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SELF-SIMILAR SOLUTIONS FOR A SUPERDIFFUSIVE HEAT
EQUATION WITH GRADIENT NONLINEARITY

MARCELO FERNANDES DE ALMEIDA, ARLÚCIO VIANA

Abstract. This article studies the existence, stability, self-similarity and sym-

metries of solutions for a superdiffusive heat equation with superlinear and

gradient nonlinear terms with initial data in new homogeneous Besov-Morrey
type spaces. Unlike in previous works on such time-fractional partial differ-

ential equations of order α ∈ (1, 2), we take non null initial velocities into

consideration, where new difficulties arise from. We overcome them by de-
veloping an appropriate decomposition of the two-parametric Mittag-Leffler

function to obtain Mikhlin-type estimates and obtain our existence theorem.

1. Introduction

Let ∆x =
∑N
i=1

∂2

∂x2
i

be the Laplace operator, u : R1+N → R, and ∂αt be the
Caputo’s fractional derivative of order 1 < α < 2 (see subsection 2.2). In this
article, we study the equation

∂αt u = ∆xu+ κ1|∇xu|q + κ2|u|ρ−1u, κ1 6= 0, κ2 ∈ R, (1.1)

subject to the initial data

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x), (1.2)

where q > 1 and ρ > 1. Note that the rescaled function uγ(t, x) := γ
2
ρ−1u(γ

2
α t, γx)

solves (1.1) with initial data

ϕγ(x) = γ
2
ρ−1ϕ(γx), ψγ(x) = γ

2
ρ−1 + 2

αψ(γx), (1.3)

provided that q = 2ρ
ρ+1 and u(t, x) solves (1.1)-(1.2). Hence, we obtain a scaling

map of solutions,
u(t, x) 7→ uγ(t, x), for all γ > 0, (1.4)

and solutions invariant by (1.4) will be called self-similar solutions, that is,

u(t, x) = uγ(t, x). (1.5)

In the study of self-similar solutions, the natural candidates to be initial data are
the homogeneous functions,

ϕ(γx) = γ−
2
ρ−1ϕ(x), ψ(γx) = γ−

2
ρ−1−

2
αψ(x).
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In this work we are interested in existence of self-similar solutions to (1.1)-(1.2).
For this purpose, we study (1.1)-(1.2) through its integral formulation

u(t, x) = Gα,1(t)ϕ(x) +Gα,2(t)ψ(x) +Nα(u)(t, x), (1.6)

where
̂Gα,j(t)f(ξ) = tj−1Eα,j(−4π2tα|ξ|2)f̂(ξ), j = 1, 2, f ∈ S ′(RN ), (1.7)

Nα(u) =
∫ t

0

Gα,1(t− s)
∫ s

0

rα(s− τ)
(
κ2|u|ρ−1u+ κ1|∇xu|q

)
dτds, (1.8)

rα(t) = tα−2/Γ(α− 1). (1.9)

Hereafter a solution u will be understood as a distribution u(t, ·) satisfying (1.6),
for each t > 0.

The presence of the gradient requires suitable estimates in certain Sobolev-
Morrey spaces M1

r,µ and this motivated us to study the problem in the space
Xβ of all bounded continuous functions u : (0,∞)→Mr,µ endowed with the norm

‖u‖Xβ = sup
t>0

t
α
2 +β‖u(t)‖M1

r,µ
+ sup

t>0
tβ‖u(t)‖Mr,µ

, (1.10)

where β, r and µ will be chosen later (see (3.1)). Assuming ψ 6≡ 0 brings new difficul-
ties because we need to obtain suitable estimates for two-parametric Mittag-Leffler
function Eα,2(4π2tα|ξ|2). More precisely, we develop an appropriate decomposi-
tion for Mittag-Leffler function to obtain a suitable estimate (see (4.10) and (4.14))
which enables us to introduce the space

I = {(ϕ,ψ) ∈ S ′ × S ′; (ϕ,ψ) ∈ D(α, β)× D̃(α, β)}, (1.11)

where

D(α, β) := {ϕ ∈ S ′ : Gα,1(t)ϕ ∈ Xβ}, D̃(α, β) := {ψ ∈ S : Gα,2(t)ψ ∈ Xβ},
for all t > 0. Hence, applying Lemma 5.1 we obtain (see Remark 3.2-(B)) that
Mp,µ×M−2/α

p,µ ⊆ D(α, β)× D̃(α, β). It is remarkable that the investigation of self-
similarity and symmetries for (1.1)-(1.2) allows us to deal with following prototype
functions

ϕ(x) = ε1|x|−
2
ρ−1 , ψ(x) = ε2|x|−

2
ρ−1−

2
α ,

which belong to D(α, β)×D̃(α, β) but can be arbitrarily large in the space L2(RN )×
Ḣ

2
α (RN ). See Remark 3.4-(A).
Our symmetry result, roughly speaking, says that if the initial data ϕ and ψ are

invariant on the orthogonal group acting on RN so the solution is. In particular,
we show the existence of radial self-similar solutions (see Remark 3.6-(A)).

We point out that our results hold for α = 1 and ψ = 0 and, in this case, the
upper bound (γ2 − γ1) + N−µ

p1
− N−µ

p2
in Lemma 5.1 can be removed. On the other

hand, for 1 < α < 2 the Mikhlin theorem yields more restrictive constraints to
Lemma 5.1 than the usual estimates for the heat semigroup in such a way that
Theorem 3.1 cannot come near to α = 2.

Now, let us to review some works. Fujita [5] remarked that the linear counterpart
of equation (1.1) has similarities with wave and heat equations and presents certain
qualitative properties which qualifies it as a reasonable interpolation between these
equations. When κ2 = 0, α = 1 and ψ = 0, (1.1)-(1.2) turns into the viscous
Hamilton-Jacobi equation. Using scaling technique, Ben-Artzi et al [3] found the
number rc = N(q−1)

2−q and showed that it is a critical exponent for existence of
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solutions in Lr. In particular, the problem is well-posed when r ≥ rc and 1 < q < 2.
In Remark 3.2-(C) we provide an existence result for this problem in Morrey spaces
Mp,N− N

rc
p which are strictly larger than the Lebesgue spaces, namely,

Lr(RN ) (Mp,µ(RN ) ( D(1, β), (1.12)

provided that N
r = N−µ

p and p < r. Our existence result is then compatible with
[3, Theorem 2.1], in view of 1 < p ≤ rc ≤ r. In particular, the initial data taken in
Theorem 3.1 is larger than those considered in [3].

Recently several authors have addressed the study of global existence, self-
similarity, asymptotic self-similarity and radial symmetry of solutions for the semi-
linear heat equation with gradient nonlinear terms. See e.g. [4, 7, 17, 18, 19]. In
[17] it is assumed that ϕ belongs to homogeneous Besov space Ḃ−β1

r1,∞ and

‖ϕ‖
Ḃ
−β1
r1,∞

= sup
t>0

tβ1/2‖et∆ϕ‖Lr1 (RN ) ≤ ε, β1 =
2

ρ− 1
− N

r1
.

By employing the Gagliardo-Nirenberg inequality, the authors studied the existence
and asymptotic behavior of global mild solutions. On the other hand, our functional
approach enables us to control the gradient estimates without making use of the
Gagliardo-Nirenberg inequality and allows us to deal with a larger class of functions
space for initial data.

Let us now review some works concerning to (1.1)-(1.2) with ψ = 0 and κ1 = 0.
In [8] the authors established Lp − Lq estimates for {Gα,1(t)}t≥0 and showed a
blowup alternative and local well-posedness in Lq(RN )-framework for any ϕ ∈
Lq(RN ), where q ≥ Nα(ρ+1)

2 . Using Mikhlin-Hormander’s type theorem on Morrey
spaces, de Almeida and Ferreira [1] studied self-similarity, symmetry, antisymmetry
and positivity of global solutions with small data ϕ ∈ Mp,µ, µ = N − 2p

ρ−1 . In
[2], the authors established existence, self-similarity, symmetries and asymptotic
behavior of solutions in Besov-Morrey spaces N σ

p,µ,∞ and provided a maximal class
of existence in the sense that there is no known results in X ) N σ

p,µ,∞. Indded, we
notice that

Mp,λ ( N σ
p,µ,∞ and Ḃkr,∞ ⊂ N σ

p,µ,∞, (1.13)

where N−λ
p = −σ+ N−µ

p = −k+ N
r , σ = N−µ

p − 2
ρ−1 , k = N

r −
2
ρ−1 and 1 ≤ p < r.

All spaces in (1.12) and (1.13) are invariant by scaling.
We still observe that problem (1.1)–(1.2) can be studied with a Fourier multiplier

σ(D) in place of ∆x, where |σ(ξ)| ≤ C|ξ|k due to estimates (4.10) and (4.14)
into Propositions 4.2 and 4.3. Example of such an operator is the Riesz potential
(−∆x)k/2f = F−1|ξ|kFf , where F denote the Fourier transform in S ′.

This manuscript is organized as follows. Some basic properties of the Sobolev-
Morrey spaces and Mittag-Leffler functions are reviewed in Section 2. We state and
make some remarks on our results in Section 3 and their proofs are performed in
Section 6. Sections 4 and 5 are reserved to a careful study of the several estimates
which are crucial to yield our results.

2. Preliminaries

In this section we review some well-known properties of the Morrey spaces and
Sobolev-Morrey spaces, more details can be found in [9, 10, 12, 13, 15]. Also, we
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obtain an integral equation which is formally equivalent to (1.1)-(1.2) in the lines
of [11].

2.1. Sobolev-Morrey spaces. Let Qr(x0) be the open ball in RN centered at
x0 and with radius r > 0. Given two parameters 1 ≤ p < ∞ and 0 ≤ µ < N ,
the Morrey space Mp,µ = Mp,µ(RN ) is defined to be the set of all functions f ∈
Lp(Qr(x0)) such that

‖f‖Mp,µ := sup
x0∈Rn, r>0

r−
µ
p ‖f‖Lp(Qr(x0)) <∞,

which is a Banach space endowed with this norm. For s ∈ R and 1 ≤ p < ∞,
the homogeneous Sobolev-Morrey space Ms

p,µ = (−∆x)−s/2Mp,µ is the Banach
space of all tempered distributions f ∈ S ′(RN )/P modulo polynomials P with N

variables. If s < N−µ
p and p > 1, from [9, Theorem 1.1] or [13], it holds that

‖f‖Mp,µ ∼
∥∥(∑

ν∈Z
|F−1ψν(ξ)Ff |2

)1/2∥∥
Mp,µ

,

where ∼ denotes norm equivalence and {ψν}ν∈Z is a homogeneous Littlewood-Paley
resolution of unity, that is,

ψν(ξ) = φν(ξ)− φν−1(ξ), φν(ξ) = φ0(ξ/2ν),

for φ0 ∈ C∞0 (RN ) such that φ0 = 1 on the ball Q1(0) and suppφ0 ⊂ Q2(0). In
particular, using (2.1) and that |ξ|s ∼ 2sν on the suppψν(ξ) ⊂ {ξ ∈ RN : 2ν−1 <
|ξ| < 2ν+1}, we obtain∥∥(∑

ν∈Z
|2sνF−1ψν(ξ)Ff |2

)1/2∥∥
Mp,µ

∼
∥∥(∑

ν∈Z
|F−1ψν(ξ)|ξ|sFf |2

)1/2∥∥
Mp,µ

=
∥∥(∑

ν∈Z
|2νN ψ̌(2ν ·) ∗ (|ξ|sf̂)∨|2

)1/2∥∥
Mp,µ

∼ ‖(| · |sf̂)∨‖Mp,µ .

(2.1)

Given f ∈Ms
p,µ, the quantity (2.1) define two equivalent norms on Sobolev-Morrey

space, namely,

‖f‖Ms
p,µ

= ‖(| · |sf̂)∨‖Mp,µ ,

‖f‖Ms
p,µ

=
∥∥(∑

ν∈Z
|2sνF−1ψν(ξ)Ff |2

)1/2∥∥
Mp,µ

. (2.2)

It follows from Littlewood-Paley decomposition of the Lebesgue space Lp(RN ) and
homogeneous Sobolev space Hs

p(RN ) that Mp,0 = Lp(RN ) and Ms
p,0 = Ḣs

p(RN ),
respectively. Also, Morrey and Sobolev-Morrey spaces present the following scaling

‖f(γ·)‖Mp,µ
= γ−

N−µ
p ‖f‖Mp,µ and ‖f(γ·)‖Ms

p,µ
= γs−

N−µ
p ‖f‖Ms

p,µ
,

where the exponents s and s − N−µ
p are called scaling index and regularity index,

respectively.

Lemma 2.1. Suppose that s ∈ R, 1 ≤ p1, p2, p3 <∞ and 0 ≤ µi < N , i = 1, 2, 3.
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(i) (Inclusion) If N−µ1
p1

= N−µ2
p2

and p1 ≤ p2,

Mp2,µ2 ⊂Mp1,µ1 . (2.3)

(ii) (Sobolev-type embedding) Let p1 ≤ p2,

Ms
p1,µ ⊂M

s−(N−µp1
−N−µp2

)
p2,µ . (2.4)

(iii) (Höder inequality) Let 1
p3

= 1
p2

+ 1
p1

and µ3
p3

= µ2
p2

+ µ1
p1

. If fj ∈Mpj ,µj with
j = 1, 2, then f1f2 ∈Mp3,µ3 and

‖f1f2‖p3,µ3 ≤ ‖f1‖p1,µ1‖f2‖p2,µ2 . (2.5)

Finally, notice that the following homogeneous functions, of degree −d and s−d,
belong to Morrey and Sobolev-Morrey spaces, respectively:

ρ0(x) = Yk(x)|x|−d−k ∈Mp,µ and ρs(x) = Yk(x)|x|s−d−k ∈Ms
p,µ, (2.6)

where Yk(x) ∈ Lp(SN−1) is a harmonic homogeneous polynomial of degree k, µ =
N − dp, 0 < d − s < N and 1 < p < N/d. Indeed, using [20, Theorem 4.1] we
obtain ρ̂s(ξ) = γk,sYk(ξ)|ξ|d−s−k−N provided 0 < d−s < N , where γk,s is a positive
constant. It follows from (2.2) that

‖ρs‖Ms
p,µ

=
∣∣( +∞∑

ν=−∞
|2sνF−1ψν(ξ)γk,sYk(ξ)|ξ|d−s−k−N |2

)1/2∥∥
Mp,µ

∼
∥∥( +∞∑

ν=−∞
|F−1ψν(ξ)|ξ|sγk,sYk(ξ)|ξ|d−s−k−N |2

)1/2∥∥
Mp,µ

= ‖ρ0‖Mp,µ ,

which is finite. In fact, polar coordinates in RN and homogeneity of Yk(x) ∈
Lp(SN−1) yield

‖ρ0‖pLp(Qr) =
∫

SN−1
|Yk(x′)|p

∫ r

0

tN−dp−1dt dσ(x′) = ‖Yk‖pLp(SN−1)
rµ,

where µ = N − dp, 1 < p < N/d.

2.2. Duhamel formula. We consider the partial fractional differential equation

∂αt u(t, x) = ∆xu(t, x)− f(t, x), x ∈ RN , t > 0,

u(t, x)
∣∣
t=0

= ϕ(x),
∂

∂t
u(t, x)

∣∣
t=0

= ψ(x),
(2.7)

for α ∈ (1, 2) and ∂αt stands for partial fractional derivative given by

∂αt f(t, x) =
1

Γ(m− α)

∫ t

0

∂ms f(s, x)
(t− s)α+1−m ds, m− 1 < α ≤ m, m ∈ N.

Formally, applying the Fourier transform in (2.7), we obtain the fractional ordinary
differential equation

∂αt û(t, ξ) + 4π2|ξ|2û(t, ξ) = f̂(t, ξ),

û(t, ξ)|t=0 = ϕ̂(ξ), ∂tû(t, ξ)
∣∣
t=0

= ψ̂(ξ)
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which, by [11, Example 4.10], is equivalent to

û(t, ξ) = Eα,1(−4π2tα|ξ|2)ϕ̂(ξ) + tEα,2(−4π2tα|ξ|2)ψ̂(ξ)

+
∫ t

0

Eα,1(−4π2(t− s)α|ξ|2)
∫ s

0

rα(s− τ)f̂(τ, ξ)dτds,
(2.8)

where Eα,β(z) denotes the two-parametric Mittag-Leffler function

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
and Eα(z) := Eα,1(z), for all α, β > 0. (2.9)

Hence, in original variables, we have

u(t, x) = Gα,1(t)ϕ(x) +Gα,2(t)ψ(x) +Nα(u)(t, x),

where ̂Gα,j(t)f(ξ) is defined by (1.7) and Nα is defined by (1.8).
Note that G2,2(t) is the wave group

( sin(4π2t|ξ|)
4π2t|ξ|

)∨, G2,1(t) =
(

cos(4π2t|ξ|)
)∨ and

G1,1(t) = (e−4π2t|ξ|2)∨ is the heat semigroup.

3. Functional setting and theorems

Before starting our theorems, let β > 0 and 0 ≤ µ < N be such that

β =
α

2

(N − µ
p
− N − µ

r

)
and µ = N − 2p

ρ− 1
, (3.1)

which make ‖ · ‖Xβ invariant by scaling map (1.4).

3.1. Existence of solutions. Given a Banach space Y , we will denote BY (ε) a
closed ball of radius ε centered at the origin of the space Y . Our existence and
stability result is stated as follows.

Theorem 3.1. Let N ≥ 2, 1 < α < 2, q = 2ρ
ρ+1 , and 0 ≤ µ = N − 2p

ρ−1 , for p > 1.
Suppose that N−µ

p − N−µ
r < 2, r > ρ > 1 + α,

p

r
<

1
α
− 1

2
,

α

2− α
< q <

2
α
,
(
1− p

r

)
<
ρ− 1
α

(1
q
− α

2
)
. (3.2)

(i) (Global solution) There exist ε > 0 such that if ‖ϕ‖D(α,β) + ‖ψ‖ eD(α,β) ≤ ε,
then problem (1.1)-(1.2) has a unique global-in-time mild solution u ∈ BXβ (2ε)
satisfying

‖u(t, ·)‖Mr,µ
≤ Ct−β and ‖∇xu(t, ·)‖Mr,µ

≤ Ct−β−α/2. (3.3)

(ii) (Stability in Xβ) The solution u in Theorem 3.1(i) is stable with respect
to the initial data ϕ and ψ, that is, the data-map solution (ϕ,ψ) 7→ u is locally
Lipschitz continuous from D(α, β)× D̃(α, β) into Xβ:

‖u− ũ‖Xβ ≤ C
(
‖ϕ− ϕ̃‖D(α,β) + ‖ψ − ψ̃‖ eD(α,β)

)
, (3.4)

where u and ũ are solutions of (1.1) with initial values (ϕ,ψ) and (ϕ̃, ψ̃), respec-
tively.
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Remark 3.2. Let us compare our theorem with some previous results.
(A) If ψ = 0, we may take ϕ ∈ Mp,µ in Theorem 3.1-(i) with smallness on

‖ϕ‖Mp,µ .
(B) Theorem 3.1-(i) holds for α = 1 and ψ = 0. Hence, the space D(1, β) strictly

includes the space N (ϕ) taken in [17]. Indeed, let r < r1 and µ2 = 0 in Lemma
2.1-(i) to get

‖ϕ‖D(1,β) = sup
t>0

tβ‖et∆ϕ‖Mr,µ
+ sup

t>0
t

1
2 +β‖et∆ϕ‖M1

r,µ
,

≤ sup
t>0

tβ‖et∆ϕ‖Lr1 + sup
t>0

t
1
2 +β‖et∆ϕ‖Ḣ1

r1
= ‖ϕ‖N (ϕ).

On the one hand (see [14, (2.56)]), homogeneous Besov-Morrey spaces can be de-
fined by

N−2s
r,µ,∞ =

{
f ∈ S ′ : ‖f‖N−2s

r,µ,∞
= sup

t>0
t−s‖et∆f‖Mr,µ

<∞
}
, s > 0.

Hence, the space D(1, β) is a kind of Besov-Morrey spaces. On the other hand,
when α 6= 1 the norms ‖ϕ‖D(α,β) = ‖Gα,1(t)ϕ‖Xβ and ‖ψ‖ eD(α,β) = ‖Gα,2(t)ψ‖Xβ
satisfy

‖ϕ‖D(α,β) ≤ C‖ϕ‖Mp,µ and ‖ψ‖ eD(α,β) ≤ C‖ψ‖M−2/α
p,µ

in view of Lemma 5.1. So Mp,µ ⊂ D(α, β) and M−2/α
p,µ ⊂ D̃(α, β).

(C) (Viscous Hamilton-Jacobi) Let κ2 = 0, ψ = 0 in (1.1)-(1.2), µ = N − q−1
2−qp

and ‖ϕ‖D(α,β) small enough. Using the proof of Theorem 3.1, the problem (1.1)-
(1.2) has a unique solution u ∈ C((0,∞);Mr,µ) ∩ C((0,∞);M1

r,µ) such that

sup
t>0

t
(N−µ)

2 α( 1
p−

1
r )‖u(t)‖Mr,µ ≤ C,

sup
t>0

t
α
2 +

(N−µ)
2 α( 1

p−
1
r )‖∇u(t)‖Mr,µ ≤ C,

under the assumptions in Theorem 3.1 with the change ρ = 2
2−q . In other words,

we obtain a version of Theorem 2.1 and Proposition 2.3 of [3] when 1 < α < 2. If
α = 1, the assumption N−µ

p − N−µ
r < 2 is not necessary because of the smoothing

effect of the heat semigroup in Mp,µ (see e.g. [10]).

3.2. Self-similar solutions. As we commented before, a necessary condition for
initial data to produce self-similar solutions is homogeneity and simplest candidates
are the radial functions

ϕ(x) = ε1|x|−
2
ρ−1 and ψ(x) = ε2|x|−

2
ρ−1−

2
α . (3.5)

Hence, we need D(α, β) and D̃(α, β) to satisfy

‖ψγ‖ eD(α,β) = ‖ψ‖ eD(α,β) and ‖ϕγ‖D(α,β) = ‖ϕ‖D(α,β), (3.6)

and it comes from the scaling invariance of Xβ . Moreover, (2.6) and Remark 3.2-
(B) permit us to take the singular functions (3.5) as initial data, since ϕ ∈Mp,µ ⊂
D(α, β) and ψ ∈ M−2/α

p,µ ⊂ D̃(α, β) provided µ = N − 2p
ρ−1 , ρ > max{1 + 2

N , 1 +
2α

αN−2} and 1 < p < r.

Theorem 3.3 (Self-similarity). Under the assumptions of Theorem 3.1, let ϕ and
ψ be homogeneous functions of degree − 2

ρ−1 and − 2
ρ−1 −

2
α , respectively. Then the

solution u of Theorem 3.1-(i) is self-similar.



8 M. F. DE ALMEIDA, A. VIANA EJDE-2016/250

Remark 3.4. Let us remark some consequences of this theorem.
(A) (Infinity energy data) In Theorem 3.3 we can build singular initial data (ψ,ϕ)

which can be arbitrarily large in L2(RN )× Ḣ2/α(RN ), provided that 2
α + 2

ρ−1 <
N
2

and 1 < p < N(ρ−1)
2 . Indeed, let ϕ ∈ S ′(RN ) and ψ ∈ S ′(RN )/P be given by (3.5).

Using ϕ̂(ξ) = γ0,0ε1|ξ|
2
ρ−1−N , we see that ϕ and ψ are arbitrarily large in Ḣ2/α and

L2 in view of

‖ψ‖2L2(RN ) = ε2
2

∫
RN
|x|−

4
ρ−1−

4
α dx

= ε2
2 lim
ω2→∞

∫ ω2

0

∫
SN−1

r−
4
ρ−1−

4
α rN−1dσdr

= C lim
ω2→∞

ω
− 4
ρ−1−

4
α+N

2 = +∞

and

‖ϕ‖2
Ḣ

2
α (RN )

=
∫

RN
|ξ|4/α|ϕ̂(ξ)|2dξ = γ2

0,0ε
2
1

∫
RN
|ξ|4/α+ 4

ρ−1−2Ndξ

= C lim
ω1→0

∫ ∞
ω1

∫
SN−1

r4/α+ 4
ρ−1−N−1dσdr

= C lim
ω1→0

ω
4
α+ 4

ρ−1−N
1 = +∞.

Then, even the initial data ϕ and ψ are in the Morrey spaces Mp,µ and M−2/α
p,µ ,

respectively, they may be arbitrarily large in Ḣ2/α(RN ) and L2(RN ).
(B) Inspired by [16], we use a Littlewood-Paley decomposition of the Sobolev-

Morrey spaces (see subsection 2.1) to build general singular functions for Theorem
3.3. In fact, let Yk1(x), Yk2(x) be homogeneous harmonic polynomials of degree
k1 and k2, respectively. Consider S(ϕ,ψ) the set of functions (ϕ,ψ) ∈ S ′(RN ) ×
S ′(RN )/P such that

ϕ(x) = ε1
Yk1(x)

|x|
2
ρ−1 +k1

and ψ(x) = ε2
Yk2(x)

|x|
2
ρ−1 + 2

α+k2
.

By (2.6), the set S(ϕ,ψ) gives us a class of data for existence of self-similar solutions
for (1.1)-(1.2).

3.3. Symmetries. This subsection concerns with symmetries of solutions obtained
in Theorems 3.1 and 3.3. It is straightforward to check that Eα,1(4π2tα|ξ|2) and
tEα,2(4π2tα|ξ|2) are invariant by the set O(N) of all rotations in RN . It follows that
Gα,1(t) and Gα,2(t) are O(N)− invariant. Hence, it is natural to ask whether or
not the solutions of the above theorems present symmetry properties under certain
qualitative conditions on the initial data.

Let A be a subset of O(N). A function h is said symmetric under action A
when h(x) = h(T (x)) for all T ∈ A. If h(x) = −h(T (x)), the function h is said
antisymmetric under the action of A.

Theorem 3.5. Let the hypotheses of Theorem 3.1 be satisfied. The solution u(·, t)
is symmetric for all t > 0, whenever ϕ and ψ are symmetric under action A.

Remark 3.6. A radially symmetric solution is a self-similar solution, if the profile
ω depends only on r = |x|, that is, there is a function U such that u(t, x) =
t−

α
ρ−1U(|x|/tα2 ), t > 0.
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(A) Let A = O(N) in Theorem 3.5. If ϕ and ψ are radial and homogeneous func-
tions of degree − 2

ρ−1 and − 2
ρ−1 −

2
α , respectively (see Remark 3.4), then Theorems

3.1, 3.3 and 3.5 imply that (1.1)-(1.2) have a unique self-similar solution u ∈ Xβ

which is radially symmetric in RN .
(B) Unlike the case κ1 = 0, antisymmetry does not hold in general, for κ1 6= 0.

4. Technical estimates

In this section we prove some Mikhlin-type estimates for Mittag-Leffler functions.
In spite of the fact that these estimates are necessary in the proof of Lemma 5.1,
they are of independent interest. We start the section with a suitable decomposition
of Eα,β(z).

4.1. Decompositions of Eα,β(z).

Proposition 4.1. Let z ∈ C be such that Re(z) > 0 and define

ωα,β(z) =
z

1−β
α

α

[
exp

(
aα(z) +

1− β
α

πi
)

+ exp
(
bα(z)− 1− β

α
πi
)]
,

lα,β(z) =
∫ ∞

0

Hα,β(s)e−z
1/αs1/αz

1
α (1−β)ds,

where

Hα,β(s) =
1
απ

sin[(α− β)π]− s sin(βπ)
s2 + 2s cos(απ) + 1

s
1−β
α , (4.1)

aα(z) = z1/αe
πi
α , bα(z) = z1/αe−

πi
α .

Suppose that 1 < α < 2 and 1 ≤ β ≤ 2, then

Eα,β(−z) = ωα,β(z) + lα,β(z). (4.2)

Proof. Recall that Mittag-Leffler function can be written as

Eα,β(−z) =
1

2πi

∫
Ha

tα−βet

tα + z
dt, (4.3)

where Ha is the Hankel path, i.e. a path starts and ends at −∞ and encircles the
disk |t| ≤ |z|1/α positively. The integrand Φ(t) = tα−βet

tα+z of (4.3) has two poles
aα(z) and bα(z), because 1 < α < 2. Proceeding as in [5, Lemma 1.1], the residues
theorem yields

2πiEα,β(−z) =
∫ R

∞
Φ(te−πi)d(te−πi) + 2πi (Res(Φ, aα(z)) + Res(Φ, bα(z)))

−
∫ R

ε

Φ(te−πi)d(te−πi)−
∫ ε

R

Φ(teπi)d(teπi)

−
∫ π

−π
Φ(εeθi)d(εeθi) +

∫ ∞
R

Φ(teπi)d(teπi)

=: I1(R) + 2πi (Res(Φ, aα(z)) + Res(Φ, bα(z)))− I2(ε, R)

− I3(R, ε)− I4(ε) + I5(R).

We first get
lim
R→∞

I1(R) = lim
ε→0+

I4(ε) = lim
R→∞

I5(R) = 0.
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An easy computation yields

lα,β(z) = − 1
2πi

lim
R→∞,ε→0+

I2(ε, R) + I3(R, ε).

Indeed,

1
2πi

lim
ε→0+,R→∞

[
I2(ε, R) + I3(R, ε)

]
=

1
2πi

(∫ ∞
0

e−ttα−βe(α−β)πi

tαeαπi + z
dt−

∫ ∞
0

e−ttα−βe−(α−β)πi

tαe−απi + z
dt
)

= − 1
2πi

2i
∫ ∞

0

e−ttα−β
z sin[(α− β)π]− tα sin(βπ)
t2α + 2tαz cos(απ) + z2

dt (4.4)

= −
∫ ∞

0

Hα,β(s) exp (−z1/αs1/α)z
1
α (1−β)ds, (4.5)

= −lα,β(z),

where the change t 7→ z1/αs1/α was used from (4.4) to (4.5). Also, we obtain

Res(Φ, aα(z)) =
z

1−β
α

α
exp(aα(z) + πi(1− β)/α),

Res(Φ, bα(z)) =
z

1−β
α

α
exp(bα(z)− πi(1− β)/α).

These give us the desired decomposition. �

In particular, for β = 1 and β = 2 in Proposition 4.1, we have the decompositions

Eα,1(−z) = ωα,1(z) + lα,1(z) (4.6)

in [5, Lemma 1.1], and

Eα,2(−z) = ωα,2(z) + lα,2(z), (4.7)

in [6, Lemma 1.2-(IV)]. Notice that ωα,1(z) oscillates with frequency sin(π/α) and
amplitude decaying exponentially with rate | cos(π/α)|, in view of

ωα,1(z) =
2
α

exp(z1/α cos(π/α)) cos(z1/α sin(π/α)).

On the other hand, the function lα,1(z) exhibits the relaxation phenomena of
Eα,1(−z), namely,

lα,1(z) =
∫ ∞

0

Hα,1(s) exp(−s1/αz1/α)ds =
∫ ∞

0

exp(−s1/αz1/α)dµα(s),

where

Hα,1(s) =
sin(απ)
απ

1
s2 + 2s cos(απ) + 1

and dµα(s) = Hα,1(s)ds is a finite measure in R+ such that µα(R+) = 2 − 2
α .

Furthermore, when β = α, the decomposition (4.2) is useful to show that the map
Gα,β(·), β = 1, 2, is differentiable for t > 0. Indeed, see (5.4) and (5.6) below.
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4.2. Mikhlin estimates for Eα,β(−σ(ξ)). We provide estimates for Eα,1(σ(ξ)),
Eα,2(σ(ξ)) and Eα,α(σ(ξ)), where σ ∈ C∞(RN\{0}; (−∞, 0)) is the symbol of the
Fourier multiplier

σ(D)f = F−1σ(ξ)Ff(ξ), f ∈ S(RN ).

Consider the change z 7→ σ(ξ) into (4.6) and write it as follows:

Eα,1(σ(ξ)) = ωα,1(−σ(ξ)) + lα,1(−σ(ξ)). (4.8)

Proposition 4.2. Let σ(ξ) ∈ C∞(RN\{0}) be a function homogeneous of degree
k > 0 and such that ∣∣ ∂γ

∂ξγ
[σ(ξ)]

∣∣ ≤ A|ξ|k−|γ|, ξ 6= 0 (4.9)

for all multi-index γ ∈ (N ∪ {0})N with |γ| ≤ [N/2] + 1. Let 1 < α < 2 and
0 ≤ δ < k, there exists C > 0 such that∣∣ ∂γ

∂ξγ
[|ξ|δEα,1(σ(ξ))]

∣∣ ≤ CA|ξ|−|γ|, ξ 6= 0. (4.10)

Proof. Taking (4.9) into account we obtain∣∣ ∂γ
∂ξγ

[−σ(ξ)]l
∣∣ ≤ CA |ξ|−|γ||ξ|kl, for all l ∈ R. (4.11)

Hence, the γth-order derivative of the parcel |ξ|δωα,1(σ(ξ)) can be estimated by∣∣ ∂γ
∂ξγ

[|ξ|δωα,1(−σ(ξ))]
∣∣

=
∣∣ ∂γ
∂ξγ

[
|ξ|δ exp(e

iπ
α (−σ(ξ))1/α) + |ξ|δ exp(e−

iπ
α (−σ(ξ))1/α)

]∣∣
≤ C|ξ|−|γ|

[
c0|ξ|δ + c1|ξ|δ+

k
α + · · ·+ c|γ||ξ|δ+

|γ|k
α

]
ecos( πα )(−σ(ξ))1/α

≤ CA|ξ|−|γ|.

(4.12)

To estimate lα,1(σ(ξ)), recall that

lα,1(σ(ξ)) =
∫ ∞

0

Hα,1(s) exp(−s1/α(−σ(ξ))1/α)ds.

Using the homogeneity σ(λξ) = λkσ(ξ), we have∣∣ ∂γ
∂ξγ

[|ξ|δe−s
1/α(−σ(ξ))1/α ]

∣∣
≤ C|ξ|−|γ|

[
c0|ξ|δ + c1|ξ|δ+

k
α s1/α + · · ·+ c|γ||ξ|δ+

|γ|k
α s

|γ|
α

]
e−s

1/α(−σ(ξ))1/α

= Cs−
δ
k |ξ|−|γ|

[
c0|s

1
k ξ|δ + c1|s

1
k ξ|δ+ k

α + . . .

+ c|γ||s
1
k ξ|δ+

|γ|k
α

]
e−[−σ(s1/kξ)]1/α

≤ CAs− δk |ξ|−|γ|.

(4.13)

Then ∣∣ ∂γ
∂ξγ

[|ξ|δlα,1(−σ(ξ))]
∣∣

=
sin(απ)
απ

∫ ∞
0

1
s2 + 2s cos(απ) + 1

∣∣ ∂γ
∂ξγ

[|ξ|δe−s
1/α(−σ(ξ))1/α ]

∣∣ds
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≤ CA
( sin(απ)

απ

∫ ∞
0

s−
δ
k

s2 + 2s cos(απ) + 1
ds
)
|ξ|−|γ|

≤ CA |ξ|−|γ|,

because 0 ≤ δ < k. These estimates prove the proposition. �

In general, we obtain the following proposition for the two-parametric Mittag-
Leffler function.

Proposition 4.3. Let σ(ξ) ∈ C∞(RN\{0}) be a homogeneous function of degree
k > 0 satisfying (4.9), for all multi-index γ ∈ (N ∪ {0})N with |γ| ≤ [N/2] + 1.
Then, there exists a positive constant C (independent of δ and k) such that∣∣ ∂γ

∂ξγ
[|ξ|δEα,β(σ(ξ))]

∣∣ ≤ CA|ξ|−|γ|, ξ 6= 0 (4.14)

provided that 1 < α < 2 and k(βα −
1
α ) ≤ δ < k.

Proof. The proof is similar the proof of Proposition 4.2. Indeed, proceeding as in
(4.12), it follows that∣∣ ∂γ1

∂ξγ1
hα,β(ξ)

∣∣
:=
∣∣∣ ∂γ1
∂ξγ1

[
|ξ|δ exp

(
aα(σ(ξ)) +

1− β
α

πi
)

+ |ξ|δ exp
(
bα(σ(ξ))− 1− β

α
πi
)]∣∣∣

≤ CA|ξ|−|γ1|
[
c0|ξ|δ + c1|ξ|δ+

k
α + · · ·+ c|γ1||ξ|

δ+
|γ1|k
α

]
ecos(π/α)(−σ(ξ))1/α ,

(4.15)

for all multi-index γ1. Hence, Leibniz’s rule, (4.11) and (4.15) give us∣∣ ∂γ1
∂ξγ

[|ξ|δωα,β(−σ(ξ))]
∣∣

≤
∑
γ1≤γ

(
γ

γ1

)∣∣ ∂γ1
∂ξγ1

[σ(ξ)]
1−β
α

∣∣ ∣∣ ∂γ−γ1
∂ξγ−γ1

[hα,β(ξ)]
∣∣

≤ CA|ξ|−|γ1|−|γ−γ1|
[
c0|ξ|δ+k(

1
α−

β
α ) + · · ·+ c|ξ|δ+k(

1
α−

β
α )+

|γ−γ1|k
α

]
× ecos(π/α)(−σ(ξ))1/α

≤ CA|ξ|−|γ|,

in view of δ+ k( 1
α −

β
α ) ≥ 0. Also, using (4.11) and (4.13), the Leibniz’s rule yields∣∣ ∂γ

∂ξγ
[(

(−σ(ξ))
1−β
α

)(
|ξ|δ exp(−s1/α(−σ(ξ))1/α)

)]∣∣ ≤ CA|ξ|−|γ|s− δk+ β
α−

1
α .

Hence, we estimate∣∣ ∂γ
∂ξγ

[|ξ|δlα,β(−σ(ξ))]
∣∣ ≤ ∫ ∞

0

|Hα,β(s)|
∣∣ ∂γ
∂ξγ

[
(−σ(ξ))

1−β
α |ξ|δ exp(−s1/α(−σ(ξ))1/α)

]∣∣ds
= CA(I + II)|ξ|−|γ|

≤ C|ξ|−|γ|,
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where the integrals I and II are defined by (see (4.1))

I =
sin[(α− β)π]

απ

∫ ∞
0

s−
δ
k

s2 + 2s cos(απ) + 1
ds, (4.16)

II = − sin(βπ)
απ

∫ ∞
0

s1− δk

s2 + 2s cos(απ) + 1
ds. (4.17)

Those integrals are finite in view of δ < k. This completes the proof of the propo-
sition. �

5. Sobolev-Morrey estimates

In this section we obtain fundamental estimates which will be important to prove
Theorem 3.1.

5.1. Linear estimates. Here, we present some estimates of the Mittag-Leffler op-
erators {Gα,β(t)}t≥0 in Sobolev-Morrey spaces. Indeed, based on Propositions 4.2
and 4.3 with the homogeneous symbol σ(ξ) = −4π2|ξ|2 of degree 2, the following
lemma can be proved by proceeding as in [2, Lemma 3.1-(i)].

Lemma 5.1. Let γ1 ≤ γ2 ∈ R, 1 < p1 ≤ p2 < ∞, 0 ≤ µ < N , 1 < α < 2 and
λ = (γ2 − γ1) + N−µ

p1
− N−µ

p2
. There is a constant C such that

‖Gα,1(t)f‖Mγ2
p2,µ
≤ Ct−α2 λ‖f‖Mγ1

p1,µ
, if λ < 2, (5.1)

‖Gα,2(t)f‖Mγ2
p2,µ
≤ Ct−α2 λ ‖f‖

M
γ1−

2
α

p1,µ

, if λ+
2
α
< 2, (5.2)

‖Gα,α(t)f‖Mγ2
p2,µ
≤ Ctα−1−α2 λ‖f‖Mγ1

p1,µ
, if

(
2− 2

α

)
< λ < 2, (5.3)

for all f ∈ S ′(RN ).

We finish this subsection by noticing that {∂tGα,1(t)}t≥0 and {∂tGα,2(t)}t≥0 are
bounded in Morrey spaces. Indeed, a straightforward computation gives us

d

dt
Eα,1(−4π2|ξ|2tα) = −4π2|ξ|2

[
tα−1Eα,α(−4π2|ξ|2tα)

]
,

for t > 0 and ξ 6= 0. It follows from Lemma 5.1-(iii) that

‖∂tGα,1(t)f‖Mp2,µ
≤ C‖Gα,α(t)f‖M2

p2,µ
≤ Ct−

α
2

“
N−µ
p1
−N−µp2

”
−1‖f‖Mp1,µ

. (5.4)

Using

tEα,2(−4π2|ξ|2tα) =
∫ t

0

Eα,1(−4π2|ξ|2sα)ds, (5.5)

Lemma 5.1-(i) yields

‖∂tGα,2(t)f‖Mp2,µ
= ‖Gα,1(t)f‖Mp2,µ

≤ Ct−
α
2

“
N−µ
p1
−N−µp2

”
‖f‖Mp1,µ

. (5.6)
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5.2. Nonlinear estimates. This subsection is devoted to estimate the nonlinear
term Nα(u) on the functional space Xβ . Firstly, let us denote B(ν, η) by special
beta function B(ν, η) =

∫ 1

0
(1 − t)ν−1tη−1dt which is finite, for all η, ν > 0. Let

k1, k2, k3 < 1, for t > 0 and s > 0 the changes of variable τ 7→ τs and s 7→ st give
us

I(t) =
∫ t

0

(t− s)−k1
∫ s

0

(s− τ)−k2τ−k3dτds

= B(1− k2, 1− k3)
∫ t

0

(t− s)−k1s−k2−k3+1ds

= B(1− k2, 1− k3)B(1− k1, 2− k2 − k3)t2−k1−k2−k3 .

(5.7)

We freely use (5.7) in the next proof.

Lemma 5.2. Under assumptions of Theorem 3.1, there is a positive constant K =
K(κ1, κ2) such that

‖Nα(u)−Nα(v)‖Xβ ≤ K‖u− v‖Xβ
[
‖u‖ρ−1

Xβ
+ ‖v‖ρ−1

Xβ
+ ‖u‖q−1

Xβ
+ ‖v‖q−1

Xβ

]
. (5.8)

Proof. Recall Nα(u) and rewrite it as follows:

Nα(u)(t) =
∫ t

0

Gα,1(t− s)
∫ s

0

rα(s− τ)
(
κ2|u|ρ−1u+ κ1|∇xu|q

)
dτds

=: N 1
α(u)(t) +N 2

α(u)(t).
(5.9)

The proof is divided in three steps.
First step: Estimates for N 1

α(u). In (5.1), let (γ1, γ2, p1, p2) = (0, 1, r/ρ, r) and
1 < ρ < r to obtain

‖N 1
α(u)(t)−N 1

α(v)(t)‖M1
r,µ

≤ C
∫ t

0

(t− s)−λ1

∫ s

0

rα(s− τ)‖f(u)− f(v)‖Mr/ρ,µ
dτds,

where f(u)(τ) = κ1|u(τ)|ρ−1u(τ) and λ1 = α
2 + α

2

(
N−µ
r/ρ −

N−µ
r

)
. Using that

| |a|ρ−1a− |b|ρ−1b| ≤ C|a− b|
(
|a|ρ−1 + |b|ρ−1

)
, for all ρ > 1 (5.10)

and ρ
r = 1

r + ρ−1
r , the Hölder inequality (2.5) yields

‖N 1
α(u)(t)−N 1

α(v)(t)‖M1
r,µ
≤ C|κ2|

∫ t

0

(t− s)−λ1θ(s)ds, (5.11)

where θ(s) is given by

θ(s) =
∫ s

0

(s− τ)α−2‖u(τ)− v(τ)‖Mr,µ

(
‖u(τ)‖ρ−1

Mr,µ
+ ‖v(τ)‖ρ−1

Mr,µ

)
dτ

≤ C
∫ s

0

(s− τ)α−2τ−ρβτβ‖u(τ)− v(τ)‖Mr,µ
×

× τβ(ρ−1)
(
‖u(τ)‖ρ−1

Mr,µ
+ ‖v(τ)‖ρ−1

Mr,µ

)
dτ

≤ C
∫ s

0

(s− τ)α−2τ−ρβdτ‖u− v‖Xβ
(
‖u‖ρ−1

Xβ
+ ‖v‖ρ−1

Xβ

)
.

(5.12)

Notice that α(ρ− 1)N−µ2r = α− (ρ− 1)β yields

−λ1 + α− ρβ = −α
2

+ (ρ− 1)β − α+ α− ρβ = −α
2
− β.
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It follows that (5.11) can be bounded by

‖N 1
α(u)(t)−N 1

α(v)(t)‖M1
r,µ
≤ C|κ2|I1(t) ‖u− v‖Xβ

(
‖u‖ρ−1

Xβ
+ ‖v‖ρ−1

Xβ

)
≤ C|κ2|t−β−

α
2 ‖u− v‖Xβ

(
‖u‖ρ−1

Xβ
+ ‖v‖ρ−1

Xβ

)
,

(5.13)

because the integral I1(t) (see (5.7)) satisfies

I1(t) =
∫ t

0

(t− s)−λ1

(∫ s

0

(s− τ)α−2τ−ρβdτ
)
ds = Ct−λ1+α−ρβ = Ct−β−

α
2 .

Proceeding in a similar fashion, we obtain

‖N 1
α(u)(t)−N 1

α(v)(t)‖Mr,µ
≤ C|κ2|J1(t) ‖u− v‖Xβ

(
‖u‖ρ−1

Xβ
+ ‖v‖ρ−1

Xβ

)
≤ C|κ2|t−β ‖u− v‖Xβ

(
‖u‖ρ−1

Xβ
+ ‖v‖ρ−1

Xβ

)
,

(5.14)

where J1(t) is given by

J1(t) =
∫ t

0

(t− s)−ϑ1

∫ s

0

(s− τ)α−2τ−ρβdτds,

and ϑ1 = α
2

(
N−µ
r/ρ −

N−µ
r

)
. In view of

−ϑ1 + α− ρβ =
α

2
(N − µ
r/ρ

− N − µ
r

)
+ α− ρβ = (ρ− 1)β − α+ α− ρβ = −β,

one has J1(t) = Ct−β .
The convergence of I1(t) and J1(t) follows from (3.2) for λ1 = α

2 + ϑ1 < 1 and
because p

r <
(

1
α −

1
2

)
is equivalent to ϑ1 = α pr < 1 − α

2 . Further,
(
1− p

r

)
<

ρ−1
α

(
1
q −

α
2

)
= ρ−1

αρ

(
ρ+1

2 −
αρ
2

)
< ρ−1

αρ leads to ρβ < 1.

Second step: Estimates for N 2
α(u). Using inequality (5.1) with (γ1, γ2, p1, p2) =

(0, 1, r/q, r), in view of 1 < q < ρ < r, we obtain

‖N 2
α(u)(t)−N 2

α(v)(t)‖M1
r,µ

≤ C
∫ t

0

(t− s)−λ2

∫ s

0

rα(s− τ)‖g(u)− g(v)‖Mr/q,µ
dτds,

where g(f)(τ) = κ2|∇xf(τ)|q and λ2 = α
2 + α

2

(
qN−µr − N−µ

r

)
. It follows that

‖ |∇xu(t)|q − |∇xv(t)|q‖Mr,µ
≤ C‖u(t)− v(t)‖M1

r,µ

(
‖u(t)‖q−1

M1
r,µ

+ ‖v(t)‖q−1
M1

r,µ

)
.

Hence,

‖N 2
α(u)(t)−N 2

α(v)(t)‖M1
r,µ
≤ C|κ1|

∫ t

0

(t− s)−λ2 θ̃(s)ds

where θ̃(s) is bounded as

θ̃(s) = C

∫ s

0

(s− τ)α−2‖u(τ)− v(τ)‖M1
r,µ

(
‖u(τ)‖q−1

M1
r,µ

+ ‖v(τ)‖q−1
M1

r,µ

)
dτ

≤ C
∫ s

0

(s− τ)α−2τ−q(β+α
2 )dτ‖u− v‖Xβ

(
‖u‖q−1

Xβ
+ ‖v‖q−1

Xβ

)
.

(5.15)

Hence, we estimate∥∥N 2
α(u)(t)−N 2

α(v)(t)
∥∥
M1

r,µ
≤ C|κ1|I2(t) ‖u− v‖Xβ

(
‖u‖q−1

Xβ
+ ‖v‖q−1

Xβ

)
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≤ C|κ1|t−β−
α
2 ‖u− v‖Xβ

(
‖u‖q−1

Xβ
+ ‖v‖q−1

Xβ

)
,

where I2(t) is given by∫ t

0

(t− s)−λ2

∫ s

0

(s− τ)α−2τ−q(β+α
2 )dτds = Ct−λ2+α−q(β+α/2) = Ct−β−

α
2 .

Indeed, in view of q = 2ρ
ρ+1 and

(q − 1)β = α
q − 1
ρ− 1

− α(q − 1)
N − µ

2r
=
α

2
(2− q)− α(q − 1)

N − µ
2r

, (5.16)

we obtain

−λ2 + α− q(β + α/2) = −α(q − 1)
N − µ

2r
− α

2
+ α− q(β + α/2)

= (q − 1)β − α

2
(2− q)− α

2
+ α− q(β + α/2)

= −α
2
− β.

It remains to obtain estimates for sup0<t<T t
β‖N 2

α(u)(t) − N 2
α(v)(t)‖Mr,µ

. Pro-
ceeding as before, one has

‖N 2
α(u)(t)−N 2

α(v)(t)‖Mr,µ

≤ C|κ1|J2(t) sup
0<t<T

tβ+α
2 ‖∇xu(t)−∇xv(t)‖Mr,µ

× sup
0<t<T

t(β+α
2 )(q−1)

(
‖∇xu(t)‖q−1

Mr,µ
+ ‖∇xv(t)‖q−1

Mr,µ

)
≤ C|κ1|J2(t) ‖u− v‖Xβ

(
‖u‖q−1

Xβ
+ ‖v‖q−1

Xβ

)
≤ C|κ1|t−β ‖u− v‖Xβ

(
‖u‖q−1

Xβ
+ ‖v‖q−1

Xβ

)
,

where J2(t) is given by∫ t

0

(t− s)−ϑ2

∫ s

0

(s− τ)α−2τ−q(β+α
2 )dτds = Ct−ϑ2+α−q(β+α/2) = Ct−β .

In fact, the inequality (5.1) with (γ1, γ2, p1, p2) = (0, 0, r/q, r) implies that ϑ2 =
α
2

(
qN−µr − N−µ

r

)
= α(q − 1)N−µ2r , which by (5.16) give us

− ϑ2 + α− q(β +
α

2
) = (q − 1)β − α

2
(2− q) + α− q(β +

α

2
) = −β. (5.17)

The convergence of the beta functions I2(t), J2(t) follows by our hypotheses in (3.2),
because

(
1− p

r

)
< ρ−1

α

(
1
q −

α
2

)
is equivalent to q(β + α/2) < 1 and p

r <
(

1
α −

1
2

)
and q = 2ρ

ρ+1 yields to ϑ2 = α
ρ+1

p
r <

(
1− α

2

)
which is equivalent λ2 = α

2 + ϑ2 < 1.

Third step: The two steps above lead to

‖Nα(u)−Nα(v)‖Xβ
≤ ‖N 1

α(u)−N 1
α(v)‖Xβ + ‖N 2

α(u)−N 2
α(v)‖Xβ

≤ K(κ1, κ2)‖u− v‖Xβ
[(
‖u‖ρ−1

Xβ
+ ‖v‖ρ−1

Xβ

)
+
(
‖u‖q−1

Xβ
+ ‖v‖q−1

Xβ

)]
.

This completes the proof. �
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6. Proofs of theorems

Now, we put all estimates of Section 5 together to prove our theorems.

6.1. Proof of Theorem 3.1. Part (i): Notice that

‖Gα,1(t)ϕ‖Xβ + ‖Gα,2(t)ψ‖Xβ = ‖ϕ‖D(α,β) + ‖ψ‖ eD(α,β) ≤ ε, (6.1)

where ε > 0 will be chosen such that(
2ρερ−1 + 2qεq−1

)
<

1
2K

. (6.2)

Consider the complete metric dB(·, ·) defined by dB(u, v) = ‖u− v‖Xβ on the ball
BXβ (2ε) and let Λ : BXβ (2ε)→ BXβ (2ε) be the operator

Λ(u)(t) = Gα,1(t)ϕ+Gα,2(t)ψ +Nα(u)(t).

We would like to show that Λ(BXβ (2ε)) ⊂ BXβ (2ε) and Λ is a contraction on metric
space (BXβ (2ε), dB). In fact, the continuity of Gα,j(·) : (0,∞) → Mr,µ, j = 1, 2,
was proved at the final of subsection 5.1, and the regularization property of the
convolution imply that (Λu) : (0,∞) → Mr,µ is continuous, whenever u ∈ Xβ .
Further, from Lemma 5.2 we obtain
‖Λ(u)− Λ(v)‖Xβ = ‖Nα(u)−Nα(v)‖Xβ

≤ K‖u− v‖Xβ
[
‖u‖ρ−1

Xβ
+ ‖v‖ρ−1

Xβ
+ ‖u‖q−1

Xβ
+ ‖v‖q−1

Xβ

]
≤ K

(
2ρερ−1 + 2qεq−1

)
‖u− v‖Xβ

(6.3)

for all u, v ∈ BXβ (2ε). Now, (6.1) and (6.3) give us

‖Λ(u)‖Xβ ≤ ‖Gα,1(t)ϕ+Gα,2(t)ψ‖Xβ + ‖Nα(u)−Nα(0)‖Xβ
≤ ε+K

(
2ρερ−1 + 2qεq−1

)
2ε < 2ε ,

(6.4)

in view of (6.2) and provided that u ∈ BXβ (2ε). Hence, Λ(BXβ (2ε)) ⊂ BXβ (2ε)
and Λ is a contraction in BXβ (2ε). From the Banach fixed theorem there is a mild
solution u ∈ Xβ for (1.1)-(1.2) which is unique in the ball BXβ (2ε).
Part (ii): Let u and ũ be two mild solutions in BXβ (2ε), obtained in the Part (i),
subject to initial data (ϕ,ψ) and (ϕ̃, ψ̃), respectively. Then

‖u− ũ‖Xβ ≤ ‖Gα,1(ϕ− ϕ̃)‖Xβ + ‖Gα,2(ψ − ψ̃)‖Xβ + ‖Nα(u)−Nα(ũ)‖Xβ
≤ ‖ϕ− ϕ̃‖D(α,β) + ‖ψ − ψ̃‖ eD(α,β) +K

(
2ρερ−1 + 2qεq−1

)
‖u− ũ‖Xβ ,

which yields the Lipschitz continuity

‖u− ũ‖Xβ ≤
1(

1− 1
4K

) (‖ϕ− ϕ̃‖D(α,β) + ‖ψ − ψ̃‖ eD(α,β)

)
. (6.5)

This completes the proof.

6.2. Proof of Theorem 3.3. Let δλf(x) = f(λx) and notice that δ̂λf(ξ) =
λ−N f̂(ξ/λ). Recall that Gα,2(t)ψ and Gα,1(t)ϕ are given by

Gα,2(t)ψ := t kα,2(t, ·) ∗ ψ and Gα,1(t)ϕ := kα,1(t, ·) ∗ ϕ,

where k̂α,2(t, ξ) = tEα,2(−4π2tα|ξ|2) and k̂α,1(t, ξ) = Eα,1(−4π2tα|ξ|2). Notice
that

[δγGα,2(γ
2
α t)ψ]∧(ξ) = γ−Nγ

2
α tk̂α,2(γ

2
α t, ξ/γ)ψ̂(ξ/γ)
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= γ
2
α [tEα,2(−4π2tα|ξ|2)]γ−N ψ̂(ξ/γ)

= γ−
2
ρ−1 [Gα,2(t)ψ]∧(ξ),

in view of δγψ(x) = γ−
2
ρ−1−

2
αψ(x). Hence,

[Gα,2(t)ψ]γ = Gα,2(t)ψγ and [Gα,1(t)ϕ]γ = Gα,1(t)ϕγ .

We can easily check that Nα(uγ) = [Nα(u)]γ , for all γ > 0. Here, we denoted
[Nα(u)]γ(t, x) = γ

2
ρ−1Nα(u)(γ

2
α t, γx). Therefore,

uγ(t) = [Gα,1(t)ϕ]γ + [Gα,2(t)ψ]γ + [Nα(u)]γ = Gα,1(t)ϕγ +Gα,2(t)ψγ +Nα(uγ)

is a mild solution uγ ∈ Xβ of (1.1)-(1.2). From ‖uγ‖Xβ = ‖u‖Xβ and the uniqueness
proved in Theorem 3.1-(i), we have

u(t, x) = uγ(t, x), a.e. x ∈ RN and for all γ, t > 0.

This completes the proof.

6.3. Proof of Theorem 3.5. Let Gα,2(t)ψ := kα,2(t, ·) ∗ ψ and Gα,1(t)ϕ :=
kα,1(t, ·) ∗ ϕ, be as above. For T ∈ A, we have

kα,1(t, T (x)) =
∫

RN
e2πi 〈T (x),ξ〉Eα,1(−4π2tα|ξ|2))dξ

=
∫

RN
e2πi 〈T (x),T (ξ)〉Eα,1(−4π2tα|T (ξ)|2))|detT |dξ

=
∫

RN
e2πi〈x,ξ〉Eα,1(−4π2tα|ξ|2))dξ = kα,1(t, x),

where we used the change of variable ξ 7→ T (ξ) and the fact that |detT | = 1. In a
similar fashion one has

kα,2(t, T (x)) = kα,2(t, x).

It follows that

u1(t, T (x)) :=
∫

RN
kα,1(t, T (x)− y)ϕ(y)dy +

∫
RN

kα,2(t, T (x)− y)ψ(y)dy

=
∫

RN
kα,1(t, T (x− z))ϕ(Tz)dz +

∫
RN

kα,2(t, T (x− z))ψ(Tz)dz

= −
∫

RN
kα,1(t, x− z)ϕ(z)dz −

∫
RN

kα,2(t, x− z)ψ(z)dz

= u1(t, x)

when ϕ and ψ are symmetric under action A. Let

θ(s, x) =
∫ s

0

rα(s− t)κ2|u(t, x)|ρ−1u(t, x)− κ1|∇xu(t, x)|q

and notice that

θ(s, Tx) =
∫ s

0

rα(s− t)
(
κ2|u(t, Tx)|ρ−1u(t, Tx)− κ1|∇xu(t, Tx)|q

)
dτ

=
∫ s

0

rα(s− t)
(
κ2|u(t, x)|ρ−1u(t, x)− κ1|T ∇xu(t, T (x))|q

)
dτ

= θ(s, x),
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that is, θ(t, ·) is symmetric whenever u(t, ·) is. Hence,

Nα(u)(t, x) =
∫ t

0

∫
RN

kα,1(t− s, x− y)θ(s, y)dyds

is symmetric if u(t, ·) is, for each t > 0. From now on, employing an induction
argument in the Picard’s sequence

u1(t, x) = Gα,2(t)ψ +Gα,1(t)ϕ

uk(t, x) = u1(t, x) +Nα(uk−1)(t, x), k = 2, 3, . . .

one can prove that (uk) is symmetric. It follows that u(t, x) is symmetric, for all
t > 0. The proof is complete.
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