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EXISTENCE, UNIQUENESS AND EXPONENTIAL DECAY OF
SOLUTIONS TO KIRCHHOFF EQUATION IN Rn

FLÁVIO ROBERTO DIAS SILVA, JOÃO MANOEL SORIANO PITOT, ANDRÉ VICENTE

Abstract. We discuss the global well-posedness and uniform exponential sta-

bility for the Kirchhoff equation in Rn

utt −M
“Z

Rn
|∇u|2dx

”
∆u+ λut = 0 in Rn × (0,∞).

The global solvability is proved when the initial data are taken small enough

and the exponential decay of the energy is obtained in the strong topology
H2(Rn) × H1(Rn), which is a different feature of the present article when

compared with the prior literature. We also dedicate a section to discuss

a model with the frictional damping term λut, is replaced by a viscoelastic

damping term
R t
0 g(t− s)∆u(s)ds.

1. Introduction

1.1. Description of the problem and main difficulties. This article addresses
the global well-posedness and uniform exponential stability to the Kirchhoff equa-
tion

u′′ −M
(∫

Rn
|∇u|2dx

)
∆u+ λu′ = 0 in Rn × (0,∞),

u(x, 0) = u0(x), x ∈ Rn,
u′(x, 0) = u1(x), x ∈ Rn,

(1.1)

where ′ = ∂
∂t ; ∇· = ( ∂·

∂x1
, . . . , ∂·

∂xn
) and ∆· =

∑n
i=1

∂2·
∂x2
i

are the gradient and Laplace
operator on the spatial variable, respectively; M : R+ → R+, with M(s) ≥ m0 > 0,
for all s ≥ 0; u0, u1 : Rn → R are given functions and λ is a real positive parameter.

In the simple case when M(s) = 1, for all s ∈ R+, the wave the equation

u′′ −∆u+ λu′ = 0 in Rn × (0,∞),

u(x, 0) = u0(x), x ∈ Rn,
u′(x, 0) = u1(x), x ∈ Rn.

(1.2)

The well-posedness to problem (1.2) is well-known for all initial data (u0, u1)
∈ Hm+1(Rn)×Hm(Rn), m = 0, 1, 2 . . . and the exponential decay never holds for
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the topology
m+1∑
i=0

‖Di
tD

m+1−i
x u(t)‖L2(Rn),

see, for instance [12, 13, 17, 30, 35, 36] and references therein. Instead, one has a
wide assortment of polynomial decay rate estimates, in some cases sharp estimates
as in the recent paper [9]. However, under some smallness on the initial data, Feireisl
[10] proved that for the semi-linear wave equation, (u(t), u′(t)) decays exponentially
to zero in the weak topology X := H1(Rn) × L2(Rn), but, the semigroup St :
(u, u′)(0) 7→ (u, u′)(t) is not dissipative in X, because Rn is not compact. One
the main ingredients to recover the exponential stability to problem (1.2) without
restrictions on the initial data is the existence of the Poincaré’s inequality which is
well-known to be true for bounded domains or unbounded ones with finite measure.
Nevertheless, this also holds for the specific case of Rn, provided, roughly speaking,
that the Fourier transform of the initial data is zero in bounded sets of Rn, see, the
nice paper due to Bjorland and Schonbek [3], which will be clarified in section 2.
Inspired in the work [3], if we look for a nonlinear model such that it is invariant
under the flow of St in light of the previous comments (namely, such that the
Poincaré’s inequality remains true under the flow), the first equation that comes
into our mind is precisely the Kirchhoff model given in (1.1). Nevertheless, due
to the nonlinear character of this type of equation, it is expected its solvability in
the strong topology Y := H2(Rn) × H1(Rn) provided the initial data are taken
small enough. From the above considerations the main task of the present article
is twofold: (i) to prove the existence and uniqueness of regular global solutions to
problem (1.1); (ii) to show that these solutions decay exponentially to zero in the
natural strong topology Y , which is much more difficult that to prove that regular
solutions decay exponentially in the weak topology X. In order to achieve (i) we
need to define suitable Hilbert spaces V , H and an operator A = −∆ define by
the triple {V,H, a(u, v)}, where a(u, v) is a bilinear, continuous and coercive form
defined in V . All this spectral analysis necessary to development of the paper is
presented in section 2. Section 3 is devoted to the prove of existence and uniqueness
of regular solutions to (1.1). Indeed, the strategy is the following: First, we consider
the linear auxiliary problem

u′′ − µ(t)∆u+ λu′ = 0 in Rn × (0,∞),

u(x, 0) = u0(x), x ∈ Rn,
u′(x, 0) = u1(x), x ∈ Rn,

(1.3)

where
µ ∈W 2,1

loc (0,∞); µ(t) ≥ m0 > 0, for all t ≥ 0.

Thus, we prove that problem (1.3) possesses a unique global regular solution
which implies, by employing the Banach contraction theorem combined with a
priori estimates for the linearized problem (1.3), and for a complete metric space
suitably chosen, that problem (1.1) possesses a unique local regular solution for
a certain interval [0, T0], T0 > 0. By Zorn’s lemma we derive the existence of
a regular maximal solution on [0, Tmax), which can be be extended to the whole
interval [0,+∞) by considering the initial data sufficiently small. All this will be
clarified in section 3. In Section 4 we prove the item (ii) above mentioned, namely,
the exponential stability to problem (1.1) in its strong topology, which is also one
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the main novelties of the present article. For this purpose we employ Nakao’s
lemma twice: first to obtain the exponential stability for regular solutions in the
weak topology X and then, from the previous decay, to obtain the analogous one
now for the strong topology Y . It is know that the Nakao’s lemma is appropriate
to deal with decay properties of the Kirchhoff model, see [31, 32, 33, 34, 37] and
references therein. See, in particular, Nishihara [31] and Ono [34, 37] where the
stability in strong topology was proved. We highlight [37] where this technique was
used and it was obtained polynomial decay to Kirchhoff equation in Rn.

Finally, we dedicate the section 5 to discuss the problem when the frictional
damping term is replaced by a viscoelastic damping term, precisely, we study

u′′ −M
(∫

Rn
|∇u|2dx

)
∆u+

∫ t

0

g(t− s)∆u(s)ds = 0 in Rn × (0,∞),

u(x, 0) = u0(x), x ∈ Rn,
u′(x, 0) = u1(x), x ∈ Rn,

(1.4)

where g is a know function. In this case, we only describe what are the technical
differences between the two cases (frictional or viscoelastic). The decay is obtained
by the same strategy of Messaoudi [22].

1.2. Literature overview. There is a lot of literature in what concerns the well-
posedness and decay rate estimates for the Kirchhoff equation in a general setting.
However, our focus of interest are those models posed in the whole Rn. It seems that
one the pioneers in establishing the local well-posedness in the absence of a damping
term u′ was Perla Menzala [21]. For the damped Kirchhoff model we would like to
quote the following ones: Yamada [39], whom seems to be the one the pioneers in
investigating the (polynomial) asymptotic stability for global solutions of equation
(1.1); Ikehata and Okazawa [11] give a different treatment to the same equation by
employing the Yosida approximation method together with compactness argument,
which allow them to treat simultaneously the global solvability for Dirichlet and
Neumann cases. Finally we would like to quote the important contribution of
Manfrin [20] also in the context of damped Kirchhoff models. The author studies the
Cauchy problem for the damped Kirchhoff equation in the phase space Hr ×Hr−1,
with r ≥ 3/2. The author proves global solvability and like polynomial decay of
solutions when the initial data belong to an open, dense subset B of the phase
space such that B + B = Hr × Hr−1. From the above comments, a distinctive
feature of the present paper, as we have already mentioned before, is to establish
in what conditions the exponential stability holds for the Kirchhoff model posed in
Rn. Definitely the source of the inspiration of the present article comes from the
work of Bjorland and Schonbek [3] which allows us to create appropriate spaces to
develop the associate spectral theory that is necessary to solve our problem. We
dedicate the section 2 to describe these ideas. In addition, we can not forget to
say that some of ideas contained here were previously nicely presented in Milla
Miranda and Jutuca [27] obviously adapted to the present context. Basically, they
combine the Faedo-Galerkin method to solve a linearized problem with a point fix
theorem. The Faedo-Galerkin method is a traditional method which have been
used to get existence of solution when the problem involves the Kirchhoff equation.
Proofs using Faedo-Galerkin method can be found in Lourêdo, Oliveira and Clark
[24], Lourêdo and Milla Miranda [25, 26], Lourêdo, Milla Miranda and Medeiros
[28] and references therein.
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On the other hand, wave equation with viscoelastic damping has been studied
by many authors. When the domain is an open bounded of Rn see, for instance,
[1, 2, 6, 7, 8, 19, 22, 23, 38] and reference therein. We highlight the recent works
of Cavalcanti et al. [5] and Lasiecka, Messaoudi and Mustafa [18] where very gen-
eral decay rates was obtained. When the domain is whole Rn there are not many
papers in this direction. The difficulty is into deal with the problem (1.4) without
the Poincaré’s inequality to hold in an appropriate space. Therefore, some authors
have used the finite-speed propagation to compensate for the lack of Poincaré’s
inequality, see the works of Kafini [14, 15] and Kafini and Messaoudi [16]; or they
have considered the solutions in spaces weighted by the introduction of an appro-
priate function to the equation, see the papers of Zennir [40, 41], this strategy also
compensates for the lack of Poincaré’s inequality.

2. Preliminaries and overview on spectral theory

Now, inspired on work of Bjorland and Schonbek [3], we will introduce the spaces
which will be necessary to prove our results.

When it is considered an initial and boundary value problem as

u′′ −∆u = 0 in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω,

where Ω is an open and bounded domain of Rn with boundary ∂Ω, the natural way
is take the Sobolev spaces L2(Ω), H1

0 (Ω) and H1
0 (Ω)∩H2(Ω). Here, the main idea

is create appropriate Sobolev spaces H, V and W which work like L2(Ω), H1
0 (Ω)

and H1
0 (Ω)∩H2(Ω), respectively. These space must have some essential properties

like Poincaré’s Inequality and Green’s Formula. After establishing the spaces, we
also will show an overview on spectral theory associated to our problem.

Let R > 0 be a fixed real number. Define

H = {u ∈ L2(Rn); û(ξ) = 0 a.e. in ‖ξ‖ ≤ R},
where û denotes the Fourier Transform of u. We observe that H 6= ∅ follows from
[3, Lemma 5.1], for example, in the case n = 1 we can consider

u(x) = v(x)− (HR ∗ v)(x), x ∈ R,

where v(x) = exp(π|x|2), HR(x) = sin(2πRx)
πx and ∗ denotes the convolution product.

We affirm that u ∈ H, in fact, we see that u ∈ L2(Rn) and, moreover,

û(ξ) = v̂(ξ)− ĤR(ξ)v̂(ξ) = v̂(ξ)− χR(ξ)v̂(ξ), a.e. in R,
where χR(ξ) is the cut-off function such that χR(ξ) = 1 when |ξ| ≤ R and χR(ξ) = 0
when |ξ| > R.

We endowed H with the inner product and norm given by

(u, v) =
∫

Rn
u(x)v(x)dx and ‖u‖H =

(∫
Rn
|u(x)|2dx

)1/2

.

It is not difficult to prove that H is a separate Hilbert space.
It is possible to prove that (see [3, Theorem 4.1]) for each u ∈ H1(Rn) and any

Λ > 0, the following inequality holds

‖∇u‖2H ≥ Λ2

∫
Rn
|û(ξ)|2dξ −

∫
{ξ; |ξ|≤Λ}

(Λ2 − |ξ|2)|û(ξ)|2dξ.
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Defining
V = {u ∈ H1(Rn); û(ξ) = 0 a.e. in ‖ξ‖ ≤ R}

and taking, in particular, Λ = R we have, after use the Plancherel Identity, the
following version of Poincaré’s Inequality:

‖u‖H ≤
1
R
‖∇u‖V , for all u ∈ V.

This allows us to consider the following inner product and norm in V :

((u, v)) =
∫

Rn
∇u(x) · ∇v(x)dx and ‖u‖V =

(∫
Rn
|∇u(x)|2dx

)1/2

.

We observe that ‖ · ‖V is equivalent, in V , to usual norm gives by H1(Rn). We
can prove that the couple (V, ((·, ·))) is a separable Hilbert space and V is a dense
subspace of H.

Now, we describe the spectral theory associate with (1.1). We define the bilinear,
continuous and coercive form a(·, ·) : V × V → R:

(u, v) 7→ a(u, v) = ((u, v)).

We denote by D(A) the set of u ∈ V such that the linear form gu : V → R:

gu(v) = ((u, v)) (2.1)

is continuous in V with the topology gives by H. As V is dense in H, we can extend
this form to whole H, i.e., there exists g̃u : H → R: such that

g̃u(v) = ((u, v)), for all v ∈ V. (2.2)

By Riesz representation theorem, there exists a unique fu ∈ H such that

g̃u(v) = (fu, v), for all v ∈ H. (2.3)

From (2.1)–(2.3) we have

((u, v)) = (fu, v), for all v ∈ V.
This allow us to define the operator A : D(A)→ H:

Au = fu.

We observe that D(A) has the following characterization

D(A) =
{
u ∈ V ; there exists f ∈ H that satisfies

((u, v)) = (fu, v), for all v ∈ V
}
.

(2.4)

From this it follows that D(A) is a subspace of H and the operator A, which is
characterized by

(Au, v) = ((u, v)), for all u ∈ D(A) and v ∈ V.
In this case, we say that A is defined by the term{V,H, ((·, ·))}.

The operator A has the following properties:
(a) A : D(A)→ H is bijective;
(b) D(A) is dense in H and A is a closed operator of H;
(c) A is an unbounded operator of H;
(d) D(A) is dense in V ;
(e) A : D(A)→ H is self-adjoint operator and satisfies

(Au, v) = (u,Av), for all u, v ∈ D(A).
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We introduce in D(A) the inner product:

((u, v))D(A) = (u, v) + (Au,Av), for all v ∈ D(A),

then, as A is closed, we have that D(A) is a Hilbert space. It is possible to prove
that there exists c > 0 such that

‖u‖V ≤ c‖u‖D(A), for all u ∈ D(A),

i.e., D(A) ↪→ V continuously. Identifying H with its dual space we have the
sequence of continuous and dense embedding

D(A) ↪→ V ↪→ H ≡ H ′ ↪→ V ′ ↪→ (D(A))′.

Now, we define

W = {u ∈ H2(Rn); û(ξ) = 0 a.e. in ‖ξ‖ ≤ R}.

Since, for all u ∈ H2(Rn), ∆̂u(ξ) = ‖ξ‖2û(ξ), we infer: if u ∈ W , then −∆u ∈ H.
Therefore, for all u ∈W we have

(−∆u, v) = −
∫

Rn
∆̂u(ξ)v̂(ξ)dξ = −

∫
Rn
‖ξ‖2û(ξ)v̂(ξ)dξ, for all v ∈ V (2.5)

and
((u, v)) = −

∫
Rn
∇u(x) · ∇v(x)dx = −

∫
Rn
‖ξ‖2û(ξ)v̂(ξ)dξ, (2.6)

for all v ∈ V . Combining (2.5) and (2.6) we obtain

((u, v)) = (−∆u, v), for all v ∈ V, (2.7)

observing (2.4), this gives us that u ∈ D(A), i.e.,

W ⊂ D(A). (2.8)

We observe that (2.7) is a Green’s Formula.
On the other hand, from the definition of A, we have

(Au, v) = ((u, v)), for all u ∈W and v ∈ V. (2.9)

From (2.7) and (2.9) and as V is dense in H we obtain

(Au, v) = (−∆u, v), for all v ∈ H,
this gives

Au = −∆u, for all u ∈W.
We also can prove that W is a subspace dense and closed of D(A), this combined
with (2.8) give that W = D(A). Therefore, W is other characterization of D(A)
and A is the know operator −∆.

3. Existence and uniqueness of a solution

In this section we prove the existence and uniqueness of solution to (1.1). We
start by presenting two results concerned with existence of solution to an auxiliary
linear problem which will be necessary to prove the result of existence of local
solution in time. Therefore, associated to (1.1) we consider the linear problem

u′′ − µ(t)∆u+ λu′ = 0 in Rn × (0,∞), (3.1)

u(x, 0) = u0(x), x ∈ Rn, (3.2)

u′(x, 0) = u1(x), x ∈ Rn. (3.3)
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We consider
µ ∈W 2,1

loc (0,∞); µ(t) ≥ m0 > 0, for all t ≥ 0. (3.4)

Proposition 3.1. Suppose that assumption (3.4) holds. Then for each u0 ∈ W ∩
H3(Rn) and u1 ∈W there exists a unique solution u to (3.1)-(3.3) satisfying

u ∈ L∞loc(0,∞;W ∩H3(Rn)), u′ ∈ L∞loc(0,∞;W ),

u′′ ∈ L∞loc(0,∞;V ), u′′′ ∈ L∞loc(0,∞;H) .
(3.5)

Proof. We employ the Faedo-Galerkin method. Let (wj)j∈N be an orthonormal
bases in W ∩H3(Rn). For each m ∈ N, we denote Um the m-dimensional subspaces
spanned by the first m vectors of (wj)j∈N. Let T > 0 be any fixed positive number.
From Ordinary Differential Equations Theory for each m ∈ N we can find 0 < Tm ≤
T , um : Rn × [0, Tm]→ R of the form

um(x, t) =
m∑
j=1

ρjm(t)wj(x),

satisfying the following approximate problem:

(u′′m(t), wj) + µ(t)((um(t), wj)) + λ(u′m(t), wj) = 0; (3.6)

um(0) = u0m =
m∑
i=1

ui0wi → u0 in W ∩H3(Rn); (3.7)

u′m(0) = u1m =
m∑
i=1

ui1wi → u1 in W. (3.8)

Here 1 ≤ j ≤ m and ui0, u
i
1, i = 1, . . . ,m, are known scalars. From (3.6) we have

the approximate equation

(u′′m(t), w) + µ(t)((um(t), w)) + λ(u′m(t), w) = 0, for all v ∈ V. (3.9)

Estimate I: Setting w = u′m(t) in the approximate equations (3.9) we obtain

1
2
d

dt
(‖u′m(t)‖2H + µ(t)‖um(t)‖2V ) + λ‖u′m(t)‖2H = µ′(t)‖um(t)‖2V .

Integrating from 0 to t ≤ Tm, we obtain

‖u′m(t)‖2H + µ(t)‖um(t)‖2V + 2λ
∫ t

0

‖u′m(ξ)‖2Hdξ

= ‖u1m‖2H + µ(0)‖u0m‖2V + 2
∫ t

0

µ′(ξ)
µ(ξ)

µ(ξ)‖um(ξ)‖2V dξ.
(3.10)

From (3.7), (3.8), (3.10) and Gronwall Inequality, we conclude that

‖u′m(t)‖2H + µ(t)‖um(t)‖2V + 2λ
∫ t

0

‖u′m(ξ)‖2Hdξ ≤ R2
1 exp

(
2
∫ T

0

ϕ1(ξ)dξ
)
, (3.11)

for all T ≤ Tm, where R2
1 = ‖u1‖2H + µ(0)‖u0‖2V and ϕ1(ξ) = |µ′(ξ)|

µ(ξ) . This estimate
allow us to extend the approximate solution to the whole interval [0, T ] and (3.11)
holds for all T > 0.
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Estimate II: Differentiating (3.9) with respect to t and putting w = u′′m(t) we
obtain

1
2
d

dt
(‖u′′m(t)‖2H + µ(t)‖u′m(t)‖2V ) + µ′(t)((um(t), u′′m(t))) + λ‖u′′m(t)‖2H

=
1
2
µ′(t)‖u′m(t)‖2V .

(3.12)

Taking w = u′′m(t) in (3.9) we have

((um(t), u′′m(t))) = − 1
µ(t)

[‖u′′m(t)‖2H + λ(u′m(t), u′′m(t))]. (3.13)

Substituting (3.13) in (3.12) and integrating the resultant equation from 0 to t we
obtain

‖u′′m(t)‖2H + µ(t)‖u′m(t)‖2V + 2λ
∫ t

0

‖u′′m(ξ)‖2Hdξ

= ‖u′′m(0)‖2H + µ(0)‖u1m‖2V + 2λ
∫ t

0

µ′(ξ)
µ(ξ)

(u′m(ξ), u′′m(ξ))dξ

+
∫ t

0

µ′(ξ)
µ(ξ)

[2‖u′′m(ξ)‖2H + µ(ξ)‖u′m(ξ)‖2V ]dξ.

(3.14)

From elementary and the Poincaré inequalities, we have

2λ
∫ t

0

µ′(ξ)
µ(ξ)

(u′m(ξ), u′′m(ξ))dξ

≤ λ
∫ t

0

|µ′(ξ)|
µ(ξ)

( µ(ξ)
m0R2

‖u′m(ξ)‖2V + ‖u′′m(ξ)‖2H
)
dξ.

(3.15)

From (3.14) and (3.15) we obtain

‖u′′m(t)‖2H + µ(t)‖u′m(t)‖2V + 2λ
∫ t

0

‖u′′m(ξ)‖2Hdξ

≤ ‖u′′m(0)‖2H + µ(0)‖u1m‖2V +
∫ t

0

ϕ2(ξ)
(
‖u′′m(ξ)‖2H + µ(ξ)‖u′m(ξ)‖2V

)
dξ,

(3.16)

where

ϕ2(ξ) =
|µ′(ξ)|
µ(ξ)

[
2 + λ

(
1 +

1
R2m0

)]
.

Now we are going to estimate u′′m(0). Taking t = 0 and w = u′′m(0) in the approxi-
mate equation (3.9) we obtain

‖u′′m(0)‖2H = µ(0)(∆u0m, u
′′
m(0))− λ(u1m, u

′′
m(0)),

from here and the convergence (3.7) and (3.8) we conclude

‖u′′m(0)‖H ≤ µ(0)‖∆u0‖H + λ‖u1‖H . (3.17)

The estimates (3.16), (3.17), the convergence (3.8) and Gronwall’s inequality give
us

‖u′′m(t)‖2H + µ(t)‖u′m(t)‖2V + 2λ
∫ t

0

‖u′′m(ξ)‖2Hdξ ≤ R2
2 exp

(∫ t

0

ϕ2(ξ)dξ
)
, (3.18)

for all t ∈ [0, T ], where R2
2 = µ(0)‖∆u0‖H + λ‖u1‖H + µ(0)‖u1‖2V .
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Estimate III: Differentiating (3.9) twice with respect to t and putting w = u′′′m(t)
we obtain

1
2
d

dt
(‖u′′′m(t)‖2H + µ(t)‖u′′m(t)‖2V ) + 2µ′(t)((u′m(t), u′′′m(t)))

+ µ′′(t)((um(t), u′′′m(t))) + λ‖u′′′m(t)‖2H

=
µ′(t)

2
‖u′′m(t)‖2V .

(3.19)

Taking w = u′′′m(t) in (3.9) we have

((um(t), u′′′m(t))) = − 1
µ(t)

[(u′′m(t), u′′′m(t)) + λ(u′m(t), u′′′m(t))]. (3.20)

Differentiating (3.9) with respect to t and putting w = u′′′m(t) we infer

((u′m(t), u′′′m(t)))

= − 1
µ(t)

[‖u′′′m(t)‖2H + µ′(t)((um(t), u′′′m(t))) + λ(u′′m(t), u′′′m(t))].
(3.21)

Substituting (3.20) in (3.21) we have

((u′m(t), u′′′m(t))) = − 1
µ(t)

[
‖u′′′m(t)‖2H + λ(u′′m(t), u′′′m(t))

− µ′(t)
µ(t)

(
(u′′m(t), u′′′m(t)) + λ(u′m(t), u′′′m(t))

)]
.

(3.22)

Using (3.20) and (3.22) in (3.19) we obtain

1
2
d

dt
(‖u′′′m(t)‖2H + µ(t)‖u′′m(t)‖2V )− 2

µ′(t)
µ(t)

[
‖u′′′m(t)‖2H + λ(u′′m(t), u′′′m(t))

− µ′(t)
µ(t)

(
(u′′m(t), u′′′m(t)) + λ(u′m(t), u′′′m(t))

)]
− µ′′(t)

µ(t)

(
(u′′m(t), u′′′m(t)) + λ(u′m(t), u′′′m(t))

)
+ λ‖u′′′m(t)‖2H

=
µ′(t)

2
‖u′′m(t)‖2V .

Integrating from 0 to t, we obtain

‖u′′′m(t)‖2H + µ(t)‖u′′m(t)‖2V + 2λ
∫ t

0

‖u′′′m(ξ)‖2Hdξ

= ‖u′′′m(0)‖2H + µ(0)‖u′′m(0)‖2V + 4
∫ t

0

µ′(ξ)
µ(ξ)

‖u′′′m(ξ)‖2Hdξ

+
∫ t

0

µ′(ξ)
µ(ξ)

µ(ξ)‖u′′m(ξ)‖2V dξ − 4
∫ t

0

(µ′(ξ)
µ(ξ)

)2

(u′′m(ξ), u′′′m(ξ))dξ

− 4λ
∫ t

0

(µ′(ξ)
µ(ξ)

)2

(u′m(ξ), u′′′m(ξ))dξ + 4λ
∫ t

0

µ′(ξ)
µ(ξ)

(u′′m(ξ), u′′′m(ξ))dξ

+ 2
∫ t

0

µ′′(ξ)
µ(ξ)

(u′′m(ξ), u′′′m(ξ))dξ + 2λ
∫ t

0

µ′′(ξ)
µ(ξ)

(u′m(ξ), u′′′m(ξ))dξ.

(3.23)
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We observe that

− 4
∫ t

0

(µ′(ξ)
µ(ξ)

)2

(u′′m(ξ), u′′′m(ξ))dξ

≤ 2
∫ t

0

(µ′(ξ)
µ(ξ)

)2(µ(ξ)‖u′′m(ξ)‖2V
µ(ξ)R2

+ ‖u′′′m(ξ)‖2H
)
dξ;

(3.24)

− 4λ
∫ t

0

(µ′(ξ)
µ(ξ)

)2

(u′m(ξ), u′′′m(ξ))dξ

≤ λ

2

∫ t

0

‖u′m(ξ)‖2Hdξ + 8λ
∫ t

0

(µ′(ξ)
µ(ξ)

)4

‖u′′′m(ξ)‖2Hdξ;
(3.25)

4λ
∫ t

0

µ′(ξ)
µ(ξ)

(u′′m(ξ), u′′′m(ξ))dξ

≤ 2λ
∫ t

0

|µ′(ξ)|
µ(ξ)

(µ(ξ)‖u′′m(ξ)‖2V
µ(ξ)R2

+ ‖u′′′m(ξ)‖2H
)
dξ;

(3.26)

2
∫ t

0

µ′′(ξ)
µ(ξ)

(u′′m(ξ), u′′′m(ξ))dξ

≤
∫ t

0

|µ′′(ξ)|
µ(ξ)

(µ(ξ)‖u′′m(ξ)‖2V
µ(ξ)R2

+ ‖u′′′m(ξ)‖2H
)
dξ;

(3.27)

2λ
∫ t

0

µ′′(ξ)
µ(ξ)

(u′m(ξ), u′′′m(ξ))dξ

≤ λ

2

∫ t

0

‖u′m(ξ)‖2Hdξ + 2λ
∫ t

0

(µ′′(ξ)
µ(ξ)

)2

‖u′′′m(ξ)‖2Hdξ.
(3.28)

Adding (3.10) with (3.23) and using the estimates (3.24)–(3.28), we infer

‖u′′′m(t)‖2H + µ(t)‖u′′m(t)‖2V + ‖u′m(t)‖2H

+ µ(t)‖um(t)‖2V + 2λ
∫ t

0

‖u′′′m(ξ)‖2Hdξ + 2λ
∫ t

0

‖u′m(ξ)‖2Hdξ

≤ ‖u′′′m(0)‖2H + µ(0)‖u′′m(0)‖2V + ‖u1m‖2H + µ(0)‖u0m‖2V

+
∫ t

0

[
2(2 + λ)

|µ′(ξ)|
µ(ξ)

+ 2
|µ′(ξ)|2

µ(ξ)2
+
|µ′′(ξ)|
µ(ξ)

+ 2λ
|µ′′(ξ)|2

µ(ξ)2

+ 8λ
|µ′(ξ)|4

µ(ξ)4

]
‖u′′′m(ξ)‖2Hdξ

+
∫ t

0

( |µ′(ξ)|
µ(ξ)

+ 2
|µ′(ξ)|2

R2µ(ξ)3
+ 2

λ|µ′(ξ)|
R2µ(ξ)2

+
|µ′′(ξ)|
R2µ(ξ)2

)
µ(ξ)‖u′′m(ξ)‖2V dξ

+ 2
∫ t

0

|µ′(ξ)|
µ(ξ)

µ(ξ)‖um(ξ)‖2V dξ.

We consider

ϕ3(ξ) = 2(2 + λ)
|µ′(ξ)|
µ(ξ)

+ 2
|µ′(ξ)|2

µ(ξ)2
+
|µ′′(ξ)|
µ(ξ)

+ 2λ
|µ′′(ξ)|2

µ(ξ)2

+ 8λ
|µ′(ξ)|4

µ(ξ)4
+
|µ′(ξ)|
µ(ξ)

+ 2
|µ′(ξ)|2

R2µ(ξ)3
+ 2

λ|µ′(ξ)|
R2µ(ξ)2

+
|µ′′(ξ)|
R2µ(ξ)2

.
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Therefore
‖u′′′m(t)‖2H + µ(t)‖u′′m(t)‖2V + ‖u′m(t)‖2H + µ(t)‖um(t)‖2V

+ 2λ
∫ t

0

‖u′′′m(ξ)‖2Hdξ + 2λ
∫ t

0

‖u′m(ξ)‖2Hdξ

≤ ‖u′′′m(0)‖2H + µ(0)‖u′′m(0)‖2V + ‖u1m‖2H + µ(0)‖u0m‖2V

+
∫ t

0

ϕ3(ξ)
(
‖u′′′m(ξ)‖2H + µ(ξ)‖u′′m(ξ)‖2V + µ(ξ)‖um(ξ)‖2V

)
dξ.

(3.29)

Now we estimate ‖u′′′m(0)‖H and ‖u′′m(0)‖V . Differentiating (3.9) with respect to
t and putting t = 0 and w = u′′′m(0) we infer

‖u′′′m(0)‖2H ≤ (µ(0)‖∆u1m‖H + |µ′(0)|‖∆u0m‖H + λ‖u′′m(0)‖H)‖u′′′m(0)‖H .
From this inequality, (3.7), (3.8) and (3.17) we obtain

‖u′′′m(0)‖H ≤ µ(0)‖∆u1‖H + |µ′(0)|‖∆u0‖H + λ(µ(0)‖∆u0‖H + λ‖u1‖H). (3.30)

On the other hand, from the approximate equation we have

u′′m(0)− µ(0)∆um(0) + λu′m(0) = 0 in Vm.

Thus, using the convergence (3.7) and (3.8) we infer

‖u′′m(0)‖V = ‖µ(0)∆um(0)− λu′m(0)‖V ≤ µ(0)‖∆u0‖V + λ‖u1‖V + η, (3.31)

for some η > 0. From (3.29)–(3.31) we conclude that

‖u′′′m(t)‖2H + µ(t)‖u′′m(t)‖2V + ‖u′m(t)‖2H + µ(t)‖um(t)‖2V

+ 2λ
∫ t

0

‖u′′′m(ξ)‖2Hdξ + 2λ
∫ t

0

‖u′m(ξ)‖2Hdξ

≤ R2
3 +

∫ t

0

ϕ3(ξ)
(
‖u′′′m(ξ)‖2H + µ(ξ)‖u′′m(ξ)‖2V + µ(ξ)‖um(ξ)‖2V

)
dξ,

where

R2
3 = µ(0)‖∆u1‖H + |µ′(0)|‖∆u0‖H + λ(µ(0)‖∆u0‖H + λ‖u1‖H)

+ µ(0)2‖∆u0‖V + λµ(0)‖u1‖V + ‖u1‖2H + µ(0)‖u0‖2V + η.

The Gronwall Inequality allow us to infer that

‖u′′′m(t)‖2H + µ(t)‖u′′m(t)‖2V + ‖u′m(t)‖2H + µ(t)‖um(t)‖2V

≤ R2
3 exp

(∫ T

0

ϕ3(ξ)dξ
)
,

(3.32)

for all t ∈ [0, T ].
Passage to the limit: Estimates (3.11), (3.18), and (3.32) yield a subsequence
of (um)m∈N, which we still denote in the same way, and function u in the space
L∞loc(0,∞;V ) such that

um
∗
⇀ u in L∞loc(0,∞;V ),

u′m
∗
⇀ u′ in L∞loc(0,∞;V ),

u′′m
∗
⇀ u′′ in L∞loc(0,∞;V ),

u′′′m
∗
⇀ u′′′ in L∞loc(0,∞;H).
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This convergence allow us to pass to limit in the approximate equation (3.9) and
infer that (3.6) holds a.e. in (0, T ). Therefore, for a.e. t ∈ [0, T ], we have

−∆u(t) = − 1
µ(t)

(u′′(t) + λu′(t)). (3.33)

We observe the right hand side of (3.33) is in V which is a subset of H1(Rn). As
u(t) ∈ V ⊂ H1(Rn) it follows, by elliptic regularity, that u(t) ∈ H3(Rn), a.e. in
[0, T ]. Differentiating (3.33) we have

−∆u′(t) = −µ(t)(u′′′(t) + λu′′(t))− (u′′(t) + λu′(t))µ′(t)
(µ(t))2

, (3.34)

As the right hand side of (3.34) is in L2(Rn), we conclude, by elliptic regularity, that
u′ ∈ L∞loc(0,∞;W ). The proof of (3.2), (3.3) and the uniqueness are standard. �

Proposition 3.2. Suppose that (3.4) holds. Then for each u0 ∈ W and u1 ∈ V
Problem (3.1)–(3.3) has a unique solution satifying

u ∈ C0([0,∞);W ) ∩ C1([0,∞);V ) ∩ C2([0,∞);H). (3.35)

Proof. Let (u0, u1) ∈W × V be the initial data. As W ∩H3(Rn) and W are dense
in W and V , respectively, then there exists two sequences (u0

m)m∈N and (u1
m)m∈N

in W ∩H3(Rn) and W , respectively, such that

u0
m → u0 in W and u1

m → u1 in V, when m→∞. (3.36)

By Proposition 3.1, for each pair of initial data (u0
m, u

1
m), there exists um solution

of (3.1)–(3.3) in the class (3.5). Therefore

u′′m − µ∆um + λu′m = 0 in L∞loc(0,∞;V ), (3.37)

u′′′m − µ′∆um − µ∆u′m + λu′′m = 0 in L∞loc(0,∞;H). (3.38)

Let η,m be natural numbers. Define vm = uη − um, from (3.37) we have

v′′m − µ∆vm + λv′m = 0 in L∞loc(0,∞;V ). (3.39)

Let T > 0 be a real number arbitrarily fixed. Multiplying (3.39) by v′m and inte-
grating in Rn × (0, T ), we obtain

‖v′m(t)‖2H + µ(t)‖vm(t)‖2V ≤ ‖v′m(0)‖2H + µ(0)‖vm(0)‖2V . (3.40)

On the other hand, from (3.38) we obtain

v′′′m − µ′∆vm − µ∆v′m + λv′′m = 0 in L∞loc(0, T ;H). (3.41)

Multiplying (3.41) by v′′m, integrating in Rn × (0, T ) and taking the same way of
(3.16), we infer that

‖v′′m(t)‖2H + µ(t)‖v′m(t)‖2V + 2λ
∫ t

0

‖v′′m(ξ)‖2Hdξ

≤ ‖v′′m(0)‖2H + µ(0)‖v′m(0)‖2V +
∫ t

0

ϕ2(ξ)
(
‖v′′m(ξ)‖2H + µ(ξ)‖v′m(ξ)‖2V

)
dξ.

This inequality, (3.39) and Gronwall’s inequality allow us to infer

‖v′′m(t)‖2H + µ(t)‖v′m(t)‖2V + 2λ
∫ t

0

‖v′′m(ξ)‖2Hdξ

≤ (2µ(0)‖∆vm(0)‖2H + 2λ‖v′m(0)‖2H + µ(0)‖v′m(0)‖2V ) exp
(∫ T

0

ϕ2(ξ)dξ
)
,

(3.42)
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for all t ∈ [0, T ].
Therefore, for all T > 0, the convergence (3.36) and the estimates (3.40) and

(3.42) give us that (um)m∈N is a Cauchy sequence in C1([0, T ];V ) ∩ C2([0, T ];H).
Thus, there exists u ∈ C1([0, T ];V ) ∩ C2([0, T ];H) such that

um → u in C1([0, T ];V ) ∩ C2([0, T ];H).

The regularity u ∈ C0([0, T ];W ) is obtained by standard elliptic regularity argu-
ment (as the proof of Proposition 3.1). Passing to the limit in the equation (3.37)
we conclude the proof. �

Remark 3.3. If (u0, u1) ∈ W × V , then it is possible to get an existence result
with the function µ less regular than (3.4). In fact, we can consider µ ∈W 1,1

loc (0,∞)
and to prove that there exists a function u in the class

u ∈ L∞loc(0,∞;W ), u′ ∈ L∞loc(0,∞;V ), u′′ ∈ L∞loc(0,∞;H)

which is the unique solution of (3.1)–(3.3). The proof is analogous to estimate I
and II of the Proposition 3.1. We will use this regularity in our next result.

Now, we prove the local existence result. We consider the assumption

M ∈ C2(R+; R+); M(s) ≥ m0 > 0, for all s ∈ [0,∞). (3.43)

Theorem 3.4 (Local existence). Suppose that (3.43) holds. Then for each u0 ∈W
and u1 ∈ V there exists a value Tmax > 0 and a unique solution u : R×[0, Tmax)→ R
of (1.1) satisfying

u ∈ C0([0, Tmax);W ) ∩ C1([0, Tmax);V ) ∩ C2([0, Tmax);H) . (3.44)

Proof. We will use the Banach contraction theorem. For each T > 0 and ρ > 0 we
define the space

Xρ,T =
{
u ∈ L∞(0, T ;W ); u′ ∈ L∞(0, T ;V ); u′′ ∈ L∞(0, T ;H);

‖u‖L∞(0,T ;V ) + ‖u′‖L∞(0,T ;V ) ≤ ρ, u(0) = u0, u
′(0) = u1

}
endowed with the distance

d(u, v) = ‖u− v‖L∞(0,T ;V ) + ‖u′ − v′‖L∞(0,T ;H).

We have that Xρ,T with d(u, v) is a complete metric space. Given v ∈ Xρ,T , we
have that µ(t) := M(‖v(t)‖2V ) ∈W 1,1(0, T ). Let z be the unique solution of

z′′ −M(‖v(t)‖2V )∆z + λz′ = 0 in Rn × (0, T ), (3.45)

z(x, 0) = u0(x), x ∈ Rn, (3.46)

z′(x, 0) = u1(x), x ∈ Rn. (3.47)

Define S : Xρ,T → H by
S(v) = z,

where H is the set of solutions of (3.45)–(3.47) associated with v. Now we will
proof that S maps Xρ,T into itself. In fact, we observe that

|µ′(t)| = |2M ′(‖v(t)‖2V )((v(t), v′(t)))| ≤ 2k‖v(t)‖V ‖v′(t)‖V ≤ 2kρ2, (3.48)

where k = max0≤s≤ρ2 |M ′(s)|. Using the same arguments of (3.11) we have

m0‖zm(t)‖2V ≤ R2
1 exp

(
2
∫ T

0

|µ′(ξ)|
µ(ξ)

dξ
)
. (3.49)
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Combining (3.48) with (3.49) we obtain

m
1/2
0 ‖zm(t)‖V ≤ R1 exp

(2kρ2

m0
T
)
, for all t ∈ [0, T ]. (3.50)

On the other hand, taking the same way of (3.18) we have

m0‖z′(t)‖2V ≤ R2
2 exp

(∫ T

0

|µ′(ξ)|
µ(ξ)

[
2 + λ

(
1 +

1
R2m0

)]
dξ
)
, (3.51)

for all t ∈ [0, T ]. The estimates (3.48) and (3.51) allow us to infer

m
1/2
0 ‖z′(t)‖V ≤ R2 exp

(kρ2T

m0

[
2 + λ

(
1 +

1
R2m0

)])
, (3.52)

for all t ∈ [0, T ]. Since (3.50) and (3.52) hold, we have

‖zm(t)‖V + ‖z′(t)‖V ≤ 2
R1 +R2

m
1/2
0

exp
(kρ2T

m0

[
3 + λ

(
1 +

1
R2m0

)])
,

for all t ∈ [0, T ]. Choosing ρ > 2R1+R2

m
1/2
0

and T < ln
( m

1/2
0 ρ

2(R1+R2)

) 1
κ , where κ =

kρ2

m0

[
3 + λ

(
1 + 1

R2m0

)]
, we conclude that

‖zm(t)‖V + ‖z′(t)‖V < ρ, for all t ∈ [0, T ],

therefore S(Xρ,T ) ⊂ Xρ,T .
Now we prove that S is a contraction. We consider v1, v2 ∈ Xρ,T and define

z1 = S(v1), z2 = S(v2) and ω = z1 − z2. Therefore,

z′′1 −M(‖v1(t)‖2V )∆z1 + λz′1 = 0 in Rn × (0, T ), (3.53)

z′′2 −M(‖v2(t)‖2V )∆z2 + λz′2 = 0 in Rn × (0, T ), (3.54)

ω(x, 0) = ω′(x, 0) = 0, x ∈ Rn. (3.55)

Then equations (3.53) and (3.54) give us

ω′′ −M(‖v1(t)‖2V )∆ω + λω′ = [M(‖v1(t)‖2V )−M(‖v2(t)‖2V )]∆z2 (3.56)

in Rn × (0, T ). Multiplying (3.56) by ω′ and integrating over Rn we obtain

1
2
d

dt
(‖ω′(t)‖2H +M(‖v1(t)‖2V )‖ω(t)‖2V ) + λ‖ω′(t)‖2H

= M ′(‖v1(t)‖2V )((v1(t), v′1(t)))‖ω(t)‖2V
+ [M(‖v1(t)‖2V )−M(‖v2(t)‖2V )](∆z2(t), ω′(t)).

(3.57)

Now, we are going to estimate the right hand side of (3.57). Since v1, v2 ∈ Xρ,T we
have

M ′(‖v1(t)‖2V )((v1(t), v′1(t)))‖ω(t)‖2V ≤ kρ2‖ω(t)‖2V . (3.58)

From the mean value theorem, there exists s∗ ∈ R+ between ‖v1(t)‖2V and ‖v2(t)‖2V
such that

|M(‖v1(t)‖2V )−M(‖v2(t)‖2V )| ≤ |M ′(s∗)|(‖v1(t)‖2V − ‖v2(t)‖2V ).

As v1, v2 ∈ Xρ,T , we have that s∗ ≤ ρ2 and this implies that |M ′(s∗)| ≤ k. Thus

|M(‖v1(t)‖2V )−M(‖v2(t)‖2V )| ≤ 2kρd(v1, v2). (3.59)
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As M(‖v2(t)‖2V )∆z2(t) = z′′2 (t) + λz′2(t), the estimate (3.11) and (3.18) give us

m
1/2
0 ‖∆z2(t)‖H ≤ ‖z′′2 (t)‖H + λ‖z′2(t)‖H

≤ 2(R1 +R2) exp
(kρ2T

m0

[
2 + λ

(
1 +

1
R2m0

)])
.

(3.60)

Integrating (3.57) from 0 to t ≤ T and using (3.58)–(3.60) we obtain

1
2

(‖ω′(t)‖2H +m0‖ω(t)‖2V ) + λ

∫ t

0

‖ω′(ξ)‖2Hdξ

≤ 2kρ2

m0

∫ t

0

m0

2
‖ω(ξ)‖2V dξ + g(t),

(3.61)

where

g(t) = 4kρd(v1, v2)(
R1 +R2

m
1/2
0

) exp
(kρ2T

m0

[
2 + λ

(
1 +

1
R2m0

)])∫ t

0

‖ω′(ξ)‖Hdξ.

As g is increasing function, the Gronwall inequality and (3.61) allow us to infer
m0

2
‖ω(t)‖2V ≤ 4kρd(v1, v2)(

R1 +R2

m
1/2
0

)

× exp
(kρ2T

m0

[
4 + λ

(
1 +

1
R2m0

)])∫ t

0

‖ω′(ξ)‖Hdξ.
(3.62)

Putting (3.62) in (3.61) and using the Brezis Lemma (see [4, page 157]) in the
resultant equation we have

‖ω′(t)‖H ≤ k1(T )Td(v1, v2) (3.63)

where

k1(T ) = 8k2ρ3T (
R1 +R2

m
3
2
0

) exp
(kρ2T

m0

[
4 + λ

(
1 +

1
R2m0

)])
+ 2kρ(

R1 +R2

m
1/2
0

) exp
(kρ2T

m0

[
2 + λ

(
1 +

1
R2m0

)])
.

Since (3.62) and (3.63) hold we obtain

‖ω(t)‖V ≤
√

2
m0

k1(T )Td(v1, v2). (3.64)

Combining (3.63) and (3.64), we have

d(z1, z2) = ‖ω(t)‖V + ‖ω′(t)‖H ≤
(

1 +
√

2
m0

)
k1(T )Td(v1, v2), (3.65)

choosing T > 0 small enough we conclude that S is a contraction. This gives us
the existence of a positive real number T0 and a function u : Rn× [0, T0]→ R local
solution of (1.1).

The next step will be to prove the existence of a maximal interval of existence.
We consider the problem

U ′′ −M(‖U(t)‖2V )∆U + λU ′ = 0 in Rn × (0, T ), (3.66)

U(x, 0) = u(x, T0), x ∈ Rn, (3.67)

U ′(x, 0) = u′(x, T0), x ∈ Rn. (3.68)
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Therefore, the calculus above gives a real number T1 > 0 and a unique solution, U ,
of (3.66)–(3.68) in the interval [0, T1]. Define

V (t) =

{
u(t) if 0 ≤ t ≤ T0,

U(t− T0) if T0 ≤ t ≤ T0 + T1,

then V is a solution of (1.1) in whole [0, T0 + T1] with initial data u0 and u1.
On the other hand, if w1 and w2 are two solutions of (1.1) in any interval, [0, T ],

of existence of solution, then defining w = w1 − w2 and taking the same way of
(3.53)–(3.65) we can infer that

‖w(t)‖V + ‖w′(t)‖H ≤ C[‖w(0)‖V + ‖w′(0)‖H ] = 0,

which shows us that the local solution of (1.1) is unique.
Now, for each i, we define Ii = [0, Ti] ⊂ R, where Ti is characterized has the

positive real number such that ui : Rn×[0, Ti]→ R is the local solution of (1.1). By
the uniqueness proved above, we conclude that if Ti < Tj , then ui = uj in [0, Ti].

We will denote by J any index set. Define C = {Ii; i ∈ J} ∪ {∪i∈JIi} endowed
with the order relation A � B ⇐⇒ A ⊂ B or A = B. We observe that, if Θ is a
subset of C, which is totally ordered set with the order induced by C, then the set
Υ = ∪i∈JIi ∈ C is an upper bound of Θ. Thus, by Zorn’s Lemma there exists a
maximal element, Imax, of C. By C definition this element is given by

Imax = [0, Tmax] = ∪i∈J [0, Ti].

Now, we conclude that the local solution has the regularity (3.44). Let u ∈ Xρ,T

the local solution of (1.1) obtained above. We define µ(t) = M(‖u(t)‖2V ) and
consider v the unique solution of the linear problem

v′′ −M(‖u(t)‖2V )∆v + λv′ = 0 in Rn × (0, T ), (3.69)

v(x, 0) = u0(x), x ∈ Rn, (3.70)

v′(x, 0) = u1(x), x ∈ Rn (3.71)

given by Proposition 3.2. Then v as the regularity (3.35). Since the solution v is
unique and u is a solution of (3.69)–(3.71), then u = v. Therefore u also has the
regularity (3.35). �

To prove our global existence result we need the following additional assumption
on M :

M ′(s) ≤

{
C1 if s ≤ 1,
C2s if s > 1.

(3.72)

For each pair (u0, u1) ∈W × V we set

a = 1− 6
m0
‖u0‖2V (C1 + 3C2),

b =
8
m0

(
C1 + 6C2‖u0‖2V

) (
3‖u1‖2V + 2M(‖u0‖2V )‖∆u0‖2H

)
,

c =
32C2

m0

(
3‖u1‖2V + 2M(‖u0‖2V )‖∆u0‖2H

)2
.

Theorem 3.5 (Global existence). Suppose that M satisfies (3.43) and (3.72). Let
u0 ∈W be such that

‖u0‖2V <
m0

6(C1 + 3C2)
, (3.73)
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u1 ∈ V , λ > 0 and

λ >
(b+

√
b2 + 4ac
2a

)1/2

. (3.74)

Then, (1.1) has a unique solution with

u ∈ C0
b ([0,∞);W ), u′ ∈ C0

b ([0,∞);V ), u′′ ∈ C0
b ([0,∞);H) .

Remark 3.6. From (3.73) we conclude that a > 0. Define

ψ0 =
3
2
‖u1‖2V +

3λ2

8
‖u0‖2V +M(‖u0‖2V )‖∆u0‖2H .

It is not difficult to see that the inequality
8C1

λ
ψ0 +

64C2

λ3
ψ2

0 <
λm0

2
(3.75)

is equivalent to
aλ4 − bλ2 − c > 0. (3.76)

We know that (3.76) holds when (3.74) holds.

To prove our result of global existence we will start considering regular initial
data u0 and u1, precisely,

u0 ∈W ∩H3(Rn) and u1 ∈W. (3.77)

Therefore, Theorem 3.4 gives us the existence of a unique function u solution of
(1.1). We consider µ(t) = M(‖u(t)‖2V ), then µ ∈W 2,1

loc (0,∞). Thus, the Proposition
3.1 gives us w, in the class (3.5), solution of (3.1)–(3.3) with µ defined above. But
u also is a solution of (3.1)–(3.3). Then, by the uniqueness of solution, we conclude
that u = w. Therefore u has the following regularity, which is gives by Proposition
3.1,

u ∈ L∞loc(0,∞;W ∩H3(Rn)), u′ ∈ L∞loc(0,∞;W ),

u′′ ∈ L∞loc(0,∞;V ), u′′′ ∈ L∞loc(0,∞;H).
(3.78)

Proof of Theorem 3.5 with regular data. To extend the local solution given by The-
orem 3.4 it is sufficient to prove that there exists a constant C such that

‖u′(t)‖2V + ‖∆u(t)‖2H + ‖u(t)‖2V ≤ C, (3.79)

for all t ≥ 0. Multiplying (1.1) by −∆u′ and integrating over Rn we obtain

1
2
d

dt
(‖u′(t)‖2V +M(‖u(t)‖2V )‖∆u(t)‖2H) + λ‖u′(t)‖2V

= 2‖∆u(t)‖2HM ′(‖u(t)‖2V )((u(t), u′(t))).
(3.80)

On the other hand, multiplying (1.1) by −∆u, integrating over Rn and multi-
plying the resultant equation by λ/2 we have

λ

2

[ d
dt

(
((u′(t), u(t)))+

λ

2
‖u(t)‖2V

)
−‖u′(t)‖2V +M(‖u(t)‖2V )‖∆u(t)‖2H)

]
= 0. (3.81)

Combining (3.80) and (3.81) and using the assumption (3.72) (which implies that
M ′(s) ≤ C1 + C2s, for all s ≥ 0) we infer

1
2
ψ′(t) +

λ

2
‖u′(t)‖2V +

λm0

2
‖∆u(t)‖2H

≤ 2(C1 + C2‖u(t)‖2V )‖u(t)‖V ‖u′(t)‖V ‖∆u(t)‖2H ,
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where

ψ(t) = ‖u′(t)‖2V +M(‖u(t)‖2V )‖∆u(t)‖2H +
λ

2
((u′(t), u(t))) +

λ2

4
‖u(t)‖2V .

From here,
1
2
ψ′(t) +

λ

2
‖u′(t)‖2V +

(λm0

2
− ϕ(t)

)
‖∆u(t)‖2H ≤ 0, (3.82)

where
ϕ(t) = 2(C1 + C2‖u(t)‖2V )‖u(t)‖V ‖u′(t)‖V .

Now, we prove that

ϕ(t) <
λm0

2
, for all t ≥ 0. (3.83)

In fact, we observe the inequality

λ

2
((u′(t), u(t))) ≥ −1

2
‖u′(t)‖2V −

λ2

8
‖u(t)‖2V

implies

ψ(t) ≥ 1
2
‖u′(t)‖2V +M(‖u(t)‖2V )‖∆u(t)‖2H +

λ2

8
‖u(t)‖2V . (3.84)

The estimate (3.84) gives us

‖u(t)‖2V ≤
8ψ(t)
λ2

and ‖u′(t)‖2V ≤ 2ψ(t).

Using this estimate on ϕ definition, we have

ϕ(t) ≤ 8C1

λ
ψ(t) +

64C2

λ3
ψ2(t). (3.85)

Since ψ(0) ≤ ψ0 from (3.85) and (3.75) we obtain

ϕ(0) ≤ 8C1

λ
ψ0 +

64C2

λ3
ψ2

0 <
λm0

2
.

Suppose that (3.83) is not true. As the function t 7→ ϕ(t) is continuous, there
exists t∗ > 0 such that

ϕ(t) <
λm0

2
, for all t ∈ [0, t∗), and ϕ(t∗) =

λm0

2
. (3.86)

Integrating (3.82) from 0 to t∗ we obtain

ψ(t∗) < ψ0. (3.87)

From (3.75), (3.85) and (3.87) we conclude that ϕ(t∗) < λm0
2 which is a contraction

with (3.86). Combining (3.82)–(3.84) we can conclude (3.79). �

Now, we prove the theorem with u0 and u1 less regular than (3.77).

Proof of Theorem 3.5. Let u0 ∈ W and u1 ∈ V be a couple of initial data. It is
sufficient to prove that there exists a positive constant C such that

‖u′(t)‖2V + ‖∆u(t)‖2H + ‖u(t)‖2V ≤ C, (3.88)

for all t ≥ 0. As W ∩H3(Rn) and W are dense in W and V , respectively, we can
use the same arguments of the proof of the Proposition 3.2 and conclude that there
exists a sequence (um)m∈N of regular solutions (in the class (3.78)) such that

um → u in C1([0, T ];V ) ∩ C2([0, T ];H) and ∆um → ∆u in C0([0, T ];H).



EJDE-2016/247 EXISTENCE, UNIQUENESS AND EXPONENTIAL DECAY 19

This gives us

‖u′m(t)‖2V + ‖∆um(t)‖2H + ‖um(t)‖2V → ‖u′(t)‖2V + ‖∆u(t)‖2H + ‖u(t)‖2V , (3.89)

as m→∞.
On the other hand, from the proof with regular data, for all m ∈ N, we have

‖u′m(t)‖2V + ‖∆um(t)‖2H + ‖um(t)‖2V ≤ C. (3.90)

Combining (3.89) with (3.90) we conclude (3.88). �

4. Exponential decay

To state our stability result we will use the know lemma due Nakao (see [29]).

Lemma 4.1 (Nakao). Let ϕ(t) be a bounded non negative function on [0,∞) sat-
isfying

sup
t≤τ≤t+1

ϕ(τ) ≤ C(ϕ(t)− ϕ(t+ 1)) + h(t)

where C > 0 is a constant and h is a non negative function satisfying h(t) ≤
r0 exp(−s0t), for all t ≥ 0, r0, s0 are positive constants. Then there exist positive
constants r1 and s1 such that

ϕ(t) ≤ r1 exp(−s1t).

Let u the solution of (1.1) given by the Theorem 3.5. Define the weak energy by

Ew(t) =
1
2
(
‖u′(t)‖2H +M(‖u(t)‖2V )

)
(4.1)

where
M(s) =

∫ s

0

M(ξ)dξ.

Theorem 4.2 (Weak energy decay). Under the assumptions of Theorem 3.5, sup-
pose that M ′(s) ≥ 0, for all s ≥ 0. There exist positive constants r2 and s2 such
that

Ew(t) ≤ r2 exp(−s2t), for all t ≥ 0. (4.2)

Proof. Multiplying (3.6) by u′ and integrating over Rn we have

E′w(t) = −λ‖u′(t)‖2H < 0, (4.3)

thus Ew is a decreasing function. Integrating (4.2) from t to t+ 1 we obtain

λ

∫ t+1

t

‖u′(ξ)‖2Hdξ = Ew(t)− Ew(t+ 1) := F 2(t). (4.4)

By the mean value theorem for integrals, there exist t1 ∈ [t, t+ 1
4 ] and t2 ∈ [t+ 3

4 , t+1]
such that

‖u′(t1)‖2H
4

=
∫ t+ 1

4

t

‖u′(ξ)‖2Hdξ and
‖u′(t2)‖2H

4
=
∫ t+1

t+ 3
4

‖u′(ξ)‖2Hdξ. (4.5)

From (4.4) and (4.5) we obtain

‖u′(t1)‖2H + ‖u′(t2)‖2H ≤
4
λ
F 2(t). (4.6)

From the definition (4.1) we infer

‖u(t)‖2H ≤
2

m0R2
Ew(t). (4.7)
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On the other hand, multiplying (1.1) by u and integrating over Rn × (t1, t2) we
have∫ t2

t1

M(‖u(ξ)‖2V )‖u(ξ)‖2V dξ = (u′(t1), u(t1))− (u′(t2), u(t2))

+
∫ t2

t1

‖u′(ξ)‖2Hdξ − 2λ
∫ t2

t1

(u′(ξ), u(ξ))dξ.
(4.8)

Now, we estimate each term of the right hand side of (4.8). Let ε > 0 be an
arbitrary real number fixed. From (4.4), (4.6) and (4.7) we have

|(u′(ti), u(ti))| ≤
2
λε
F 2(t) +

ε

m0R2
Ew(t), for i = 1, 2; (4.9)∫ t2

t1

‖u′(ξ)‖2Hdξ ≤
1
λ
F 2(t); (4.10)

2λ
∫ t2

t1

(u′(ξ), u(ξ))dξ ≤ 1
ε
F 2(t) +

2λε
m0R2

Ew(t). (4.11)

Combining (4.8)–(4.11) we obtain∫ t2

t1

M(‖u(ξ)‖2V )‖u(ξ)‖2V dξ ≤
( 4
λε

+
1
λ

+
1
ε

)
F 2(t) +

2ε
m0R2

(1 + λ)Ew(t). (4.12)

Since

Ew(t) ≤ 1
2

(‖u′(t)‖2H +M(‖u(t)‖2V )‖u(t)‖2V ),

(4.4) and (4.12) allow us to infer∫ t2

t1

Ew(ξ)dξ ≤
( 4
λε

+
3

2λ
+

1
ε

)
F 2(t) +

2ε
m0R2

(1 + λ)Ew(t).

From this and by the mean value theorem for integrals, there exists t∗ ∈ [t1, t2]
such that

Ew(t∗) ≤ 2
∫ t2

t1

Ew(ξ)dξ ≤ 2
( 4
λε

+
3

2λ
+

1
ε

)
F 2(t) +

2ε
m0R2

(1 + λ)Ew(t). (4.13)

Integrating (4.3) from t to t∗ and using (4.13), we have

Ew(t) ≤ 2
( 8
λε

+
3

2λ
+

1
ε

+
1
2

)
F 2(t) +

2ε
m0R2

(1 + λ)Ew(t),

taking ε > 0 small enough, we conclude that there exist a positive constant C > 0
such that

Ew(t) ≤ CF 2(t),

this and Nakao’s Lemma give (4.2). �

To prove our result of exponential decay of strong energy we start by considering
(as in Theorem 3.5) regular initial data u0 and u1, precisely,

u0 ∈W ∩H3(Rn) and u1 ∈W. (4.14)

Therefore, the solution u is in the class

u ∈ L∞loc(0,∞;W ∩H3(Rn)), u′ ∈ L∞loc(0,∞;W ),

u′′ ∈ L∞loc(0,∞;V ), u′′′ ∈ L∞loc(0,∞;H).
(4.15)
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Let u0 and u1 with the regularity (4.14) and u the solution of (1.1), given by
Theorem 3.5, with the regularity (4.15). We define the strong energy associated to
(1.1) by

Es(t) =
1
2

(‖u′(t)‖2V +M(‖u(t)‖2V )‖∆u(t)‖2H).

Now we can establish our second decay result:

Theorem 4.3 (Strong energy decay). Under the assumptions of Theorem 4.2 sup-
pose that(4.14) holds. Then there exist positive constants r3 and s3 such that

Es(t) ≤ r3 exp(−s3t), for all t ≥ 0. (4.16)

Proof. Multiplying (1.1) by −∆u′ and integrating over Rn we obtain

1
2
E′s(t) + λ‖u′(t)‖2V = 2‖∆u(t)‖2HM ′(‖u(t)‖2V )((u(t), u′(t))). (4.17)

From here and using the assumption (3.72), we obtain

1
2
E′s(t)+λ‖u′(t)‖2V ≤ 2(C1+C2‖u(t)‖2V )‖u(t)‖V ‖u′(t)‖V ‖∆u(t)‖2H := I(t). (4.18)

Integrating over [t, t+ 1] we have

λ

∫ t+1

t

‖u′(ξ)‖2V dξ ≤ Es(t)− Es(t+ 1) + sup
t≤τ≤t+1

I(τ) := D2(t). (4.19)

This and by mean value theorem we obtain t1 ∈ [t, t+ 1
4 ] and t2 ∈ [t+ 3

4 , t+ 1] such
that

‖u′(ti)‖V ≤
1√
λ
D(t), for i = 1, 2. (4.20)

Moreover, the mean value theorem gives us a t∗ ∈ [t1, t2] such that

Es(t∗) ≤ 2
∫ t2

t1

Es(ξ)dξ. (4.21)

Multiplying the equation (1.1) by −∆u and integrating over Rn we have

d

dt
((u′(t), u(t))) + λ((u′(t), u(t)))− ‖u′(t)‖2V +M(‖u(t)‖2V )‖∆u(t)‖2H = 0. (4.22)

From (4.19) and (4.20) we obtain

((u′(ti), u(ti))) ≤ CD(t) sup
t≤τ≤t+1

‖u(τ)‖V , for i = 1, 2; (4.23)

λ

∫ t2

t1

((u′(t), u(t)))dt ≤ CD2(t) + sup
t≤τ≤t+1

‖u(τ)‖2V ; (4.24)∫ t2

t1

‖u′(t)‖2V dt ≤ CD2(t). (4.25)

Integrating (4.22) over the interval [t1, t2] and using (4.23)–(4.25), we obtain∫ t2

t1

M(‖u(ξ)‖2V )‖∆u(ξ)‖2Hdξ

≤ CD2(t) + CD(t) sup
t≤τ≤t+1

‖u(τ)‖V + sup
t≤τ≤t+1

‖u(τ)‖2V .
(4.26)
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Integrating (4.17) from t to t∗ and observing (4.18) and (4.21), we have

Es(t) = Es(t∗) + λ

∫ t∗

t

‖u′(ξ)‖2V dξ − 2
∫ t∗

t

‖∆u(ξ)‖2HM ′(‖u(ξ)‖2V )((u(ξ), u′(ξ))dξ

≤ C
∫ t+1

t

‖u′(ξ)‖2V dξ + 2
∫ t2

t1

M(‖u(ξ)‖2V )‖∆u(ξ)‖2Hdξ +
∫ t2

t1

I(ξ)dξ.

This, (4.19) and (4.26) give us

Es(t) ≤ C(D2(t) +D(t) sup
t≤τ≤t+1

‖u(τ)‖V + sup
t≤τ≤t+1

‖u(τ)‖2V + sup
t≤τ≤t+1

I(τ)).

From this inequality and as

‖u(t)‖2V ≤
2
m0

Ew(t),

we have

Es(t) ≤ C(D2(t) + Ew(t) + sup
t≤τ≤t+1

I(τ)). (4.27)

We observe that

CI(τ) ≤
[
C
(
C1 +

2C2

m0
Ew(0)

)
Es(0)

]2
‖u(τ)‖2V +

1
4
‖u′(τ)‖2V

≤ CEw(t) +
1
4
Es(t).

(4.28)

Since

D2(t) = Es(t)− Es(t+ 1) + sup
t≤τ≤t+1

I(τ)

we can combine (4.27) and (4.28) and we conclude that

Es(t) ≤ C(Es(t)− Es(t+ 1) + Ew(t)),

this inequality, (4.2) and Nakao’s lemma imply (4.16). �

Remark 4.4. Theorem 4.3 can be proved for less regular initial data. In fact, let
(u0, u1) ∈W ×V be a couple of initial data. As W ∩H3(Rn) and W are dense in W
and V , respectively, we can use the same arguments of the proof of the Proposition
3.2 and conclude that there exists a sequence (um)m∈N of regular solutions (in the
class (4.15)) such that

um → u in C1([0, T ];V ) ∩ C2([0, T ];H) and ∆um → ∆u in C0([0, T ];H).

This gives us that

1
2

(‖u′m(t)‖2V +M(‖um(t)‖2V )‖∆um(t)‖2H)

→ 1
2

(‖u′(t)‖2V +M(‖u(t)‖2V )‖∆u(t)‖2H) := Es(t),
(4.29)

when m→∞. The convergence (4.29) and (4.16) allow us to infer that

Es(t) ≤ r3 exp(−s3t), for all t ≥ 0.
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5. Viscoelastic dissipation

In this section we give an overview on the proof of viscoelastic damping case, i.e.,
we will describe results concerning (1.4) and we show what are the main differences
when the proofs are compared with the ones give in previews sections. When we
compare with the frictional case, the main problem is into estimate III of proposition
3.1. If we try to take the same way, it will be necessary to differentiate µ three
times, but to prove the local existence result we do not have regularity enough on
solution to impose some assumption on µ′′′. Therefore, the strategy was change
the estimate III. Below, we describe what was our way to overcome the difficulties.

Suppose that the assumption (3.4) holds and let g : R+ → R+ be differentiable
function such that g′ ∈ L2(0,∞), g(0) > 0 and c0 := m0−

∫∞
0
g(s)ds > 0. Suppose

that there exists a differentiable function, l, such that

g′(t) ≤ −l(t)g(t), for all t ≥ 0, (5.1)∣∣ l′(t)
l(t)

∣∣ ≤ k, l(t) > 0, l′(t) ≤ 0, for all t > 0. (5.2)

Proposition 5.1. Suppose (3.4), (5.1) and (5.2) hold. Then for each u0 ∈ W ∩
H3(Rn) and u1 ∈W there exists a unique function u satisfying

u ∈ L∞loc(0,∞;W ∩H3(Rn)), u′ ∈ L∞loc(0,∞;W ),
u′′ ∈ L∞loc(0,∞;V ), u′′′ ∈ L∞loc(0,∞;H),

and that is a solution of

u′′ − µ(t)∆u+
∫ t

0

g(t− s)∆u(s)ds = 0 in Rn × (0,∞),

u(x, 0) = u0(x), x ∈ Rn,
u′(x, 0) = u1(x), x ∈ Rn,

Proof. Let (wj)j∈N be an orthonormal bases in W ∩H3(Rn). For each m ∈ N, we
denote Um the m-dimensional subspaces spanned by the first m vectors of (wj)j∈N.
Let T > 0 be any fixed positive number. From Ordinary Differential Equations
Theory for each m ∈ N we can find 0 < Tm ≤ T , um : Rn× [0, Tm]→ R of the form

um(x, t) =
m∑
j=1

ρjm(t)wj(x),

satisfying the approximate problem

(u′′m(t), wj) + µ(t)((um(t), wj))−
∫ t

0

g(t− s)((um(s), wj))ds = 0;

um(0) =
m∑
i=1

ui0wi → u0 in W ∩H3(Rn), u′m(0) =
m∑
i=1

ui1wi → u1 in W.

(5.3)

Estimate I and II: Taking the same way of estimate I and II of Proposition 3.1
and making usual calculus it is possible to prove that

‖u′m(t)‖2H + c0‖um(t)‖2V ≤ R4 exp
( 1

2c0

∫ t

0

|µ′(ξ)| dξ
)
,
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for all t ∈ [0, T ], where R4 = ‖u1‖2H + µ(0)‖u0‖2V , and

‖u′′m(t)‖2H + ‖u′m(t)‖2V + ‖um(t)‖2V ≤ R5 exp
(∫ t

0

φ1(ξ) dξ
)
, (5.4)

for all t ∈ [0, T ], where φ1 is a function that depends only of µ, µ′, µ′′ and g, and
the constant R5 depends only on the initial data, µ(0), c0 and g.
Estimate III: From (5.3) we have

((u′′m(t), w)) + µ(t)((um(t), w))−
∫ t

0

g(t− s)((um(s), w))ds = 0

for all w ∈ V and a.e. in (0, T ). Denoting by D′(Q), where Q = Rn × (0, T ), the
space of distribution, we obtain〈

− µ(·)∆um(·) +
∫ ·

0

g(· − s)∆um(s), θ
〉
D′(Q)×D(Q)

=
∫ T

0

∫
Rn
u′′mθ dx dt,

for all θ ∈ D(Q). As u′′m ∈ L2(Q), we obtain

∆
(
− µ(t)um(t) +

∫ t

0

g(t− s)um(s) ds
)
∈ L2(Rn) (5.5)

a.e. in (0, T ). Therefore,

u′′m − µ(t)∆um +
∫ t

0

g(t− s)∆um(s) ds = 0, (5.6)

a.e. in Rn× (0, T ). For each t ∈ (0, T ) fixed, we consider the elliptic operator, A(t),
defined by

A(t)(um(t)) = ∆
(
− µ(t)um(t) +

∫ t

0

g(t− s)um(s) ds
)
.

Then, from (5.5) and (5.6), for each t ∈ (0, T ) and m ∈ N, we obtain

A(t)(um(t)) = u′′m(t) ∈ L2(Rn).

From this and using elliptic regularity, we conclude that um(t) ∈ H2(Rn) and

‖um(t)‖H2(Rn) ≤ ‖u′′m(t)‖L2(Rn) (5.7)

a.e. in (0, T ). Since u ∈ H, then û(ξ) = 0 a.e. in ‖ξ‖ ≤ R, thus (5.4) and (5.7)
allow us to conclude that

‖um(t)‖2W ≤ R5 exp
(∫ t

0

φ1(ξ) dξ
)
, (5.8)

for all t ∈ [0, T ].
Estimate IV: Now, we can take the derivative of (5.3) twice. In fact, we can use
the same arguments used in estimate III of Proposition 3.1. It will generate the
term ∫ t

0

µ′′(ξ)((um(ξ), u′′′m(ξ)))dξ

which can be estimate by as follows∫ t

0

µ′′(ξ)((um(ξ), u′′′m(ξ)))dξ = −
∫ t

0

µ′′(ξ)(∆um(ξ), u′′′m(ξ))dξ

≤ C
∫ t

0

‖∆um(ξ)‖H‖u′′′m(ξ)‖Hdξ
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≤ C(ε) + ε

∫ t

0

‖u′′′m(ξ)‖2Hdξ,

here ε is a positive constant which will be choose posteriorly. We observe that in
last inequality we used the estimate (5.8). Therefore, choosing ε > 0 small enough,
we can conclude that

‖u′′′m(t)‖2H + ‖u′′m(t)‖2V + ‖u′m(t)‖2V + ‖um(t)‖2V ≤ R6 exp
(∫ t

0

φ2(ξ) dξ
)
,

for all t ∈ [0, T ], where φ2 is a function that depends only on µ, µ′, µ′′ and g, and
the constant R6 depends only on the initial data, µ(0), c0 and g. These estimate
are sufficient for concluding Proposition 5.1. �

Remark 5.2. (a) Proposition 5.1 allows us to prove an existence result to linear
problem analogous to Proposition 3.2. (b) It is possible to get a local existence
result analogous to Theorem 3.4. For the proof it is necessary change the metric
space by

Xρ,T =
{
u ∈ L∞(0, T ;W ); u′ ∈ L∞(0, T ;V ); u′′ ∈ L∞(0, T ;H);

‖u‖L∞(0,T ;W ) + ‖u′‖L∞(0,T ;V ) + ‖u′′‖L∞(0,T ;H) ≤ ρ,

u(0) = u0, u
′(0) = u1

}
endowed with the distance

d(u, v) = ‖u− v‖L∞(0,T ;V ) + ‖u′ − v′‖L∞(0,T ;H).

(c) It is not difficult to prove that ‖u(t)‖V + ‖u′(t)‖H ≤ C a.e. t > 0. This allows
to extend the local solution as an element of {v ∈ C([0,∞);V ) ∩ C1([0,∞);H)}
and define the energy by

Emem(t) =
1
2
‖u′(t)‖2H +

1
2
M(‖u(t)‖2V )− 1

2

(∫ t

0

g(s)ds
)
‖∇u(t)‖2H

+
1
2

∫ t

0

g(t− s)‖u(t)− u(s)‖2Hds,

for all t ≥ 0. Using the same methodology of [22] it is possible to get general decay
rates to the problem, i.e., Emem(t) ≤ c1 exp(−c2

∫ t
t0
l(s)ds), for all t ≥ t0.
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Sér A-B. 286(5) (1978), A273-A275.
[22] S. A. Messaoudi; General decay of solutions of a viscoelastic equation, Journal of Mathemat-

ical Analysis and Applications. 341 (2008), 1457-1467.

[23] M. I. Mustafa, S. A. Messaoudi; General stability result for viscoelastic wave equations,
Journal of Mathematical Physics. 53 (2012), 053702.
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15054-000, São José do Rio Preto, SP, Brazil

E-mail address: john.pitot@gmail.com
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