
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 244, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

OSCILLATION AND PROPERTY B FOR THIRD-ORDER
DIFFERENTIAL EQUATIONS WITH ADVANCED ARGUMENTS

BLANKA BACULÍKOVÁ, JOZEF DŽURINA

Abstract. We establish sufficient conditions for the third-order nonlinear ad-

vanced differential equation“
a(t)[

`
b(t)y′(t)

´′
]γ

”′
− p(t)f(y(σ(t))) = 0

to have property B or to be oscillatory. These conditions are based on mono-

tonic properties and estimates of non-oscillatory solutions, and essentially im-

prove known results for differential equations with deviating arguments and
for ordinary differential equations.

1. Introduction

We consider the nonlinear third-order differential equation with advanced argu-
ment (

a(t)[
(
b(t)y′(t)

)′]γ)′ − p(t)f(y(σ(t))) = 0. (1.1)

In the sequel we will assume:
(H0) γ is quotient of odd positive integers.
(H1) a(t), b(t), p(t) ∈ C([t0,∞)), σ(t) ∈ C1([t0,∞)), a(t), b(t), p(t) are positive,

σ′(t) > 0, σ(t) ≥ t.
(H2) f(u) ∈ C(R), uf(u) > 0 for u 6= 0, f(uv) ≥ f(u)f(v) for uv > 0, f is

nondecreasing.
(H3)

∫∞
t0

1
a1/γ(t)

dt =∞,
∫∞
t0

1
b(t)dt =∞.

By a solution of (1.1), we mean a function y(t) ∈ C1([Ty,∞)), Ty ≥ t0, that
satisfies (1.1) on [Ty,∞). We consider only those solutions y(t) of (1.1) that satisfy
sup{|y(t)| : t ≥ T} > 0 for all T ≥ Ty. We assume that (1.1) possesses such a
solution. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on
[Ty,∞) and otherwise, it is called to be nonoscillatory. An equation is said to be
oscillatory if all its solutions are oscillatory.

The study of oscillatory properties of third and higher order linear ordinary
differential equations began as far back in the pioneering work of Kneser [8].

A new impetus to investigations in this direction was given by the works of Chan-
turia and Kiguradze [7]. Their results concern property B for the linear differential
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equation
y′′′(t)− q(t)y(σ(t)) = 0 (1.2)

with σ(t) ≡ t. By property B of (1.2) it is meant the situation when every positive
solution y(t) of (1.2) is strongly increasing, i.e.

y′(t) > 0, y′′(t) > 0, y′′′(t) > 0.

Over the previous few decades, oscillation theory and asymptotic behavior of
differential equations related to (1.1), have drawn extensive attention and the sig-
nificant body of relevant literature has been devoted to this topic (see [1]–[12])

Especially, in the earlier article [9] Koplatadze et al presented excellent criteria
for the qualitative properties of solutions of binomial differential equation with
deviating argument. In this article, we extend their technique that yields property
B of (1.2) to (1.1).

Here, we derive new monotonic properties of nonoscillatory solutions of (1.1)
that permit us to achieve new sufficient conditions for (1.1) to have property B
or to be oscillatory. Our results essentially improve many known results not only
for differential equations with deviating arguments but for ordinary differential
equations as well.

As in oscillation theory, all functional inequalities considered are assumed to
hold eventually; that is, they are satisfied for all t large enough.

2. Preliminaries

We begin with the structure of possible nonoscillatory solutions of (1.1) which
follows from an analogy of Kiguradze [7] lemma and canonical form of studied
equation. We introduce the following classes of nonoscillatory (let us say positive)
solutions of (1.1):

y(t) ∈ N1 ⇐⇒ y′(t) > 0, (b(t)y′(t))′ < 0,
(
a(t)[(b(t)y′(t))′]γ

)′
> 0

and

y(t) ∈ N3 ⇐⇒ y′(t) > 0, (b(t)y′(t))′ > 0, (a(t)[(b(t)y′(t))′]γ)′ > 0,

eventually.

Lemma 2.1. Assume that y(t) is an eventually positive solution of (1.1), then
y(t) ∈ N1 or y(t) ∈ N3.

Now, we derive some important monotonic properties and estimates of nonoscil-
latory solutions, that will be applied in our main results.

To simplify our notation, let us denote

A(t) =
∫ t

t∗

1
a1/γ(s)

ds, B(t) =
∫ t

t∗

1
b(s)

ds,

C(t) =
∫ t

t∗

1
b(u)

∫ u

t∗

1
a1/γ(s)

dsdu, P (t) =
1

a1/γ(t)
[
∫ ∞
t

p(s) ds]1/γ .

for t∗ is large enough.

Lemma 2.2. Let y(t) ∈ N3 be a positive solution of (1.1) and∫ ∞
t∗

p(s)f(C(σ(s)))ds =∞. (2.1)
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Then y(t)/C(t) is eventually increasing.

Proof. Assume, that y(t) is a positive solution of (1.1) satisfying y(t) ∈ N3 even-
tually, let us say for t ≥ t∗. We claim that (2.1) implies

lim
t→∞

a1/γ(t)(b(t)y′(t))′ =∞. (2.2)

If not, then

lim
t→∞

a1/γ(t)(b(t)y′(t))′ = 2` > 0

and since a1/γ(t)(b(t)y′(t))′ is increasing, we have

a1/γ(t)(b(t)y′(t))′ > `,

eventually. An integration of the last inequality leads to

b(t)y′(t) ≥ `A(t),

which implies y(t) ≥ `C(t) or

f(y(σ(t))) ≥ f(`)f(C(σ(t))). (2.3)

On the other hand, integrating (1.1) from t∗ to ∞, one gets

(2`)γ ≥
∫ ∞
t∗

p(s)f(y(σ(s))) ds,

which in view of (2.3) yields

(2`)γ ≥ f(`)
∫ ∞
t∗

p(s)f(C(σ(s))) ds.

This contradicts (2.1) and we conclude that (2.2) holds.
Now, using that a1/γ(t)(b(t)y′(t))′ is increasing, we see that for all t ≥ t1 > t∗,

b(t)y′(t) = b(t1)y′(t1) +
∫ t

t1

a1/γ(s)
(b(s)y′(s))′

a1/γ(s)
ds

≤ b(t1)y′(t1) + a1/γ(t)(b(t)y′(t))′
∫ t

t1

1
a1/γ(s)

ds

= b(t1)y′(t1)− a1/γ(t)(b(t)y′(t))′
∫ t1

t∗

1
a1/γ(s)

ds

+ a1/γ(t)(b(t)y′(t))′
∫ t

t∗

1
a1/γ(s)

ds.

By (2.2), this implies

b(t)y′(t) ≤ a1/γ(t)(b(t)y′(t))′
∫ t

t∗

1
a1/γ(s)

ds

for all t large enough, let us say t ≥ t2 > t1, and therefore(b(t)y′(t)
A(t)

)′
=

(b(t)y′(t))′A(t)− b(t)y′(t) 1
a1/γ(t)

A2(t)
≥ 0.
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Thus, b(t)y′(t)
A(t) is increasing for t ≥ t2 > t∗. Then this fact yields

y(t) = y(t2) +
∫ t

t2

A(u)b(u)y′(u)
b(u)A(u)

du

≤ y(t2) +
b(t)y′(t)
A(t)

∫ t

t2

A(u)
b(u)

du

= y(t2)− b(t)y′(t)
A(t)

∫ t2

t∗

A(u)
b(u)

du+
b(t)y′(t)
A(t)

∫ t

t∗

A(u)
b(u)

du.

(2.4)

On the other hand, by L’Hospital rule

lim
t→∞

b(t)y′(t)
A(t)

= lim
t→∞

a1/γ(t)(b(t)y′(t))′ =∞

and so in view of (2.4), there exists t3 > t2 such that

y(t) ≤ b(t)y′(t)
A(t)

∫ t

t∗

A(u)
b(u)

du, t ≥ t3.

Consequently, ( y(t)
C(t)

)′
=
y′(t)C(t)− y(t)A(t) 1

b(t)

C2(t)
≥ 0,

which implies that y(t)/C(t) is eventually increasing. The proof is complete. �

Lemma 2.3. Let y(t) ∈ N1 be a positive solution of (1.1). Then y(t)/B(t) is
eventually decreasing.

Proof. Assume, that y(t) is an eventually positive solution of (1.1) satisfying y(t) ∈
N1 for t ≥ t∗. Then b(t)y′(t) is decreasing and we see that

y(t) ≥
∫ t

t∗

b(s)y′(s)
1
b(s)

ds ≥ b(t)y′(t)
∫ t

t∗

1
b(s)

ds.

This implies ( y(t)
B(t)

)′
=
y′(t)B(t)− y′(t) 1

b(t)

A2(t)
≤ 0, t ≥ t∗.

Thus, y(t)/B(t) is eventually decreasing and the proof is complete. �

Remark 2.4. For a(t) = b(t) ≡ 1 and γ = 1 Lemmas 2.2 and 2.3 reduce to the
results by Koplatadze et al. So we extended their result from linear differential
equations to nonlinear equations with the extra factor b.

3. Criteria for property B

Now, we provide several criteria for the class N1 of (1.1) to be empty. In the
literature such case is referred to as property B of (1.1).

Theorem 3.1. Assume that∫ ∞
t∗

1
b(v)

∫ ∞
v

1
a1/γ(u)

[ ∫ ∞
u

p(s) dsdu
]1/γ

dv =∞, (3.1)

and
lim

u→±∞

u

f1/γ(u)
= K1 <∞. (3.2)
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If

lim sup
t→∞

{
f1/γ(

1
B(σ(t))

)
∫ t

t∗

f1/γ(B(σ(s)))B(s)P (s) ds

+
∫ σ(t)

t

B(s)P (s) ds+B(σ(t))
∫ ∞
σ(t)

P (s) ds
}
> K1,

then (1.1) has property B.

Proof. Assume on the contrary, that (1.1) possesses an eventually positive solution
y(t) ∈ N1, t ≥ t∗. Integration (1.1) twice from t to ∞ yields

b(t)y′(t) ≥
∫ ∞
t∗

1
a1/γ(s)

[ ∫ ∞
s

p(x)f(y(σ(x))) dx
]1/γ

ds

≥
∫ ∞
t∗

f1/γ(y(σ(s)))
1

a1/γ(s)

[ ∫ ∞
s

p(x) dx
]1/γ

ds

=
∫ ∞
t∗

f1/γ(y(σ(s)))P (s) ds,

where we have used the monotonicity of f(y(σ(t))). Integrating the last inequality
from t∗ to t and then changing the order of integration, one obtains

y(t) ≥
∫ t

t∗

1
b(u)

∫ ∞
u

f1/γ(y(σ(s)))P (s) dsdu

=
∫ t

t∗

f1/γ(y(σ(s)))P (u)B(u) du+B(t)
∫ ∞
t

f1/γ(y(σ(s)))P (s) ds.

Therefore,

y(σ(t)) ≥
∫ t

t∗

f1/γ(y(σ(s)))P (u)B(u) du

+
∫ σ(t)

t

f1/γ(y(σ(s)))P (u)B(u) du+B(σ(t))
∫ ∞
σ(t)

f1/γ(y(σ(s)))P (s) ds.

Using that y(t) is increasing and y(t)/B(t) is decreasing, we have

y(σ(t)) ≥ f1/γ
( y(σ(t))
B(σ(t))

)∫ t

t∗

f1/γ(B(σ(s)))P (u)B(u) du

+ f1/γ(y(σ(t)))
∫ σ(t)

t

P (u)B(u) du

+ f1/γ(y(σ(t)))B(σ(t))
∫ ∞
σ(t)

P (s) ds.

(3.3)

That is,

y(σ(t))
f1/γ(y(σ(t)))

≥ f1/γ(
1

B(σ(t))
)
∫ t

t∗

f1/γ(B(σ(s)))P (u)B(u) du

+
∫ σ(t)

t

P (u)B(u) du+B(σ(t))
∫ ∞
σ(t)

P (s) ds.

It follows from (3.1) that y(t) → ∞ as t → ∞. Taking lim sup as t → ∞ on both
sides of the previous inequality, we are led to a contradiction with the assumptions
of the theorem. The proof is complete. �
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Theorem 3.2. Assume that∫ ∞
t∗

1
a1/γ(u)

[ ∫ ∞
u

p(s)f(B(σ(s))) ds
]1/γ

du =∞, (3.4)

lim
u→0

u

f1/γ(u)
= K2 <∞. (3.5)

If

lim sup
t→∞

{ 1
B(σ(t))

∫ t

t∗

f1/γ(B(σ(s)))B(s)P (s) ds

+
f1/γ(B(σ(t)))

B(σ(t))

∫ σ(t)

t

B(s)P (s) ds+ f1/γ(B(σ(t)))
∫ ∞
σ(t)

P (s) ds
}
> K2,

then (1.1) has property B.

Proof. Assume that (1.1) possesses an eventually positive solution y(t) ∈ N1, t ≥ t∗.
By Lemma 2.3, function y(t)/B(t) is decreasing and we shall prove that (3.4) implies

lim
t→∞

y(t)
B(t)

= 0. (3.6)

On the contrary assume that limt→∞ y(t)/B(t) = ` > 0. Then y(t)/B(t) ≥ `;
therefore

f(y(σ(t))) = f
( y(σ(t))
B(σ(t))

B(σ(t))
)
≥ f(`)f(B(σ(t))).

Moreover, integrating (1.1) twice yields

b(t∗)y′(t∗) ≥
∫ ∞
t∗

1
a1/γ(u)

[ ∫ ∞
u

p(s)f(y(σ(s))) ds
]1/γ

du

≥ f(`)
∫ ∞
t∗

1
a1/γ(u)

[ ∫ ∞
u

p(s)f(B(σ(s))) ds
]1/γ

du.
(3.7)

This contradict the assumptions of the theorem; we conclude that (3.6) holds.
On the other hand, setting

z(t) =
y(σ(t))
B(σ(t))

,

condition (3.3) and (H2) imply

z(t)
f1/γ(z(t))

≥ 1
B(σ(t))

∫ t

t∗

f1/γ(B(σ(s)))P (u)B(u) du

+
f1/γ(B(σ(t)))

B(σ(t))

∫ σ(t)

t

P (u)B(u) du+ f1/γ(B(σ(t)))
∫ ∞
σ(t)

P (s) ds.

Taking the lim sup as t → ∞ on both sides of the previous inequality, we have a
contradiction with the assumptions of our theorem. The proof is complete. �

Now we apply the criteria obtained to superlinear, sublinear and half-linear cases
of (1.1), where δ is quotient of odd positive integers.

Corollary 3.3. Let (3.1) hold and

lim sup
t→∞

{
B−δ/γ(σ(t))

∫ t

t∗

Bδ/γ(σ(s))B(s)P (s) ds
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+
∫ σ(t)

t

B(s)P (s) ds+B(σ(t))
∫ ∞
σ(t)

P (s) ds
}
> 0,

then the superlinear differential equation[
a(t)

(
b(t)(y′(t))γ

)′]′ − p(t)yδ(σ(t)) = 0, δ > γ.

has property B.

Corollary 3.4. Let (3.1) hold and

lim sup
t→∞

{
B−1(σ(t))

∫ t

t∗

B(σ(s))B(s)P (s) ds

+
∫ σ(t)

t

B(s)P (s) ds+B(σ(t))
∫ ∞
σ(t)

P (s) ds
}
> 1,

then the halflinear differential equation

[a(t)(b(t)(y′(t))γ)′]′ − p(t)yγ(σ(t)) = 0. (3.8)

has property B.

Corollary 3.5. Let (3.4) hold. If

lim sup
t→∞

{ 1
B(σ(t))

∫ t

t∗

Bδ/γ(σ(s))B(s)P (s) ds

+
Bδ/γ(σ(t))
B(σ(t))

∫ σ(t)

t

B(s)P (s) ds+Bδ/γ(σ(t))
∫ ∞
σ(t)

P (s) ds
}
> 0,

then the sublinear differential equation[
a(t)

(
b(t)(y′(t))γ

)′]′ − p(t)yδ(σ(t)) = 0, γ > δ. (3.9)

has property B.

Note that corollaries 3.3–3.5 essentially improve the results known for (1.2).

4. Oscillation

Our previous results concern property B of (1.1). To achieve oscillation, we need
to eliminate also the class N3.

Theorem 4.1. Let the assumptions of (2.1) hold. Assume that

lim
u→±∞

u

f1/γ(u)
= K3 <∞. (4.1)

If

lim sup
t→∞

1
C(σ(t))

∫ σ(t)

t

1
b(v)

∫ t

v

1
a1/γ(u)

[ ∫ t

u

p(s)f(C(σ(s))) dsdu
]1/γ dv > K3,

then the class N3 = ∅ for (1.1).

Proof. Assume that (1.1) possesses an eventually positive solution y(t) ∈ N3, t ≥ t∗.
An integration of (1.1) from s to t < s yields[

(b(s)y′(s))′
]γ ≥ 1

a(s)

∫ s

t

p(x)f
( y(σ(x))
C(σ(x))

C(σ(x))
)

dx

≥ f
( y(σ(t))
C(σ(t))

) 1
a(s)

∫ s

t

p(x) dx.
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Integrating in s, we have

y′(s) ≥ f1/γ
( y(σ(t))
C(σ(t))

) 1
b(s)

∫ s

t

1
a1/γ(u)

[ ∫ u

t

p(x) dx
]1/γ

du.

Integrating once more, we obtain

y(s) ≥ f1/γ
( y(σ(t))
C(σ(t))

)∫ s

t

1
b(v)

∫ t

v

1
a1/γ(u)

[ ∫ u

t

p(s) ds
]1/γ

dudv.

Setting s = σ(t) and z(t) = y(σ(t))/C(σ(t)), we obtain

z(t)
f1/γ(z(t))

≥ 1
C(σ(t))

∫ t

σ(t)

1
b(v)

∫ t

v

1
a1/γ(u)

[ ∫ t

u

p(s) dsdu
]1/γ

dv.

Taking lim sup as t → ∞ on both sides of the previous inequality, we are led to a
contradiction with the assumption of the theorem. The proof is complete. �

Combining the criteria obtained for both classes N1 and N3 to be empty, we
obtain results for oscillation of (1.1).

Theorem 4.2. Let all conditions of Theorem 3.1 (Theorem 3.2) and Theorem 4.1
hold. Then (1.1) is oscillatory.

5. Examples

We support the results obtained above with the following illustrative example.

Example 5.1. We consider the third-order advanced differential equation(
t1/4

[(
t1/3y′(t)

)′]1/3)′ − a

t47/36
y1/3(λt) = 0,

where a > 0 and λ > 1. Simple computation shows that

A(t) ∼ 4t1/4, B(t) ∼ 3t2/3

2
, C(t) ∼ 48t11/12

11
.

By Corollary 3.4, condition
3
2

(
36
11

)3a3(3 + lnλ) > 1, (5.1)

guarantees property B of (5.1).
On the other hand, by Theorem 4.2, condition

3
2
a3λ11/12[(4− 12

11
) ln3 λ− (3.42 − 3.122

112
) ln2 λ

+ (3.43 − 6.123

113
) lnλ− 6.44(1− 1

λ1/4
) +

6.124

114
(1− 1

λ11/12
)] > 1,

(5.2)

guarantees that N3 = ∅ for (5.1), By Theorem 4.2, Equation (5.1) is oscillatory if
both conditions (5.1) and (5.2) are satisfied.

Thus, in particular when λ = 2,

a > 0.17269 ⇒ property B of (5.1),

a > 4.2262 ⇒ oscillation of (5.1).

Note that Koplatadze’ criteria cannot be used nor for examination of property B
nor for oscillation of (5.1).
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Although our results are oriented for advanced differential equations, Corollaries
1–3 improve Chanturia’s tests [11] for property B of ordinary differential equation
without deviating argument which read as follows: If

lim sup
t→∞

t

∫ ∞
t

sp(s) ds > 2,

then (1.2) has property B. Note that for the Euler equation

y′′′(t)− p

t3
y(t) = 0

Chanturia’s criterion for property B requires p > 2, while Corollary 3.3 requires only
p > 1. On the other hand, our results are applicable also for advanced differential
equations and for property B of

y′′′(t)− p

t3
y(λt) = 0, λ > 1,

Corollary 3.3 requires 2p+ p lnλ > 2.

Summary. The results obtained are of high generality and improve earlier results
known for special cases of (1.1). Moreover the monotonic properties of solutions
presented in Lemmas 2.2 and 2.3 can be applied in various techniques (comparison
principles, Riccati transformation, integral averaging technique, etc.) used in the
theory of oscillation.
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