)^{j}=(b-s+s-\tau)^{j}=\sum_{k=0}^{j}\binom{j}{k}(b-s)^{j-k}(s-\tau)^{k} .
$$

Substituting it into (2.14), we obtain

$$
\begin{align*}
\int_{a}^{s} G(\tau, s) d \tau & =\sum_{j=0}^{n-1} A_{j}(s) \int_{a}^{s}(\tau-a)^{n}(s-\tau)^{n-j-1} \sum_{k=0}^{j}\binom{j}{k}(b-s)^{j-k}(s-\tau)^{k} d \tau \\
& =\sum_{j=0}^{n-1} A_{j}(s) \sum_{k=0}^{j}\binom{j}{k}(b-s)^{j-k} \int_{a}^{s}(\tau-a)^{n}(s-\tau)^{n-j+k-1} d \tau \tag{2.15}
\end{align*}
$$

To evaluate the integral in 2.15, we use the transformation $u=(\tau-a) /(s-a)$ which implies $1-u=(s-\tau) /(s-a)$. Hence

$$
\begin{aligned}
\int_{a}^{s}(\tau-a)^{n}(s-\tau)^{n-j+k-1} d \tau & =(s-a)^{2 n-j+k} \int_{0}^{1} u^{n}(1-u)^{n-j+k-1} d u \\
& =(s-a)^{2 n-j+k} B(n+1, n-j+k)
\end{aligned}
$$

Then by 2.15,

$$
\begin{equation*}
\int_{a}^{s} G(\tau, s) d \tau=\sum_{j=0}^{n-1} A_{j}(s) \sum_{k=0}^{j}\binom{j}{k}(b-s)^{j-k}(s-a)^{2 n-j+k} B(n+1, n-j+k) \tag{2.16}
\end{equation*}
$$

Using the expression for $A_{j}(s)$ in 2.16 and rearranging terms we obtain

$$
\begin{align*}
\int_{a}^{s} G(\tau, s) d \tau= & \frac{1}{(2 n-1)!(b-a)^{n}} \sum_{j=0}^{n-1} \sum_{k=0}^{j}\binom{n+j-1}{j}\binom{j}{k} B(n+1, n-j+k) \\
& \times \frac{(b-s)^{n+j-k}(s-a)^{2 n+k}}{(b-a)^{j}} \tag{2.17}
\end{align*}
$$

Using the same technique, we also have

$$
\begin{align*}
\int_{s}^{b} G(\tau, s) d \tau= & \frac{1}{(2 n-1)!(b-a)^{n}} \sum_{j=0}^{n-1} \sum_{k=0}^{j}\binom{n+j-1}{j}\binom{j}{k} B(n+1, n-j+k) \\
& \times \frac{(b-s)^{2 n+k}(s-a)^{n+j-k}}{(b-a)^{j}} . \tag{2.18}
\end{align*}
$$

Substituting 2.17 and 2.18 into 2.12 we obtain

$$
\begin{align*}
\int_{a}^{b} G(\tau, s) d \tau= & \frac{1}{(2 n-1)!(b-a)^{n}} \sum_{j=0}^{n-1} \sum_{k=0}^{j}\binom{n+j-1}{j}\binom{j}{k} B(n+1, n-j+k) \\
& \times\left\{\frac{(b-s)^{n+j-k}(s-a)^{2 n+k}}{(b-a)^{j}}+\frac{(b-s)^{2 n+k}(s-a)^{n+j-k}}{(b-a)^{j}}\right\} . \tag{2.19}
\end{align*}
$$

Note that $\alpha \beta \leq(\alpha+\beta)^{2} / 4$ and $\alpha^{l}+\beta^{l} \leq(\alpha+\beta)^{l}$ for $\alpha, \beta>0$ and $l \in \mathbb{N}$. Letting $\alpha=b-s, \beta=s-a$ and $l=n-j+2 k$ we have

$$
\begin{aligned}
& \frac{(b-s)^{n+j-k}(s-a)^{2 n+k}}{(b-a)^{j}}+\frac{(b-s)^{2 n+k}(s-a)^{n+j-k}}{(b-a)^{j}} \\
& =\frac{(b-s)^{n+j-k}(s-a)^{n+j-k}}{(b-a)^{j}}\left[(s-a)^{n-j+2 k}+(b-s)^{n-j+2 k}\right] \\
& \leq \frac{(b-a)^{2 n+2 j-2 k}}{2^{2 n+2 j-2 k}(b-a)^{j}}(b-a)^{n-j+2 k} \\
& =\frac{(b-a)^{3 n}}{2^{2 n+2 j-2 k}}
\end{aligned}
$$

Then (2.11) follows from (2.19).
We then show that 2.4 holds. Define $m:=\max \{|x(t)|: t \in[a, b]\}$. Then taking maximum of $|x(t)|$ in 2.10 and using the fact that $x(t) \not \equiv m$ on $[a, b]$, we have

$$
m<m \int_{a}^{b}\left(\int_{a}^{b} G(\tau, s) d \tau\right)|q(s)| d s
$$

Canceling m from both sides and using (2.11), we obtain 2.4.
If, in addition to the assumptions of Theorem 2.1, we assume $x(t) \neq 0$ for $t \in(a, c) \cup(c, b)$, then stronger Lyapunov-type inequalities can be derived. We present the results in the next Theorem.

Theorem 2.2. Assume 2.1) has a solution $x(t)$ satisfying

$$
x^{(i+1)}(a)=x^{(i+1)}(b)=0, \quad i=0,1, \ldots, n-1
$$

(a) Suppose $x(c)=0$ for $c \in(a, b)$ and $x(t) \neq 0$ for $t \in[a, c) \cup(c, b]$. Then one of the following holds:
(i) $\int_{a}^{b} q_{-}(t) d t>\frac{2^{2 n}(2 n-1)!}{(b-a)^{2 n} S_{n}}$,
(ii) $\int_{a}^{b} q_{+}(t) d t>\frac{2^{2 n}(2 n-1)!}{(b-a)^{2 n} S_{n}}$,
(iii) $\int_{a}^{c} q_{-}(t) d t+\int_{c}^{b} q_{+}(t) d t>\frac{2^{2 n}(2 n-1)!}{(b-a)^{2 n} S_{n}}$.
(b) Suppose $x(a)=0$ and $x(t) \neq 0$ for $t \in(a, b]$. Then

$$
\int_{a}^{b} q_{+}(t) d t>\frac{2^{2 n}(2 n-1)!}{(b-a)^{2 n} S_{n}}
$$

(c) Suppose $x(b)=0$ and $x(t) \neq 0$ for $t \in[a, b)$. Then

$$
\int_{a}^{b} q_{-}(t) d t>\frac{2^{2 n}(2 n-1)!}{(b-a)^{2 n} S_{n}}
$$

Proof. As in the proof of Theorem 2.1 we see that 2.9 and (2.11) hold.
(a) Since $x(t)$ is continuous and $x(c)=0$ for $c \in(a, b)$, there exist $t_{1} \in(a, c)$ and $t_{2} \in(c, b)$ such that $\left|x\left(t_{1}\right)\right|=\max \{|x(t)|: t \in[a, c]\}$ and $\left|x\left(t_{2}\right)\right|=\max \{|x(t)|: t \in$ $[c, b]\}$. Without loss of generality, we may assume $x(t)$ satisfies one of the following cases:

- (I) $x(t)>0$ on $(a, c) \cup(c, b)$ and $x\left(t_{1}\right) \geq x\left(t_{2}\right)$;
- (II) $x(t)>0$ on $(a, c) \cup(c, b)$ and $x\left(t_{1}\right)<x\left(t_{2}\right)$;
- (III) $x(t)>0$ on (a, c) and $x(t)<0$ on (c, b), and $x\left(t_{1}\right) \geq-x\left(t_{2}\right)$;
- (IV) $x(t)>0$ on (a, c) and $x(t)<0$ on (c, b), and $x\left(t_{1}\right)<-x\left(t_{2}\right)$.

In the sequel, we denote $m=\max \left\{\left|x\left(t_{1}\right)\right|,\left|x\left(t_{2}\right)\right|\right\}$.
Case I: $m=x\left(t_{1}\right)$. Then (2.9) with $t=t_{1}$ shows that

$$
m=\int_{a}^{b}\left(\int_{t_{1}}^{c} G(\tau, s) d \tau\right)(-q(s)) x(s) d s
$$

Using that $0 \leq x(t) \leq m$ and $x(t) \not \equiv m$, and $-q(t) \leq q_{-}(t)$, we have

$$
m<m \int_{a}^{b}\left(\int_{a}^{b} G(\tau, s) d \tau\right) q_{-}(s) d s
$$

Canceling m from both sides and using (2.11) we obtain

$$
\int_{a}^{b} q_{-}(s) d s>\frac{2^{2 n}(2 n-1)!}{(b-a)^{2 n} S_{n}}
$$

i.e., conclusion (i) in Part (a) holds.

Case II: $m=x\left(t_{2}\right)$. Then (2.9) with $t=t_{2}$ shows that

$$
m=\int_{a}^{b}\left(\int_{c}^{t_{2}} G(\tau, s) d \tau\right) q(s) x(s) d s
$$

Again using the facts that $0 \leq x(t) \leq m$ and $x(t) \not \equiv m$, and $q(t) \leq q_{+}(t)$, we have

$$
m<m \int_{a}^{b}\left(\int_{a}^{b} G(\tau, s) d \tau\right) q_{+}(s) d s
$$

Canceling m from both sides and using 2.11 we obtain

$$
\int_{a}^{b} q_{+}(s) d s>\frac{2^{2 n}(2 n-1)!}{(b-a)^{2 n} S_{n}}
$$

i.e., conclusion (ii) in Part (a) holds.

Case III: $m=x\left(t_{1}\right)$. Then 2.9) with $t=t_{1}$ shows that

$$
\begin{aligned}
m & =\int_{a}^{b}\left(\int_{t_{1}}^{c} G(\tau, s) d \tau\right)(-q(s)) x(s) d s \\
& =\int_{a}^{c}\left(\int_{t_{1}}^{c} G(\tau, s) d \tau\right)(-q(s)) x(s) d s+\int_{c}^{b}\left(\int_{t_{1}}^{c} G(\tau, s) d \tau\right) q(s)(-x(s)) d s .
\end{aligned}
$$

Note that $x(t)>0$ on $[a, c)$ and $x(t)<0$ on $(c, b]$. Then by a similar argument to Cases I and II, we see that

$$
\int_{a}^{c} q_{-}(s) d s+\int_{c}^{b} q_{+}(s) d s>\frac{2^{2 n}(2 n-1)!}{(b-a)^{2 n} S_{n}} ;
$$

i.e., conclusion (iii) in Part (a) holds.

Case IV. The same argument as in Case III shows that conclusion (iii) in Part (a) holds. We omit the details.
(b) Note that $x(a)=0$. Then it follows from (2.9) that

$$
\begin{equation*}
x(t)=\int_{a}^{b}\left(\int_{a}^{t} G(\tau, s) d \tau\right) q(s) x(s) d s . \tag{2.20}
\end{equation*}
$$

Without loss of generality, we may assume $x(t)>0$ in $(a, b]$. Then there exists $t_{2} \in(a, b]$ such that $m=x\left(t_{2}\right)=\max \{x(t): t \in[a, b]\}$. Using $t=t_{2}$ in 2.20 we obtain

$$
m=\int_{a}^{b}\left(\int_{a}^{t_{2}} G(\tau, s) d \tau\right) q(s) x(s) d s \leq \int_{a}^{b}\left(\int_{a}^{b} G(\tau, s) d \tau\right) q_{+}(s) x(s) d s
$$

Using 2.11) and a similar technique as before, we see that conclusion in Part (b) holds.
(c) In this case, a similar argument as Part (b) holds with $m=x\left(t_{1}\right)=$ $\max \{|x(t)|: t \in[a, b]\} \mid$. We omit the details.

Now we interpret the results in Theorems 2.1 and 2.2 to the special case with $n=1$, i.e., the third-order linear differential equation

$$
\begin{equation*}
x^{\prime \prime \prime}+q(t) x=0 . \tag{2.21}
\end{equation*}
$$

From (2.2),

$$
S_{1}=\sum_{j=0}^{0} \sum_{k=0}^{j} 2^{2 k-2 j}\binom{j}{j}\binom{j}{k} B(2,1+k-j)=B(2,1)=\frac{1}{2} .
$$

Corollary 2.3. Assume (2.21) has a nontrivial solution $x(t)$ satisfying

$$
x^{\prime}(a)=x^{\prime}(b)=0
$$

and $x(c)=0$ for $c \in[a, b]$. Then

$$
\int_{a}^{b}|q(t)| d t>\frac{8}{(b-a)^{2}} .
$$

Corollary 2.4. Assume (2.21) has a solution $x(t)$ satisfying

$$
x^{\prime}(a)=x^{\prime}(b)=0 .
$$

(a) Suppose $x(c)=0$ for $c \in(a, b)$ and $x(t) \neq 0$ for $t \in[a, c) \cup(c, b]$. Then one of the following holds:
(i) $\int_{a}^{b} q_{-}(t) d t>\frac{8}{(b-a)^{2}}$,
(ii) $\int_{a}^{b} q_{+}(t) d t>\frac{8}{(b-a)^{2}}$,
(iii) $\int_{a}^{c} q_{-}(t) d t+\int_{c}^{b} q_{+}(t) d t>\frac{8}{(b-a)^{2}}$.
(b) Suppose $x(a)=0$ and $x(t) \neq 0$ for $t \in(a, b]$. Then

$$
\int_{a}^{b} q_{+}(t) d t>\frac{8}{(b-a)^{2}}
$$

(c) Suppose $x(b)=0$ and $x(t) \neq 0$ for $t \in[a, b)$. Then

$$
\int_{a}^{b} q_{-}(t) d t>\frac{8}{(b-a)^{2}}
$$

We observe that the inequalities in Corollaries 2.3 and 2.4 supplement those in [8, Corollary 2.1] for different boundary conditions.

3. Applications to boundary-value problems

In the final section, we apply the results on the Lyapunov-type Inequalities obtained in Section 2 to study the nonexistence, uniqueness, and existence-uniqueness for solutions of certain BVPs. Consider the BVP consisting of (2.1) and the boundary conditions

$$
\begin{gather*}
x^{(i+1)}(a)=x^{(i+1)}(b)=0, \quad i=0,1, \ldots, n-1 \\
x(c)=0, \quad c \in[a, b] . \tag{3.1}
\end{gather*}
$$

In the following, we let S_{n} be defined by 2.2 . The first result is on the nonexistence of solutions of the boundary-value problem (2.1) (3.1).

Theorem 3.1. Assume

$$
\begin{equation*}
\int_{a}^{b}|q(t)| d t \leq \frac{2^{2 n}(2 n-1)!}{(b-a)^{2 n} S_{n}} \tag{3.2}
\end{equation*}
$$

Then $B V P$ (2.1) (3.1) has no nontrivial solution for any $c \in[a, b]$.
Proof. Assume the contrary, i.e., (2.1) (3.1) has a nontrivial solution $x(t)$. Then by Theorem 2.1, inequality (2.4) holds. This contradicts assumption (3.2).

As a direct application of Theorem 2.2, we present the following result.
Theorem 3.2. Assume

$$
\begin{equation*}
\max _{\xi \in[a, b]}\left\{\int_{a}^{\xi} q_{-}(t) d t+\int_{\xi}^{b} q_{+}(t) d t\right\} \leq \frac{2^{2 n}(2 n-1)!}{(b-a)^{2 n} S_{n}} \tag{3.3}
\end{equation*}
$$

Then every nontrivial solution of $B V P$ (2.1), (3.1) has at least two zeros in $[a, b]$.
Proof. Assume the contrary, i.e., (2.1), (3.1) has a nontrivial solution $x(t)$ with only one zero c_{1} in $[a, b]$. Then $c_{1}=c$ and $x(t) \neq 0$ for $t \in[a, c) \cup(c, b]$. It follows that one of the conclusions in Part (a) of Theorem 2.2 holds. This contradicts (3.3).

Next we consider the odd order nonhomogeneous linear BVPs consisting of the equation

$$
\begin{equation*}
x^{(2 n+1)}+(-1)^{n-1} q(t) x=f(t) \quad \text { on }(A, B) \tag{3.4}
\end{equation*}
$$

with $-\infty<A<B<\infty$ and $q, f \in C((A, B), \mathbb{R})$; and boundary condition

$$
\begin{gather*}
x^{(i+1)}(a)=k_{i 1}, \quad x^{(i+1)}(b)=k_{i 2}, \quad i=0,1, \ldots, n-1 \\
x(c)=k_{i 3}, \quad c \in[a, b] \tag{3.5}
\end{gather*}
$$

with

$$
\begin{equation*}
A<a<b<B \quad \text { and } \quad k_{i 1}, k_{i 2}, k_{i 3} \in \mathbb{R} \tag{3.6}
\end{equation*}
$$

Based on Theorem 2.1, we obtain a criterion for BVP (3.4), (3.5) to have a unique solution.

Theorem 3.3. Assume

$$
\int_{a}^{b}|q(t)| d t \leq \frac{2^{2 n}(2 n-1)!}{(B-A)^{2 n} S_{n}}
$$

Then BVP (3.4), (3.5) has a unique solution on (A, B) for any $a, b \in(A, B)$, and $c \in[a, b]$, and $k_{i 1}, k_{i 2}, k_{i 3}$ satisfying (3.6).

Proof. We first show that BVP (3.4), 3.5 has at most one solution for any a, b and k_{1}, k_{2}, k_{3} satisfying (3.6). Assuming the contrary, it has two solutions $x_{1}(t)$ and $x_{2}(t)$ in (A, B). Define $x(t)=x_{1}(t)-x_{2}(t)$. Then $x(t)$ is a solution of BVP (2.1), (3.1). Then by Theorem 3.1, $x(t) \equiv 0$, i.e., $x_{1}(t) \equiv x_{2}(t)$. This shows the uniqueness of solution to BVP (3.4), (3.5).

Since the homogeneous linear BVP (2.1), (3.1) only has the zero solution, then by the Fredholm alternative theorem [9], we conclude that the nonhomogeneous linear BVP (3.4), (3.5) has a unique solution.

References

[1] M. F. Aktas, D. Cakmak, A. Tiryaki; On the Lyapunov-type inequalities of a three point boundary value problem for third order linear differential equations, Appl. Math. Letters. 45(2015), 1-6.
[2] R. C. Brown, D. B. Hilton; Opial's inequality and oscillation of second-order equations, Proc. Amer. Math. Soc. 125 (1997), 1123-1129.
[3] G. Borg; On a Liapunoff criterion of stability, Amer. J. Math. 71 (1949), 67-70.
[4] D. Cakmak; On Lyapunov-type inequality for a class of nonlinear systems, Math. Inq. Appl. 16 (2013), 101-108.
[5] D. Cakmak; Liapunov-type integral inequalities for certain higher order differential equations, Appl. Math. Comput. 216 (2010), 368-373.
[6] K. M. Das, A. S. Vatsala; Green's function for $n-n$ boundary value problem and an alogue of Hartman's result, J. Math. Anal. Appl. 51 (1975), 670-777.
[7] S. Dhar, Q. Kong; Liapunov-type inequalities for third-order half-linear equations and applications to boundary value problems, Nonlin. Anal. 110 (2014), 170-181.
[8] S. Dhar, Q. Kong; Lyapunov-type inequalities for third-order linear differential equations, Math. Inequal. Appl. 19 (2016), 297-312.
[9] E. I. Fredholm; Sur une classe d'quations fonctionnelles, Acta Math. 27 (1903), 365-390.
[10] B. J. Harris, Q. Kong; On the oscillation of differential equations with an oscillatory coefficient, Trans. Amer. Math. Soc. 347 (1995), 1831-1839.
[11] P. Hartman; Ordinary Differential Equations, Wiley, New York, 1964, and Birkhauser, Boston 1982.
[12] X. He, X. H. Tang; Liapunov-type inequalities for even-order differential equations, Comm. Pure Appl. Math., 11 (2012), 465-473.
[13] A. M. Liapunov; Probleme general de la stabilite du mouvement, Ann. Math Stud., 17 (1947), 203-474.
[14] B. G. Pachpatte; Lyapunov-type integral inequalities for certain differential equations, Georgian Math. J. 4 (1997), 139-148.
[15] B. G. Pachpatte; On Lyapunov-type inequalities for certain higher order differential equations, J. Math. Anal. Appl. 195 (1995), 527-536.
[16] S. Panigrahi; Lyapunov-type integral inequalities for certain higher order differential equations, Electron. J. Differential. Eq. 2009 (2009), 1-14.
[17] N. Parhi, S. Panigrahi; On Liapunov-type inequality for third-order differential equations, J. Math. Anal. Appl. 233 (1999), 445-460.
[18] N. Parhi, S. Panigrahi; Liapunov-type inequality for higher order differential equations, Math. Slovaca 52 (2002), 31-46.
[19] J. P. Pinasco; Lyapunov-type inequalities with Applications to Eigenvalue Problems, Springer, 2010.
[20] A. Tiryaki, M. Unal, D. Cakmak; Liapunov-type inequalities for nonlinear systems, J. Math. Anal. Appl. 332 (2007), 497-511.
[21] A. Wintner; On the non-existence of conjugate points, Amer. J. Math. 73 (1951), 368-380.
[22] X. Yang, K. Lo; Liapunov-type inequality for a class of even-order differential equations, Appl. Math. Comput. 215 (2010), 3884-3890.
[23] X. Yang; On Lyapunov inequality for certain higher-order differential equations, Appl. Math. Comput. 134 (2003), 307-317.
[24] Q. Zhang, X. He; Liapunov-type inequalities for a class of even-order differential equations, J. Ineq. Appl. 2012, 2012:5.

Sougata Dhar
Department of Mathematics, Northern Illinois University, DeKalb, IL 60115, USA
E-mail address: sdhar@niu.edu
Qingkai Kong
Department of Mathematics, Northern Illinois University, DeKalb, IL 60115, USA
E-mail address: qkong@niu.edu

[^0]: 2010 Mathematics Subject Classification. 34A40, 34B05, 34C11, 26D20.
 Key words and phrases. Lyapunov-type inequalities; odd order; linear differential equations; Green's function; boundary value problem.
 (C) 2016 Texas State University.

 Submitted July 7, 2015. Published September 7, 2016.

