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RIEMANN-LIOUVILLE FRACTIONAL COSINE FUNCTIONS

ZHAN-DONG MEI, JI-GEN PENG

Abstract. In this article, we present the notion of Riemann-Liouville frac-

tional cosine function. we prove that a Riemann-Liouville α-order fractional

cosine function is equivalent to the Riemann-Liouville α-order fractional resol-
vent introduced in [15].

1. Introduction

Let X be a Banach space, and A : D(A) ⊂ X → X, B : D(B) ⊂ X → X be
closed linear operators. It is well-known that C0-semigroups are important tools to
study the abstract Cauchy problem of first order

du(t)
dt

= Au(t), t > 0

u(0) = x,
(1.1)

and that the cosine function essentially characterizes the abstract Cauchy problem
of second order

d2u(t)
dt2

= Bu(t), t > 0

u(0) = x, u′(0) = 0.
(1.2)

Here a C0-semigroup is a family {T (t)}t≥0 of strongly continuous and bounded
linear operators defined on X satisfying T (0) = I and T (t+s) = T (t)T (s), t, s ≥ 0;
a cosine function is a family {S(t)}t≥0 of strongly continuous and bounded linear
operators defined on X satisfying S(0) = I and 2S(t)S(s) = S(t) +S(s), t ≥ s ≥ 0.

Concretely, system (1.1) is well-posed if and only if A generates a C0-semigroup
{T (t)}t≥0, namely, Ax = limt→0+ t−1(T (t)x−x) with domain D(A) = {x ∈ D(A) :
limt→0+ t−1(T (t)x−x) exists }; system (1.2) is well-posed if and only if B generates
a cosine function {S(t)}t≥0, namely, Bx = 2 limt→0+ t−2(S(t)x − x) with domain
D(B) = {x ∈ D(B) : limt→0+ t−2(S(t)x − x) exists }. Therefore, pure algebraic
methods can be used to study abstract Cauchy problems of first and second orders.
For details, we refer to [5, 7].

However, equations of integer order such as (1.1) and (1.2) cannot exactly
describe the behavior of many physical systems; fractional differential equations
maybe more suitable for describing anomalous diffusion on fractals (physical objects
of fractional dimension, like some amorphous semiconductors or strongly porous
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materials; see [1, 16] and the references therein), fractional random walk [6, 18],
etc. Fractional derivatives appear in the theory of fractional differential equations;
they describe the property of memory and heredity of materials, and it is the ma-
jor advantage of fractional derivatives compared with integer order derivatives. Let
α > 0 and m = [α], The smallest integer larger than or equal to α. There are
mainly two types of α-order fractional differential equations, which are most used
in the real problems.

(1) Caputo fractional abstract Cauchy problem

CDα
t u(t) = Au(t), t > 0,

u(0) = x, u(k)(0) = 0, k = 1, 2, . . . ,m− 1.
(1.3)

where CDα
t is the Caputo fractional differential operator defined as follows:

CDα
t u(t) =

1
Γ(m− α)

∫ t

0

(t− σ)−αu(m)(σ) dσ;

(2) Riemann-Liouville fractional abstract Cauchy problem

Dα
t u(t) = Au(t),

(g2−α ∗ u)(0) = lim
s→0+

∫ s

0

(s− σ)m−1−α

Γ(2− α)
u(σ) dσ = x,

(g2−α ∗ u)(k)(0) = lim
s→0+

∫ s

0

dk

dtk
(s− σ)m−1−α

Γ(m− α)
u(σ) dσ = 0,

k = 1, 2, . . . ,m− 1.

(1.4)

where the Riemann-Liouville fractional differential operator is

Dα
t u(t) =

1
Γ(m− α)

d

dt

∫ t

0

(t− σ)m−1−αu(σ) dσ.

Obviously, (1.1) is just the limit state of equations (1.3) and (1.4) as α→ 1, and
(1.2) is just the limit state of equations (1.3) and (1.4) as α→ 2. Initial conditions
for the Caputo fractional derivatives are expressed in terms of initials of integer
order derivatives [4, 14, 17]. For some real materials, initial conditions should be
expressed in terms of Riemann-Liouville fractional derivatives, and it is possible to
obtain initial values for such initial conditions by appropriate measurements [8, 9].

To study Caputo fractional abstract Cauchy problem (1.3), Bajlekova [2] intro-
duced the important notion of solution operator for equations (1.3) as follows.

Definition 1.1. A family {T (t)}t≥0 of bounded linear operators of X is called a
solution operator for (1.3) if the following three conditions are satisfied:

(a) T (t) is strongly continuous for t ≥ 0 and T (0) = I,
(b) T (t)D(A) ⊂ D(A) and AT (t)x = T (t)Ax for all x ∈ D(A) and t ≥ 0,
(c) for any x ∈ D(A), it holds

T (t)x = x+ Jαt T (t)Ax, t ≥ 0,

where

Jαt f(t) =
1

Γ(α)

∫ t

0

(t− σ)α−1f(t)dt.
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Chen and Li [3] developed a notion of α-resolvent operator function, which was
proved to be a new characteristic of solution operator. Hence, Caputo fractional
abstract Cauchy problem can be studied by pure algebraic methods. The definition
of α-resolvent operator function is as follows.

Definition 1.2. Let {S(t)}t≥0 be a family of bounded linear operators on X.
Then {S(t)}t≥0 is called to be an α-resolvent operator function, if the following
assumptions are satisfied:

(1) S(t) is strongly continuous and S(0) = I.
(2) S(s)S(t) = S(t)S(s) for all t, s ≥ 0.
(3) S(s)Jαt S(t)− Jαs S(s)S(t) = Jαt S(t)− Jαs S(s) for all t, s ≥ 0.

Li and Peng [12] proposed the following notion of fractional resolvent to study
Riemann-Liouville α-order fractional abstract Cauchy problem (1.4) with α ∈ (0, 1).

Definition 1.3 ([12]). Let 0 < α < 1. A family {T (t)}t>0 of bounded linear
operators on Banach space X is called an α-order fractional resolvent if it satisfies
the following assumptions:

(1) for any x ∈ X, T (·)x ∈ C((0,∞), X), and

lim
t→0+

Γ(α)t1−αT (t)x = x for all x ∈ X; (1.5)

(2) T (s)T (t) = T (t)T (s) for all t, s > 0;
(3) for all t, s > 0, it holds

T (t)Jαs T (s)− Jαt T (t)T (s) =
tα−1

Γ(α)
Jαs T (s)− sα−1

Γ(α)
Jαt T (t). (1.6)

In [15], we studied the Riemann-Liouville α-order fractional Cauchy problem
(1.4) with order α ∈ (1, 2). There Riemann-Liouville α-order fractional resolvent
defined as follows.

Definition 1.4. A family {T (t)}t>0 of bounded linear operators is called Riemann-
Liouviille α-order fractional resolvent if it satisfies the following assumptions:

(a) For any x ∈ X, Tα(·)x ∈ C((0,∞), X), and

lim
t→0+

Γ(α− 1)t2−αT (t)x = x for all x ∈ X; (1.7)

(b) T (s)Tα(t) = T (t)Tα(s) for all t, s > 0;
(c) for all t, s > 0, it holds

T (s)Jαt T (t)− Jαs T (s)T (t) =
sα−2

Γ(α− 1)
Jαt T (t)− tα−2

Γ(α− 1)
Jαs T (s). (1.8)

The linear operator A defined by

Ax = lim
t→0+

t1−αT (t)x− 1
Γ(α)x

t2α
,

for x ∈ D(A) =
{
x ∈ X : lim

t→0+

t1−αT (t)x− 1
Γ(α)x

t2α
exists

}
.

Operator A generates a Riemann-Liouville α-order fractional resolvent {T (t)}t>0

in Definition 1.3.
Also, we proved that {T (t)}t>0 is a Riemann-Liouville α-order fractional resol-

vent if and only if it is a solution operator defined as follows.
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Definition 1.5. A family {T (t)}t>0 of bounded linear operators of X is called a
solution operator for (1.4) if the following three conditions are satisfied:

(a) T (t) is strongly continuous for t > 0 and limt→0+ Γ(α − 1)t2−αT (t)x = x,
x ∈ X,

(b) T (t)D(A) ⊂ D(A) and AT (t)x = T (t)Ax for all x ∈ D(A) and t > 0,
(c) for any x ∈ D(A), it holds

T (t)x =
t1−α

Γ(2− α)
x+ Jαt T (t)Ax, t > 0.

However, the above functional equations for fractional differential equations are
not expressed in terms of the sum of time variables: s+ t. This is very important
in concrete applications of the functional equation, just like C0-semigroups, cosine
functions. Motivated by this, Peng and Li [17] established the characterization of
α-order fractional semigroup with α ∈ (0, 1):

∫ t+s

0

T (τ)
(t+ s− τ)α

dτ −
∫ t

0

T (τ)
(t+ s− τ)α

dτ −
∫ s

0

T (τ)
(t+ s− τ)α

dτ

= α

∫ t

0

∫ s

0

T (r1)T (r2)
(t+ s− r1 − r2)1+α

dr1dr2, t, s ≥ 0,

where the integrals are in the sense of strong operator topology. Concretely, they
proved that α-order fractional semigroup is closely related to the solution operator
of Caputo fractional abstract Cauchy problem (1.3).

Mei, Peng and Zhang [13] developed the notion of Riemann-Liouville fractional
semigroup as follows.

Definition 1.6. A family {T (t)}t>0 of bounded linear operators is called Riemann-
Liouville α-order fractional semigroup on Banach space X, if the following condi-
tions are satisfied:

(i) for any x ∈ X, t 7→ T (t)x is continuous over (0,∞) and

lim
t→0+

Γ(α)t1−αT (t)x = x; (1.9)

(ii) for all t, s > 0, it holds

Γ(1− α)T (t+ s) = α

∫ t

0

∫ s

0

T (r1)T (r2)
(t+ s− r1 − r2)1+α

dr1dr2, (1.10)

where the integrals are in the sense of strong operator topology.

It is proved in [13] that A generates a Rimann-Liouville fractional semigroup if
and only if it generates a fractional resolvent developed in [11].

To study Caputo fractional Cauchy problem of order α ∈ (1, 2), we recently
studied in [14] the notion of fractional cosine function as follows.
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Definition 1.7. A family {T (t)}t≥0 of bounded and strongly continuous operators
is called an α-fractional cosine function if T (0) = I and it holds∫ t+s

0

∫ σ

0

T (τ)
(t+ s− σ)α−1

dτ dσ −
∫ t

0

∫ σ

0

T (τ)
(t+ s− σ)α−1

dτ dσ

−
∫ s

0

∫ σ

0

T (τ)
(t+ s− σ)α−1

dτ dσ

=
∫ t

0

∫ s

0

T (σ)T (τ)
(t− σ)α−1

dτ dσ +
∫ t

0

∫ s

0

T (σ)T (τ)
(s− τ)α−1

dτ dσ

−
∫ t

0

∫ s

0

T (σ)T (τ)
(t+ s− σ − τ)α−1

dτ dσ, t, s ≥ 0,

(1.11)

where the integrals are in the sense of strong operator topology.

There, we proved that A generates a fractional cosine function {T (t)}t≥0 if and
only if it generates an α-resolvent operator function; that is, the following equalities
hold:

T (s)Jαt T (t)− Jαs T (s)T (t) = Jαt T (t)− Jαs T (s), t, s ≥ 0.
As stated above, functional equations involving t, s and t+s have been discussed

for Caputo fractional differential equations (1.3) with α ∈ (0, 1) and α ∈ (1, 2),
Riemann-Liouville fractional equation (1.4) with α ∈ (0, 1). To close the gap, we
will discuss the residual case, that is, functional equations involving t, s and t + s
for Riemann-Liouville fractional equation (1.4) with α ∈ (1, 2). To this end, we first
consider the special case that T (·) is exponentially bounded (hence it is Laplace
transformable). Take laplace transform on both sides of (1.6) with respect to s and
t to obtain

(λ−α − µ−α)T̂ (µ)T̂ (λ) = λ1−αµ1−α(λ−1T̂ (λ)− µ−1T̂ (µ)). (1.12)

It follows from [14, (3.8)] that the Laplace transform of the right-hand side of (1.10)
satisfies∫ ∞

0

e−µt
∫ ∞

0

e−λs
(∫ t

0

∫ s

0

T (σ)T (τ)
(t− σ)α−1

dτ dσ +
∫ t

0

∫ s

0

T (σ)T (τ)
(s− τ)α−1

dτ dσ

−
∫ t

0

∫ s

0

T (σ)T (τ)
(t+ s− σ − τ)α−1

dτ dσ
)
ds dt

=
Γ(2− α)(λα − µα)

λµ(λ− µ)
T̂ (µ)T̂ (λ).

(1.13)

The combination of (1.12) and (1.13) implies∫ ∞
0

e−µt
∫ ∞

0

e−λs
(∫ t

0

∫ s

0

T (σ)T (τ)
(t− σ)α−1

dτ dσ +
∫ t

0

∫ s

0

T (σ)T (τ)
(s− τ)α−1

dτ dσ

−
∫ t

0

∫ s

0

T (σ)T (τ)
(t+ s− σ − τ)α−1

dτ dσ
)
ds dt

=
Γ(2− α)(λ−1T̂ (λ)− µ−1T̂ (µ))

µ− λ
.

Let m(t) =
∫ t

0
T (σ) dσ, by similar proof of [10, (4.2)], it holds∫ ∞

0

e−µt
∫ ∞

0

e−λsm(t+ s) ds dt =
m̂(µ)− m̂(λ)

λ− µ
=
λ−1T̂ (λ)− µ−1T̂ (µ)

µ− λ
.
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By the Laplace transform, it follows that

Γ(2− α)
∫ t+s

0

T (σ) dσ

=
∫ t

0

∫ s

0

T (σ)T (τ)
(t− σ)α−1

dτ dσ +
∫ t

0

∫ s

0

T (σ)T (τ)
(s− τ)α−1

dτ dσ

−
∫ t

0

∫ s

0

T (σ)T (τ)
(t+ s− σ − τ)α−1

dτ dσ,

(1.14)

In the following two sections, we show that (1.14) also holds without the as-
sumption that {T (t)}t>0 is exponentially bounded and it essentiality describes a
Riemann-Liouville fractional resolvent.

2. Riemann-Liouville fractional cosine function

Equality (1.6) is an important functional equation for the solution of (1.4) with
α ∈ (1, 2). However, as stated in the introduction, (1.6) does not write the func-
tional equation in terms of the sum of time variables: s+ t. This is very important
in concrete applications of the algebraic functional equation. Therefore, it is very
valuable to study functional equation (1.14), which appears in the following defini-
tions.

Definition 2.1. A family {T (t)}t>0 of bounded linear operators is called Riemann-
Liouville α-order fractional cosine function on a Banach space X, if the following
conditions are satisfied:

(i) T (t) is strongly continuous, that is, for any x ∈ X, the mapping t 7→ T (t)x
is continuous over (0,∞);

(ii) it holds

lim
t→0+

t2−αT (t)x =
x

Γ(α− 1)
for all x ∈ X; (2.1)

(iii) for all t, s > 0, it holds

Γ(2− α)
∫ t+s

0

T (σ) dσ

=
∫ t

0

∫ s

0

T (σ)T (τ)
(t− σ)α−1

dτ dσ +
∫ t

0

∫ s

0

T (σ)T (τ)
(s− τ)α−1

dτ dσ

−
∫ t

0

∫ s

0

T (σ)T (τ)
(t+ s− σ − τ)α−1

dτ dσ,

(2.2)

where the integrals are in the sense of strong operator topology.

Lemma 2.2. Let {T (t)}t>0 be a Riemann-Liouville α-order fractional cosine on
Banach space X. Then {T (t)}t>0 is commutative, i.e. T (t)T (s) = T (s)T (t) for all
t, s > 0.

Proof. Observe that the left-hand side of (2.2) is symmetric with respect to t and
s. Hence we can obtain the equality∫ t

0

∫ s

0

T (σ)T (τ)
(t− σ)α−1

dτ dσ +
∫ t

0

∫ s

0

T (σ)T (τ)
(s− τ)α−1

dτ dσ

−
∫ t

0

∫ s

0

T (σ)T (τ)
(t+ s− σ − τ)α−1

dτ dσ
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=
∫ s

0

∫ t

0

T (σ)T (τ)
(s− σ)α−1

dτ dσ +
∫ s

0

∫ t

0

T (σ)T (τ)
(t− τ)α−1

dτ dσ

−
∫ s

0

∫ t

0

T (σ)T (τ)
(t+ s− σ − τ)α−1

dτ dσ, t, s > 0.

The commutative property is proved as in [13, Proposition 3.4]. �

Definition 2.3. Let {T (t)}t>0 be a Riemann-Liouville α-order fractional cosine
function on Banach space X. Denote by D(A) the set of all x ∈ X such that the
limit

lim
t→0+

Γ(α+ 1)t−αJ2−α
t

(
T (t)x− tα−2

Γ(α− 1)
x
)

exists. Then the operator A : D(A)→ X defined by

Ax = lim
t→0+

Γ(α+ 1)t−αJ2−α
t

(
T (t)x− tα−2

Γ(α− 1)
x
)

is called the generator of {T (t)}t>0.

Proposition 2.4. Assume {T (t)}t>0 is a Riemann-Liouville α-order fractional
cosine function on Banach space X. Suppose that A is the generator of {T (t)}t>0.
Then

(a) For any x ∈ X and t > 0, it holds Jαt T (t)x ∈ D(A) and

T (t)x =
tα−2

Γ(α− 1)
x+AJαt T (t)x; (2.3)

(b) T (t)D(A) ⊂ D(A) and T (t)Ax = AT (t)x, for all x ∈ D(A).
(c) For all x ∈ D(A), we have

T (t)x =
tα−2

Γ(α− 1)
x+ Jαt T (t)Ax;

(d) A is equivalently defined by

Ax = Γ(2α− 1) lim
t→0+

T (t)x− tα−2

Γ(α−1)x

t2α−2
(2.4)

and D(A) is just consists of those x ∈ X such that the above limit exists.
(e) A is closed and densely defined.
(f) A admits at most one Riemann-Liouville α-order fractional cosine function.

Proof. (a) Let x ∈ X and b > 0 be fixed. Denote by gb(·) the truncation of T (·) at
b; that is,

gb(σ) =

{
T (σ), if 0 < σ ≤ b
0, if σ > b.

Define the function Hb(r, s) for r, s > 0 by

Hb(r, s) =
(
gb(r)−

rα−2

Γ(α− 1)
I
)
Jαs gb(s)x. (2.5)

Obviously, for 0 < r ≤ t,

Ht(r, t) =
(
T (r)− rα−2

Γ(α− 1)
I
)
Jαt T (t)x. (2.6)
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Take Laplace transform with respect to r and s successively for both sides of (2.5)
to obtain

Ĥb(µ, λ) = λ−αĝb(µ)ĝb(λ)x− λ−αµ1−αĝb(λ)x. (2.7)

Denote by L(t, s) and R(t, s) the left and right sides of (2.2), respectively. More-
over, denote by Rb(t, s), and Lb(t, s) the quantities resulted by replacing T (t) with
gb(t) in R(t, s), L(t, s), respectively.

It follows from [14, (3.7)] that the Laplace transform of Rb(t, s) with respect to
t and s is given by

R̂b(µ, λ) =
Γ(2− α)(λα − µα)

λµ(λ− µ)
ĝb(µ)ĝb(λ). (2.8)

For all t > 0, the Laplace transform of L̂b(t, s) with respect to s and t can be
obtained as

L̂b(µ, λ) = Γ(2− α)
λ−1ĝb(λ)− µ−1ĝb(µ)

µ− λ
. (2.9)

Combine (2.7), (2.8) and (2.9) to derive

Ĥb(µ, λ) = µ−αĝb(µ)ĝb(λ)x− µ−αλ1−αĝb(µ)x

+
λ1−αµ1−α(λ− µ)

Γ(2− α)
(L̂b(µ, λ)− R̂b(µ, λ))x.

Take inverse Laplace transform to obtain

Hb(r, s) =
(
gb(s)−

sα−2

Γ(α− 1)
I
)
Jαr gb(r)x

+
[(D2−α

s )Jα−1
r − (D2−α

r )Jα−1
s ] · [Lb(r, s)−Rb(r, s)]x

Γ(2− α)
.

Here the Laplace transform formula

D̂β
b f(λ) = λβ f̂(λ)− lim

t→0+
Jα−1
t f(t), 0 < β < 1, f ∈ C([0,∞), X)

is used.
From the definition of gb, it follows that Lb(r, s) = Rb(r, s) for 0 < s, r ≤ b.

Then we have

Hb(r, s) =
(
T (s)− sα−2

Γ(α− 1)
I
)
Jαr T (r)x, ∀ 0 < r, s ≤ b.

This implies

Ht(r, t) =
(
T (t)− tα−2

Γ(α− 1)
I
)
Jαr T (r)x, ∀0 < r ≤ t. (2.10)

Combining (2.6) with (2.10), we obtain

lim
r→0+

Γ(α+ 1)r−αJ2−α
r

(
T (r)− rα−2

Γ(α− 1)

)
Jαt T (t)x

= lim
r→0+

Γ(α+ 1)r−α
(
T (t)− tα−2

Γ(α− 1)
I
)
J2
rT (r)x

= Γ(α+ 1)
(
T (t)− tα−2

Γ(α− 1)
I
)

lim
r→0+

r−α
∫ r

0

(r − σ)T (σ)x dσ
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= Γ(α+ 1)
(
T (t)− tα−2

Γ(α− 1)
I
)

× lim
r→0+

∫ 1

0

(1− σ)σα−2(rσ)2−αT (rσ)x dσ.

By the dominated convergence theorem and (b) of Definition 2.1, it follows that

lim
r→0+

Γ(α+ 1)r−αJ2−α
r

(
T (r)− rα−2

Γ(α− 1)

)
Jαt T (t)x

= Γ(α+ 1)
(
T (t)− tα−2

Γ(α− 1)
I
)∫ 1

0

(1− σ)σα−2 lim
r→0+

(rσ)2−αT (rσ)x dσ

=
Γ(α+ 1)
Γ(α− 1)

(
T (t)− tα−2

Γ(α− 1)
I
)∫ 1

0

(1− σ)σα−2 dσx

=
Γ(α+ 1)
Γ(α− 1)

(
T (t)− tα−2

Γ(α− 1)
I
)Γ(α− 1)Γ(2)

Γ(α+ 1)
x

= T (t)x− tα−2

Γ(α− 1)
x.

This implies that Jαt T (t)x ∈ D(A) and

AJαt T (t)x = T (t)x− tα−2

Γ(α− 1)
x.

Conditions (b) and (c) are directly obtained by Lemma 2.2 and (a).
(d) Denote by D the set of those x ∈ X such that the limit

lim
t→0+

T (t)x− tα−2

Γ(α−1)x

t2α−2

exists. Let x ∈ D(A). Then, by (b), we have

Γ(2α− 1) lim
t→0+

T (t)x− tα−2

Γ(α−1)x

t2α−2

= Γ(2α− 1) lim
t→0+

Jαt T (t)Ax
t2α−2

=
Γ(2α− 1)

Γ(α)
lim
t→0+

1
t2α−2

∫ t

0

(t− σ)α−1T (σ)Axdσ

=
Γ(2α− 1)

Γ(α)
lim
t→0+

∫ 1

0

(1− σ)α−1σα−2(tσ)2−αT (tσ)Axdσ.

The dominated convergence theorem and (b) of Definition 2.1 indicate that

Γ(2α− 1) lim
t→0+

T (t)x− tα−2

Γ(α−1)x

t2α−2

=
Γ(2α− 1)

Γ(α)

∫ 1

0

(1− σ)α−1σα−2 lim
t→0+

(tσ)2−αT (tσ)Axdσ

=
Γ(2α− 1)

Γ(α− 1)Γ(α)

∫ 1

0

(1− σ)α−1σα−2Axdσ

=
Γ(2α− 1)

Γ(α− 1)Γ(α)
Γ(α− 1)Γ(α)

Γ(2α− 1)
Ax = Ax.
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This implies that x ∈ D and then D(A) ⊂ D. Now we prove the converse inclusion.
Let x ∈ D, that is, the limit

lim
t→0+

T (t)x− tα−2

Γ(α−1))x

t2α−2
.

exists. By the dominated convergence theorem, it follows that

lim
t→0+

Γ(α+ 1)t−αJ2−α
t

(
T (t)x− tα−2

Γ(α− 1)
x
)

= lim
t→0+

Γ(α+ 1)
Γ(2− α)

∫ 1

0

(1− σ)1−ασ2α−2
T (tσ)x− (tσ)α−2

Γ(α−1) x

(tσ)2α−2
dσ

=
Γ(α+ 1)
Γ(2− α)

∫ 1

0

(1− σ)1−ασ2α−2 lim
t→0+

T (tσ)x− (tσ)α−2

Γ(α−1) x

(tσ)2α−2
dσ

=
Γ(α+ 1)
Γ(2− α)

Γ(2− α)Γ(2α− 1)
Γ(α+ 1)

lim
t→0+

T (t)x− (t)α−2

Γ(α−1)x

t2α−2
.

Hence, x ∈ D(A) and

Ax = Γ(2α− 1) lim
t→0+

T (t)x− tα−2

Γ(α−1))x

t2α−2
. (2.11)

(e) The properties that A is closed and densely defined are followed directly from
the combination of (d) and [12].

(f) Assume that both {T (t)}t>0 and {S(t)}t>0 are Riemann-Liouville α-order
fractional resolvent generated by A. Then, by (c), for all x ∈ D(A), we have

tα−2

Γ(α− 1)
∗ T (t)x = (S(t)− Jαt AS(t)) ∗ T (t)x

= S(t) ∗ T (t)x− (Jαt AS(t)) ∗ T (t)x

= S(t) ∗ (T (t)x− Jαt AT (t)x)

=
tα−2

Γ(α− 1)
∗ S(t)x.

By Titchmarsh’s Theorem, for any t > 0, T (t) = S(t) on D(A). The result is
obtained by the density of A. �

Corollary 2.5. Assume that A generates a Rimann-Liouville α-order fractional
cosine function on Banach space X. Then {T (t)}t>0 is a Riemann-Liouville α-
order fractional resolvent.

Proof. In (a) of Theorem 2.4, replacing x with Jαs T (s)x, and using Lemma 2.2, we
obtain

T (t)Jαs T (s)x =
tα−2

Γ(α− 1)
Jαs T (s)x+AJαt T (t)Jαs T (s)x

=
tα−2

Γ(α− 1)
Jαs T (s)x+AJαs T (s)Jαt T (t)x

=
tα−2

Γ(α− 1)
Jαs T (s)x+

(
T (s)− tα−2

Γ(α− 1)

)
Jαt T (t)x,

which is just (1.6). The proof is complete. �



EJDE-2016/249 RIEMANN-LIOUVILLE FRACTIONAL COSINE FUNCTIONS 11

3. Equivalence of Riemann-Liouville fractional resolvent

In this section, we prove that equality (1.6) essentially describes a Rimann-
Liouville α-order fractional cosine function.

Theorem 3.1. Suppose that {T (t)}t>0 is a Riemann-Liouville α-order fractional
resolvent on Banach space X. Then, the family is a Riemann-Liouville α-order
fractional cosine function.

Proof. Denote by L(t, s) and R(t, s) the left and right sides of equality (2.2), re-
spectively. Obviously, we need to prove that L(t, s) = R(t, s) for all t, s > 0. For
brevity, we introduce the following notation. Let

H(t, s) = T (t)Jαs T (s)− Jαt T (t)T (s),

K(t, s) =
tα−2

Γ(α− 1)
Jαs T (s)− sα−2

Γ(α− 1)
Jαt T (t), t, s > 0.

Moreover, for sufficiently large b > 0 denote by gb(t) the truncation of T (t) at b,
and by Rb(t, s), Lb(t, s), Hb(t, s) and Kb(t, s) the quantities resulted by replacing
T (t) with gb(t) in R(t, s), L(t, s), H(t, s) and K(t, s), respectively.

We set

Pb(t, s) =
∫ t

0

∫ s

0

Hb(σ, τ)
(t− σ)α−1

dτ dσ +
∫ t

0

∫ s

0

Hb(σ, τ)
(s− τ)α−1

dτ dσ

−
∫ t

0

∫ s

0

Hb(σ, τ)
(t+ s− σ − τ)α−1

dτ dσ

and

Qb(t, s) =
∫ t

0

∫ s

0

Kb(σ, τ)
(t− σ)α−1

dτ dσ +
∫ t

0

∫ s

0

Kb(σ, τ)
(s− τ)α−1

dτ dσ

−
∫ t

0

∫ s

0

Kb(σ, τ)
(t+ s− σ − τ)α−1

dτ dσ.

(3.1)

Observe that the equality (1.6) implies H(t, s) = K(t, s) for any t, s > 0. Thus, for
all t, s > 0,

lim
b→∞

Pb(t, s) = lim
b→∞

Qb(t, s). (3.2)

By [14, (3.13)], it follows that

Pb(t, s) = (Jαs − Jαt )Rb(t, s), ∀ t, s > 0. (3.3)

We now compute Laplace transform of the first term of Qb(t, s) with respect to
s and t as follows,∫ ∞

0

e−µt
∫ ∞

0

e−λs
∫ t

0

∫ s

0

Kb(σ, τ)
(t− σ)α−1

dτ dσ ds dt

=
∫ ∞

0

e−µt
∫ ∞

0

e−λs
∫ t

0

∫ s

0

σα−2

Γ(α−1)J
α
τ gb(τ)− τα−2

Γ(α−1)J
α
σ gb(σ)

(t− σ)α−1
dτ dσ ds dt

=
∫ ∞

0

e−µt
∫ t

0

∫ ∞
0

e−λs
∫ s

0

σα−2

Γ(α−1)J
α
τ gb(τ)− τα−2

Γ(α−1)J
α
σ gb(σ)

(t− σ)α−1
dτ ds dσdt

=
∫ ∞

0

e−µt
∫ ∞

0

e−λs
∫ t

0

∫ s

0

σα−2

Γ(α−1)J
α
τ gb(τ)− τα−2

Γ(α−1)J
α
σ gb(σ)

(t− σ)α−1
dτ dσ ds dt
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=
∫ ∞

0

e−µt
∫ t

0

σα−2

Γ(α−1)

(t− σ)α−1

∫ ∞
0

e−λs
∫ s

0

Jατ gb(τ) dτds dσdt

−
∫ ∞

0

e−µt
∫ t

0

Jασ gb(σ)
(t− σ)α−1

∫ ∞
0

e−λs
∫ s

0

τα−2

Γ(α− 1)
dτds dσdt

= Γ(2− α)µ−1λ−α−1ĝb(λ)− Γ(2− α)µ−2λ−αĝb(µ),

The Laplace transform of the second term of Qb(t, s) with respect to s and t is
computed as follows∫ ∞

0

e−µt
∫ ∞

0

e−λs
∫ t

0

∫ s

0

Kb(σ, τ)
(s− τ)α−1

dτ dσ ds dt

=
∫ ∞

0

e−µt
∫ ∞

0

e−λs
∫ t

0

∫ s

0

σα−2

Γ(α−1)J
α
τ gb(τ)− τα−2

Γ(α−1)J
α
σ gb(σ)

(s− τ)α−1
dτ dσ ds dt

=
∫ ∞

0

e−µt
∫ t

0

σα−2

Γ(α− 1))

∫ ∞
0

e−λs
∫ s

0

Jατ gb(τ)
(s− τ)α−1

dτ ds dσdt

−
∫ ∞

0

e−µt
∫ t

0

Jασ gb(σ)
∫ ∞

0

e−λs
∫ s

0

τα−2

Γ(α−1)

(s− τ)α−1
dτ ds dσdt

= Γ(2− α)µ−αλ−2ĝb(λ)− Γ(2− α)λ−1µ−α−1ĝb(µ).

We compute the Laplace transform of the third term of Qb(t, s) with respect to s
and t as follows.

−
∫ ∞

0

e−µt
∫ ∞

0

e−λs
∫ t

0

∫ s

0

Kb(σ, τ)
(t+ s− σ − τ)α−1

dτ dσ ds dt

= −
∫ ∞

0

e−µt
∫ ∞

0

e−λs
∫ t

0

∫ s

0

σα−2

Γ(α−1)J
α
τ gb(τ)− τα−2

Γ(α−1)J
α
σ gb(σ)

(t+ s− σ − τ)α−1
dτ dσ ds dt

= −
∫ ∞

0

e−µt
∫ t

0

σα−2

Γ(α− 1)

∫ ∞
0

e−λs
∫ s

0

Jατ gb(τ)
(t+ s− σ − τ)α−1

dτ ds dσdt

+
∫ ∞

0

e−µt
∫ t

0

Jασ gb(σ)
∫ ∞

0

e−λs
∫ s

0

τα−2

Γ(α−1)

(t+ s− σ − τ)α−1
dτ ds dσdt

= −
∫ ∞

0

e−µt
∫ t

0

σα−2

Γ(α− 1)

∫ ∞
0

e−λs
1

(t+ s− σ)α−1
ds dσdtλ−αgb(λ)

+ λ1−α
∫ ∞

0

e−µt
∫ t

0

Jασ gb(σ)
∫ ∞

0

e−λs
1

(t+ s− σ)α−1
ds dσdt

= −
∫ ∞

0

e−µt
∫ t

0

σα−2

Γ(α− 1)
eλ(t−σ)

×
(∫ ∞

0

e−λrr1−αdr −
∫ t−σ

0

e−λrr1−αdr
)
dσdtλ−αgb(λ)

+ λ1−α
∫ ∞

0

e−µt
∫ t

0

Jασ gb(σ)eλ(t−σ)

×
(∫ ∞

0

e−λrr1−αdr −
∫ t−σ

0

e−λrr1−α dr
)
dσdt
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= −Γ(2− α)λα−2

∫ ∞
0

e−µt
∫ t

0

σα−2

Γ(α− 1)
eλ(t−σ) dσdtλ−αgb(λ)

+
∫ ∞

0

e−µt
∫ t

0

σα−2

Γ(α− 1)

∫ t−σ

0

eλ(t−σ−r)r1−α dr dσdtλ−αgb(λ)

+ Γ(2− α)λα−2λ1−α
∫ ∞

0

e−µt
∫ t

0

Jασ gb(σ)eλ(t−σ) dσdt

− λ1−α
∫ ∞

0

e−µt
∫ t

0

Jασ gb(σ)
∫ t−σ

0

eλ(t−σ−r)r1−αdr dσdt

= −Γ(2− α)λα−2λ−α
µ1−α

µ− λ
gb(λ) + Γ(2− α)

µ−1

µ− λ
λ−αgb(λ)

+ Γ(2− α)λα−2λ1−α µ−α

µ− λ
ĝb(µ)− Γ(2− α)λ1−αµα−2 µ−α

µ− λ
ĝb(µ).

Using (2.9), we obtain

Q̂b(µ, λ)

=
∫ ∞

0

e−µt
∫ ∞

0

e−λs
(∫ t

0

∫ s

0

Kb(σ, τ)
(t− σ)α−1

dτ dσ +
∫ t

0

∫ s

0

Kb(σ, τ)
(s− τ)α−1

dτ dσ

−
∫ t

0

∫ s

0

Kb(σ, τ)
(t+ s− σ − τ)α−1

dτ dσ)
)
ds dt

= (λ−α − µ−α)L̂b(µ, λ).

(3.4)

Taking inverse Laplace transform on both sides of (3.4), we derive

Qb(t, s) = (Jαs − Jαt )Lb(t, s), ∀t, s > 0. (3.5)

Form (3.3) and (3.5), we have

(Jαs − Jαt )L(t, s) = (Jαs − Jαt )R(t, s), ∀t, s > 0.

Therefore, L(t, s) = R(t, s). This completes the proof. �

Combining Corollary 2.5 and Theorem 3.1, we can obtain the equivalent of
Riemann-Liouville α-order fractional resolvents and Riemann-Liouville α-order frac-
tional cosine functions.
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