Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 243, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

LYAPUNOV-TYPE INEQUALITIES FOR ODD ORDER LINEAR DIFFERENTIAL EQUATIONS

SOUGATA DHAR, QINGKAI KONG

ABSTRACT. In this article, we obtain Lyapunov-type inequalities for certain odd order linear boundary-value problems. Our inequalities involve integrals of both $q_+(t)$ and $q_-(t)$ in addition to that of |q(t)|. The Green's function for even order boundary-value problems plays a key role in our proofs. Also, using the Fredholm alternative theorem, we obtain a criterion for the existence and uniqueness of solutions to the corresponding nonhomogeneous linear boundary-value problems.

1. INTRODUCTION

For the second-order linear differential equation

$$x'' + q(t)x = 0 (1.1)$$

with $q \in C([a, b], \mathbb{R})$, the following result is known as the Lyapunov inequality, see [3, 13].

Theorem 1.1. Assume (1.1) has a solution x(t) satisfying x(a) = x(b) = 0 and $x(t) \neq 0$ for $t \in (a, b)$. Then

$$\int_{a}^{b} |q(t)|dt > \frac{4}{b-a}.$$
(1.2)

It was first noticed by Wintner [21] and later by several other authors that inequality (1.2) can be improved by replacing |q(t)| by $q_+(t) := \max\{0, q(t)\}$, the nonnegative part of q(t), to become

$$\int_{a}^{b} q_{+}(t)dt > \frac{4}{b-a}.$$
(1.3)

An extension of (1.3), due to Hartman [11, Chapter XI], to the more general equation

$$(r(t)x')' + q(t)x = 0 (1.4)$$

with $q, r \in C([a, b], \mathbb{R})$ and r(t) > 0 for $t \in [a, b]$, is as follows.

²⁰¹⁰ Mathematics Subject Classification. 34A40, 34B05, 34C11, 26D20.

Key words and phrases. Lyapunov-type inequalities; odd order; linear differential equations; Green's function; boundary value problem.

^{©2016} Texas State University.

Submitted July 7, 2015. Published September 7, 2016.

Theorem 1.2. Assume (1.4) has a solution x(t) satisfying x(a) = x(b) = 0 and $x(t) \neq 0$ for $t \in (a, b)$. Then

$$\int_{a}^{b} q_{+}(t)dt > \frac{4}{\int_{a}^{b} r^{-1}(t)dt}.$$
(1.5)

The above Lyapunov inequalities have been improved by replacing $\int_a^b q_+(t)dt$ by some integrals of q(t) on parts of or the whole interval [a, b], see Harris and Kong [10], Brown and Hinton [2] for the details.

Lyapunov-type inequalities have been further developed for higher order linear and half-linear differential equations by many authors. The reader is referred to Cakmak [4, 5], He and Tang [12], Pachpatte [14, 15], Parhi and Panigrahi [17, 18], Panigrahi [16], Tiryaki, Unal and Cakmak [20], Yang [23], Yang and Lo [22], and Zhang and He [24] for the higher order linear case. Also, Pinasco [19] provided an excellent survey on various Lyapunov-type inequalities.

Among the above, Parhi and Panigrahi [17] established the Lyapunov-type inequalities for the third-order linear differential equation

$$x''' + q(t)x = 0 (1.6)$$

with $-\infty < a < b < c < \infty$ and $q \in C([a, c], \mathbb{R})$.

Theorem 1.3. Assume (1.6) has a solution x(t) satisfying x(a) = x(b) = x(c) = 0and $x(t) \neq 0$ for $t \in (a, b) \cup (b, c)$. Then

$$\int_{a}^{c} |q(t)| dt > \frac{4}{(c-a)^2}.$$
(1.7)

Recently, Dhar and Kong [7] obtained Lyapunov-type inequalities for third-order half-linear differential equations. Restricted to the linear equation (1.6), inequality (1.7) becomes

$$\max_{\xi \in [a,c]} \left\{ \int_{a}^{\xi} q_{-}(s)ds + \int_{\xi}^{c} q_{+}(s)ds \right\} > \frac{4}{(c-a)^{2}}.$$
(1.8)

Clearly, (1.8) improves (1.7) by replacing |q(t)| in the integral of the left-hand side by $q_{-}(t)$ and $q_{+}(t)$, the negative and positive parts of q, respectively. In a different direction, the constant 4 on the right-hand side of (1.7) has been improved based on the Green's function for a corresponding second-order Dirichilet problem. In particular, motivated by the approach in Aktas, Cakmak, and Tiryaki [1], Dhar and Kong [8] obtained the following result.

Theorem 1.4. Assume (1.6) has a solution x(t) satisfying x(a) = x(b) = x(c) = 0and $x(t) \neq 0$ for $t \in (a, b) \cup (b, c)$. Then one of the following holds:

- (a) $\int_{a}^{c} q_{-}(t)dt > \frac{8}{(c-a)^{2}},$ (b) $\int_{a}^{c} q_{+}(t)dt > \frac{8}{(c-a)^{2}},$ (c) $\int_{a}^{b} q_{-}(t)dt + \int_{b}^{c} q_{+}(t)dt > \frac{8}{(c-a)^{2}}.$

As a result,

$$\int_{a}^{c} |q(t)| dt > \frac{8}{(c-a)^2}.$$

In this article, we use some ideas from [1] and [8] for third-order equations to derive Lyapunov-type inequalities for odd order equations. More specifically, we use the Green's function for even order linear boundary value problems (BVPs) to obtain Lyapunov-type inequalities for certain types of BVPs associated with odd order linear equations. Furthermore, by using the Fredholm alternative theorem, we obtain a criterion for the existence and uniqueness of solutions to nonhomogeneous linear boundary value problems of odd order.

2. Main results

We let $-\infty < a < b < \infty$ and consider the odd order linear differential equation $x^{(2n+1)} + (-1)^{n-1}q(t)x = 0$ (2.1)

with $n \in \mathbb{N}$ and $q \in C([a, b], \mathbb{R})$. To simplify the notation, in the following, we denote

$$S_n = \sum_{j=0}^{n-1} \sum_{k=0}^{j} 2^{2k-2j} \binom{n-1+j}{j} \binom{j}{k} B(n+1,n+k-j), \qquad (2.2)$$

where $B(\alpha, \beta) = \int_0^1 z^{\alpha-1} (1-z)^{\beta-1} dz$ is the Beta function for $\alpha, \beta > 0$.

Theorem 2.1. Assume (2.1) has a nontrivial solution x(t) satisfying

$$x^{(i+1)}(a) = x^{(i+1)}(b) = 0, \quad i = 0, 1, \dots, n-1$$
 (2.3)

and x(c) = 0 for $c \in [a, b]$. Then

$$\int_{a}^{b} |q(t)| dt > \frac{2^{2n}(2n-1)!}{(b-a)^{2n}S_n}.$$
(2.4)

Proof. As shown in [6], the Green's function for the BVP

$$y^{(2n)} + (-1)^{n-1}h(t) = 0,$$

$$y^{(i)}(a) = y^{(i)}(b) = 0, \quad i = 0, 1, \dots, n-1$$
(2.5)

is

$$G(t,s) = \begin{cases} \frac{1}{(2n-1)!} \left(\frac{(t-a)(b-s)}{b-a}\right)^n \sum_{j=0}^{n-1} \binom{n+j-1}{j} (s-t)^{n-j-1} \left(\frac{(b-t)(s-a)}{b-a}\right)^j, \\ a \le t \le s \le b; \\ \frac{1}{(2n-1)!} \left(\frac{(s-a)(b-t)}{b-a}\right)^n \sum_{j=0}^{n-1} \binom{n+j-1}{j} (t-s)^{n-j-1} \left(\frac{(t-a)(b-s)}{b-a}\right)^j, \\ a \le s \le t \le b. \end{cases}$$

$$(2.6)$$

Hence the solution y(t) of BVP (2.5) satisfies

$$y(t) = \int_{a}^{b} G(t,s)h(s)ds.$$
 (2.7)

We note that for the solution x(t) of (2.1), y(t) := x'(t) satisfies (2.5) with h(t) = q(t)x(t). By (2.7)

$$x'(t) = \int_{a}^{b} G(t,s)q(s)x(s)ds.$$
(2.8)

Integrating (2.8) from c to t and noting that x(c) = 0, we have

$$x(t) = \int_{c}^{t} \int_{a}^{b} G(\tau, s)q(s)x(s)dsd\tau = \int_{a}^{b} \left(\int_{c}^{t} G(\tau, s)d\tau\right)q(s)x(s)ds.$$
(2.9)

It is easy to see that $G(t,s) \ge 0$ on $[a,b] \times [a,b]$. It follows that

$$|x(t)| = \left| \int_a^b \left(\int_c^t G(\tau, s) d\tau \right) q(s) x(s) ds \right| \le \int_a^b \left(\int_a^b G(\tau, s) d\tau \right) |q(s)| |x(s)| ds.$$
(2.10)

We first show that for $s \in [a, b]$

$$\int_{a}^{b} G(\tau, s) d\tau \le \frac{(b-a)^{2n} S_n}{2^{2n} (2n-1)!},$$
(2.11)

where S_n is defined in (2.2). In fact,

$$\int_{a}^{b} G(\tau, s) d\tau = \int_{a}^{s} G(\tau, s) d\tau + \int_{s}^{b} G(\tau, s) d\tau.$$
(2.12)

We consider each integral separately. To ease the notation, we denote

$$A_j(s) = \frac{1}{(2n-1)!} \binom{n+j-1}{j} \frac{(b-s)^n (s-a)^j}{(b-a)^{n+j}}.$$
 (2.13)

Then from (2.6),

$$\int_{a}^{s} G(\tau, s) d\tau = \int_{a}^{s} (\tau - a)^{n} \sum_{j=0}^{n-1} A_{j}(s)(s - \tau)^{n-j-1}(b - \tau)^{j} d\tau$$

$$= \sum_{j=0}^{n-1} A_{j}(s) \int_{a}^{s} (\tau - a)^{n} (s - \tau)^{n-j-1} (b - \tau)^{j} d\tau.$$
(2.14)

We write

$$(b-\tau)^j = (b-s+s-\tau)^j = \sum_{k=0}^j {j \choose k} (b-s)^{j-k} (s-\tau)^k.$$

Substituting it into (2.14), we obtain

$$\int_{a}^{s} G(\tau, s) d\tau = \sum_{j=0}^{n-1} A_{j}(s) \int_{a}^{s} (\tau - a)^{n} (s - \tau)^{n-j-1} \sum_{k=0}^{j} {j \choose k} (b - s)^{j-k} (s - \tau)^{k} d\tau$$
$$= \sum_{j=0}^{n-1} A_{j}(s) \sum_{k=0}^{j} {j \choose k} (b - s)^{j-k} \int_{a}^{s} (\tau - a)^{n} (s - \tau)^{n-j+k-1} d\tau.$$
(2.15)

(2.15) To evaluate the integral in (2.15), we use the transformation $u = (\tau - a)/(s - a)$ which implies $1 - u = (s - \tau)/(s - a)$. Hence

$$\int_{a}^{s} (\tau - a)^{n} (s - \tau)^{n-j+k-1} d\tau = (s - a)^{2n-j+k} \int_{0}^{1} u^{n} (1 - u)^{n-j+k-1} du$$
$$= (s - a)^{2n-j+k} B(n+1, n-j+k).$$

Then by (2.15),

$$\int_{a}^{s} G(\tau, s) d\tau = \sum_{j=0}^{n-1} A_{j}(s) \sum_{k=0}^{j} {j \choose k} (b-s)^{j-k} (s-a)^{2n-j+k} B(n+1, n-j+k).$$
(2.16)

Using the expression for $A_i(s)$ in (2.16) and rearranging terms we obtain

$$\int_{a}^{s} G(\tau, s) d\tau = \frac{1}{(2n-1)!(b-a)^{n}} \sum_{j=0}^{n-1} \sum_{k=0}^{j} \binom{n+j-1}{j} \binom{j}{k} B(n+1, n-j+k) \\ \times \frac{(b-s)^{n+j-k}(s-a)^{2n+k}}{(b-a)^{j}}.$$
(2.17)

Using the same technique, we also have

$$\int_{s}^{b} G(\tau, s) d\tau = \frac{1}{(2n-1)!(b-a)^{n}} \sum_{j=0}^{n-1} \sum_{k=0}^{j} \binom{n+j-1}{j} \binom{j}{k} B(n+1, n-j+k) \\ \times \frac{(b-s)^{2n+k}(s-a)^{n+j-k}}{(b-a)^{j}}.$$
(2.18)

Substituting (2.17) and (2.18) into (2.12) we obtain

$$\int_{a}^{b} G(\tau, s) d\tau = \frac{1}{(2n-1)!(b-a)^{n}} \sum_{j=0}^{n-1} \sum_{k=0}^{j} \binom{n+j-1}{j} \binom{j}{k} B(n+1, n-j+k) \\ \times \Big\{ \frac{(b-s)^{n+j-k}(s-a)^{2n+k}}{(b-a)^{j}} + \frac{(b-s)^{2n+k}(s-a)^{n+j-k}}{(b-a)^{j}} \Big\}.$$
(2.19)

Note that $\alpha\beta \leq (\alpha + \beta)^2/4$ and $\alpha^l + \beta^l \leq (\alpha + \beta)^l$ for $\alpha, \beta > 0$ and $l \in \mathbb{N}$. Letting $\alpha = b - s, \beta = s - a$ and l = n - j + 2k we have

$$\begin{aligned} \frac{(b-s)^{n+j-k}(s-a)^{2n+k}}{(b-a)^j} &+ \frac{(b-s)^{2n+k}(s-a)^{n+j-k}}{(b-a)^j} \\ &= \frac{(b-s)^{n+j-k}(s-a)^{n+j-k}}{(b-a)^j} \Big[(s-a)^{n-j+2k} + (b-s)^{n-j+2k} \Big] \\ &\leq \frac{(b-a)^{2n+2j-2k}}{2^{2n+2j-2k}(b-a)^j} (b-a)^{n-j+2k} \\ &= \frac{(b-a)^{3n}}{2^{2n+2j-2k}}. \end{aligned}$$

Then (2.11) follows from (2.19).

We then show that (2.4) holds. Define $m := \max\{|x(t)| : t \in [a, b]\}$. Then taking maximum of |x(t)| in (2.10) and using the fact that $x(t) \neq m$ on [a, b], we have

$$m < m \int_a^b \Big(\int_a^b G(\tau,s) d\tau\Big) |q(s)| ds.$$

Canceling m from both sides and using (2.11), we obtain (2.4).

If, in addition to the assumptions of Theorem 2.1, we assume $x(t) \neq 0$ for $t \in (a, c) \cup (c, b)$, then stronger Lyapunov-type inequalities can be derived. We present the results in the next Theorem.

Theorem 2.2. Assume (2.1) has a solution x(t) satisfying

$$x^{(i+1)}(a) = x^{(i+1)}(b) = 0, \quad i = 0, 1, \dots, n-1.$$

(a) Suppose x(c) = 0 for $c \in (a, b)$ and $x(t) \neq 0$ for $t \in [a, c) \cup (c, b]$. Then one of the following holds:

(i) $\int_{a}^{b} q_{-}(t)dt > \frac{2^{2n}(2n-1)!}{(b-a)^{2n}S_{n}},$ (ii) $\int_{a}^{b} q_{+}(t)dt > \frac{2^{2n}(2n-1)!}{(b-a)^{2n}S_{n}},$ (iii) $\int_{a}^{c} q_{-}(t)dt + \int_{c}^{b} q_{+}(t)dt > \frac{2^{2n}(2n-1)!}{(b-a)^{2n}S_{n}}.$ (b) Suppose x(a) = 0 and $x(t) \neq 0$ for $t \in (a, b]$. Then

$$\int_{a}^{b} q_{+}(t)dt > \frac{2^{2n}(2n-1)!}{(b-a)^{2n}S_{n}}$$

(c) Suppose x(b) = 0 and $x(t) \neq 0$ for $t \in [a, b)$. Then

$$\int_{a}^{b} q_{-}(t)dt > \frac{2^{2n}(2n-1)!}{(b-a)^{2n}S_{n}}$$

Proof. As in the proof of Theorem 2.1, we see that (2.9) and (2.11) hold.

(a) Since x(t) is continuous and x(c) = 0 for $c \in (a, b)$, there exist $t_1 \in (a, c)$ and $t_2 \in (c, b)$ such that $|x(t_1)| = \max\{|x(t)| : t \in [a, c]\}$ and $|x(t_2)| = \max\{|x(t)| : t \in [c, b]\}$. Without loss of generality, we may assume x(t) satisfies one of the following cases:

- (I) x(t) > 0 on $(a, c) \cup (c, b)$ and $x(t_1) \ge x(t_2)$;
- (II) x(t) > 0 on $(a, c) \cup (c, b)$ and $x(t_1) < x(t_2)$;
- (III) x(t) > 0 on (a, c) and x(t) < 0 on (c, b), and $x(t_1) \ge -x(t_2)$;
- (IV) x(t) > 0 on (a, c) and x(t) < 0 on (c, b), and $x(t_1) < -x(t_2)$.

In the sequel, we denote $m = \max\{|x(t_1)|, |x(t_2)|\}$.

Case I: $m = x(t_1)$. Then (2.9) with $t = t_1$ shows that

$$m = \int_a^b \left(\int_{t_1}^c G(\tau, s) d\tau \right) (-q(s)) x(s) ds \,.$$

Using that $0 \le x(t) \le m$ and $x(t) \not\equiv m$, and $-q(t) \le q_{-}(t)$, we have

$$m < m \int_{a}^{b} \Big(\int_{a}^{b} G(\tau, s) d\tau \Big) q_{-}(s) ds$$

Canceling m from both sides and using (2.11) we obtain

$$\int_{a}^{b} q_{-}(s)ds > \frac{2^{2n}(2n-1)!}{(b-a)^{2n}S_{n}};$$

i.e., conclusion (i) in Part (a) holds.

Case II: $m = x(t_2)$. Then (2.9) with $t = t_2$ shows that

$$m = \int_{a}^{b} \Big(\int_{c}^{t_2} G(\tau, s) d\tau \Big) q(s) x(s) ds.$$

Again using the facts that $0 \le x(t) \le m$ and $x(t) \ne m$, and $q(t) \le q_+(t)$, we have

$$m < m \int_{a}^{b} \left(\int_{a}^{b} G(\tau, s) d\tau \right) q_{+}(s) ds.$$

Canceling m from both sides and using (2.11) we obtain

$$\int_{a}^{b} q_{+}(s)ds > \frac{2^{2n}(2n-1)!}{(b-a)^{2n}S_{n}}.$$

i.e., conclusion (ii) in Part (a) holds.

Case III: $m = x(t_1)$. Then (2.9) with $t = t_1$ shows that

$$m = \int_{a}^{b} \left(\int_{t_{1}}^{c} G(\tau, s) d\tau \right) (-q(s)) x(s) ds$$

= $\int_{a}^{c} \left(\int_{t_{1}}^{c} G(\tau, s) d\tau \right) (-q(s)) x(s) ds + \int_{c}^{b} \left(\int_{t_{1}}^{c} G(\tau, s) d\tau \right) q(s) (-x(s)) ds$

Note that x(t) > 0 on [a, c) and x(t) < 0 on (c, b]. Then by a similar argument to Cases I and II, we see that

$$\int_{a}^{c} q_{-}(s)ds + \int_{c}^{b} q_{+}(s)ds > \frac{2^{2n}(2n-1)!}{(b-a)^{2n}S_{n}};$$

i.e., conclusion (iii) in Part (a) holds.

Case IV. The same argument as in Case III shows that conclusion (iii) in Part (a) holds. We omit the details.

(b) Note that x(a) = 0. Then it follows from (2.9) that

$$x(t) = \int_{a}^{b} \left(\int_{a}^{t} G(\tau, s) d\tau \right) q(s) x(s) ds.$$
(2.20)

Without loss of generality, we may assume x(t) > 0 in (a, b]. Then there exists $t_2 \in (a, b]$ such that $m = x(t_2) = \max\{x(t) : t \in [a, b]\}$. Using $t = t_2$ in (2.20) we obtain

$$m = \int_a^b \left(\int_a^{t_2} G(\tau, s) d\tau \right) q(s) x(s) ds \le \int_a^b \left(\int_a^b G(\tau, s) d\tau \right) q_+(s) x(s) ds.$$

Using (2.11) and a similar technique as before, we see that conclusion in Part (b) holds.

(c) In this case, a similar argument as Part (b) holds with $m = x(t_1) = \max\{|x(t)| : t \in [a, b]\}|$. We omit the details.

Now we interpret the results in Theorems 2.1 and 2.2 to the special case with n = 1, i.e., the third-order linear differential equation

$$x''' + q(t)x = 0. (2.21)$$

From (2.2),

$$S_1 = \sum_{j=0}^{0} \sum_{k=0}^{j} 2^{2k-2j} \binom{j}{j} \binom{j}{k} B(2,1+k-j) = B(2,1) = \frac{1}{2}$$

Corollary 2.3. Assume (2.21) has a nontrivial solution x(t) satisfying

$$x'(a) = x'(b) = 0$$

and x(c) = 0 for $c \in [a, b]$. Then

$$\int_{a}^{b} |q(t)| dt > \frac{8}{(b-a)^2}.$$

Corollary 2.4. Assume (2.21) has a solution x(t) satisfying

$$x'(a) = x'(b) = 0$$

(a) Suppose x(c) = 0 for $c \in (a, b)$ and $x(t) \neq 0$ for $t \in [a, c) \cup (c, b]$. Then one of the following holds:

(i)
$$\int_{a}^{b} q_{-}(t)dt > \frac{8}{(b-a)^{2}},$$

(ii) $\int_{a}^{b} q_{+}(t)dt > \frac{8}{(b-a)^{2}},$
(iii) $\int_{a}^{c} q_{-}(t)dt + \int_{c}^{b} q_{+}(t)dt > \frac{8}{(b-a)^{2}}.$
(b) Suppose $x(a) = 0$ and $x(t) \neq 0$ for $t \in (a, b]$. Then
 $\int_{a}^{b} q_{+}(t)dt > \frac{8}{(b-a)^{2}}.$

(c) Suppose
$$x(b) = 0$$
 and $x(t) \neq 0$ for $t \in [a, b)$. Then

$$\int_{a}^{b} q_{-}(t)dt > \frac{8}{(b-a)^{2}}$$

We observe that the inequalities in Corollaries 2.3 and 2.4 supplement those in [8, Corollary 2.1] for different boundary conditions.

3. Applications to boundary-value problems

In the final section, we apply the results on the Lyapunov-type Inequalities obtained in Section 2 to study the nonexistence, uniqueness, and existence-uniqueness for solutions of certain BVPs. Consider the BVP consisting of (2.1) and the boundary conditions

$$x^{(i+1)}(a) = x^{(i+1)}(b) = 0, \quad i = 0, 1, \dots, n-1;$$

$$x(c) = 0, \quad c \in [a, b].$$
(3.1)

In the following, we let S_n be defined by (2.2). The first result is on the nonexistence of solutions of the boundary-value problem (2.1) (3.1).

Theorem 3.1. Assume

$$\int_{a}^{b} |q(t)| dt \le \frac{2^{2n}(2n-1)!}{(b-a)^{2n}S_n}.$$
(3.2)

Then BVP (2.1) (3.1) has no nontrivial solution for any $c \in [a, b]$.

Proof. Assume the contrary, i.e., (2.1) (3.1) has a nontrivial solution x(t). Then by Theorem 2.1, inequality (2.4) holds. This contradicts assumption (3.2).

As a direct application of Theorem 2.2, we present the following result.

Theorem 3.2. Assume

$$\max_{\xi \in [a,b]} \left\{ \int_{a}^{\xi} q_{-}(t)dt + \int_{\xi}^{b} q_{+}(t)dt \right\} \le \frac{2^{2n}(2n-1)!}{(b-a)^{2n}S_{n}}.$$
(3.3)

Then every nontrivial solution of BVP (2.1), (3.1) has at least two zeros in [a, b].

Proof. Assume the contrary, i.e., (2.1), (3.1) has a nontrivial solution x(t) with only one zero c_1 in [a, b]. Then $c_1 = c$ and $x(t) \neq 0$ for $t \in [a, c) \cup (c, b]$. It follows that one of the conclusions in Part (a) of Theorem 2.2 holds. This contradicts (3.3). \Box

Next we consider the odd order nonhomogeneous linear BVPs consisting of the equation

$$x^{(2n+1)} + (-1)^{n-1}q(t)x = f(t) \quad \text{on } (A,B)$$
(3.4)

8

with $-\infty < A < B < \infty$ and $q, f \in C((A, B), \mathbb{R})$; and boundary condition

$$x^{(i+1)}(a) = k_{i1}, \quad x^{(i+1)}(b) = k_{i2}, \quad i = 0, 1, \dots, n-1$$

$$x(c) = k_{i3}, \quad c \in [a, b]$$
(3.5)

with

$$A < a < b < B \quad \text{and} \quad k_{i1}, k_{i2}, k_{i3} \in \mathbb{R}.$$

$$(3.6)$$

Based on Theorem 2.1, we obtain a criterion for BVP (3.4), (3.5) to have a unique solution.

Theorem 3.3. Assume

$$\int_{a}^{b} |q(t)| dt \le \frac{2^{2n}(2n-1)!}{(B-A)^{2n}S_n}.$$

Then BVP (3.4), (3.5) has a unique solution on (A, B) for any $a, b \in (A, B)$, and $c \in [a, b]$, and k_{i1}, k_{i2}, k_{i3} satisfying (3.6).

Proof. We first show that BVP (3.4), (3.5) has at most one solution for any a, b and k_1, k_2, k_3 satisfying (3.6). Assuming the contrary, it has two solutions $x_1(t)$ and $x_2(t)$ in (A, B). Define $x(t) = x_1(t) - x_2(t)$. Then x(t) is a solution of BVP (2.1), (3.1). Then by Theorem 3.1, $x(t) \equiv 0$, i.e., $x_1(t) \equiv x_2(t)$. This shows the uniqueness of solution to BVP (3.4), (3.5).

Since the homogeneous linear BVP (2.1), (3.1) only has the zero solution, then by the Fredholm alternative theorem [9], we conclude that the nonhomogeneous linear BVP (3.4), (3.5) has a unique solution.

References

- M. F. Aktas, D. Cakmak, A. Tiryaki; On the Lyapunov-type inequalities of a three point boundary value problem for third order linear differential equations, *Appl. Math. Letters.* 45(2015), 1-6.
- [2] R. C. Brown, D. B. Hilton; Opial's inequality and oscillation of second-order equations, Proc. Amer. Math. Soc. 125 (1997), 1123-1129.
- [3] G. Borg; On a Liapunoff criterion of stability, Amer. J. Math. 71 (1949), 67-70.
- [4] D. Cakmak; On Lyapunov-type inequality for a class of nonlinear systems, Math. Inq. Appl. 16 (2013), 101-108.
- [5] D. Cakmak; Liapunov-type integral inequalities for certain higher order differential equations, *Appl. Math. Comput.* 216 (2010), 368-373.
- [6] K. M. Das, A. S. Vatsala; Green's function for n-n boundary value problem and an analogue of Hartman's result, J. Math. Anal. Appl. 51 (1975), 670-777.
- [7] S. Dhar, Q. Kong; Liapunov-type inequalities for third-order half-linear equations and applications to boundary value problems, *Nonlin. Anal.* 110 (2014), 170-181.
- [8] S. Dhar, Q. Kong; Lyapunov-type inequalities for third-order linear differential equations, Math. Inequal. Appl. 19 (2016), 297-312.
- [9] E. I. Fredholm; Sur une classe d'quations fonctionnelles, Acta Math. 27 (1903), 365-390.
- [10] B. J. Harris, Q. Kong; On the oscillation of differential equations with an oscillatory coefficient, Trans. Amer. Math. Soc. 347 (1995), 1831-1839.
- [11] P. Hartman; Ordinary Differential Equations, Wiley, New York, 1964, and Birkhauser, Boston 1982.
- [12] X. He, X. H. Tang; Liapunov-type inequalities for even-order differential equations, Comm. Pure Appl. Math., 11 (2012), 465-473.
- [13] A. M. Liapunov; Probleme general de la stabilite du mouvement, Ann. Math Stud., 17 (1947), 203-474.
- [14] B. G. Pachpatte; Lyapunov-type integral inequalities for certain differential equations, Georgian Math. J. 4 (1997), 139-148.

- [15] B. G. Pachpatte; On Lyapunov-type inequalities for certain higher order differential equations, J. Math. Anal. Appl. 195 (1995), 527-536.
- [16] S. Panigrahi; Lyapunov-type integral inequalities for certain higher order differential equations, *Electron. J. Differential. Eq.* 2009 (2009), 1-14.
- [17] N. Parhi, S. Panigrahi; On Liapunov-type inequality for third-order differential equations, J. Math. Anal. Appl. 233 (1999), 445-460.
- [18] N. Parhi, S. Panigrahi; Liapunov-type inequality for higher order differential equations, Math. Slovaca 52 (2002), 31-46.
- [19] J. P. Pinasco; Lyapunov-type inequalities with Applications to Eigenvalue Problems, Springer, 2010.
- [20] A. Tiryaki, M. Unal, D. Cakmak; Liapunov-type inequalities for nonlinear systems, J. Math. Anal. Appl. 332 (2007), 497-511.
- [21] A. Wintner; On the non-existence of conjugate points, Amer. J. Math. 73 (1951), 368-380.
- [22] X. Yang, K. Lo; Liapunov-type inequality for a class of even-order differential equations, *Appl. Math. Comput.* **215** (2010), 3884-3890.
- [23] X. Yang; On Lyapunov inequality for certain higher-order differential equations, Appl. Math. Comput. 134 (2003), 307-317.
- [24] Q. Zhang, X. He; Liapunov-type inequalities for a class of even-order differential equations, J. Ineq. Appl. 2012, 2012:5.

Sougata Dhar

DEPARTMENT OF MATHEMATICS, NORTHERN ILLINOIS UNIVERSITY, DEKALB, IL 60115, USA *E-mail address:* sdhar@niu.edu

Qingkai Kong

DEPARTMENT OF MATHEMATICS, NORTHERN ILLINOIS UNIVERSITY, DEKALB, IL 60115, USA *E-mail address*: qkong@niu.edu