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POSITIVE SOLUTIONS FOR A SECOND-ORDER Φ-LAPLACIAN
EQUATIONS WITH LIMITING NONLOCAL BOUNDARY

CONDITIONS

GEORGE L. KARAKOSTAS, KONSTANTINA G. PALASKA,

PANAGIOTIS CH. TSAMATOS

Abstract. Motivated, mainly, by the works of Fewster-Young and Tisdell

[9, 10] and Orpel [30], as well as the papers by Karakostas [21, 22, 23], we give
sufficient conditions to guarantee the existence of (nontrivial) solutions of the

second-order Φ-Laplacian equation

1

p(t)

d

dt
[p(t)Φ(u′(t))] + (Fu)(t) = 0, a.e. t ∈ [0, 1] =: I,

which satisfy the nonlocal boundary value conditions of the limiting Sturm-
Liouville form

lim
t→0

[p(t)Φ(u′(t))] =

Z 1

0
u(s)dη(s), lim

t→1
[p(t)Φ(u′(t))] = −

Z 1

0
u(s)dζ(s).

Here Φ is an increasing homeomorphism of the real line onto itself and F

is an operator acting on the function u and on its first derivative with the

characteristic property that u→ p(Fu) is a C0-type, or C1-type Caratheodory
operator, a meaning introduced here. Examples are given to illustrate both

cases.

1. Introduction

We study the existence of positive solutions of the second-order Φ-Laplacian
equation

1
p(t)

d

dt
[p(t)Φ(u′(t))] + (Fu)(t) = 0, a.e. t ∈ [0, 1] =: I, (1.1)

associated with the nonlocal limiting boundary value conditions of the Sturm-
Liouville form

lim
t→0

[p(t)Φ(u′(t))] =
∫ 1

0

u(s)dη(s), lim
t→1

[p(t)Φ(u′(t))] = −
∫ 1

0

u(s)dζ(s), (1.2)

where Φ is an increasing homeomorphism, while, conditions for p, η and ζ will
be given in the text. If p(t) = 1 and Φ is the identity, then the boundary value
conditions (1.2) take a form related to that one considered in [18] and [19].

In the sequel we shall use the Banach space C0 := C0(I,R) of continuous func-
tions u : I → R endowed with the sup-norm ‖ · ‖0 and the Banach space C1 :=
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C1(I,R) (of all differentiable functions u : I → R having derivative u′ ∈ C0(I,R))
endowed with the norm ‖u‖1 := max{‖u‖0, ‖u′‖0}. Notice that the natural imbed-
ding C1 ↪→ C0 furnishes the space C1 with both norms, ‖ · ‖0 and ‖ · ‖1. Then,
given a set A ⊆ C1, we let cl0A and cl1A be the closures of A with respect to the
norms ‖ · ‖0 and ‖ · ‖1, respectively. We shall denote by C0

+ the set of all nonneg-
ative functions of C0. Also, let M be the linear space of all Lebesgue measurable
functions u : I → R and L1 the Banach space of all Lebesgue integrable functions
u ∈M with norm ‖u‖L1 .

In the sequel, given two topological spaces X1, X2, to emphasize that an operator
V : X1 → X2 is continuous, we shall say that V is (X1, X2)-continuous. We
introduce the following definition.

Definition 1.1. Let i = 0, 1. An operator G : Ci →M will be said to be a Ci-type
Caratheodory operator, if it is (‖ · ‖i,L1)-continuous, and for each c > 0, there is a
function mc ∈ L1, such that

‖u‖i ≤ c =⇒ |(Gu)(t)| ≤ mc(t), for a.a. t ∈ I

and u ∈ Ci.

Hence, if f(t, x, y) is a Caratheodory function (in the usual sense) with respect
to the pair-variable (x, y), then the types

(F1u)(t) := f(t, u(t), u(
t

2
)),

(F2u)(t) := f(t, u(t),
∫ 1

0

a(s)u2(s)ds), (a ∈ L1),

(F3u)(t) := f(t, u(t), u′(
t

3
))

define, respectively, C0, C0, C1-type Caratheodory operators.
Because of a great number of physical applications, the study of φ-Laplacian

differential equations of second order of the form

(a(t)Φ(u′(t)))′ + b(t)f(t, u(t)) = 0, t ∈ (0, 1),

associated with various boundary value conditions have received the attention of
many authors; see, e.g., [1]-[5], [8], [11]-[15], [23], [26]-[28], [32], and the references
therein. In most of these papers the response function is continuous in its ar-
guments, thus it is a Caratheodory function. Also, many two- (or multi)-point
boundary value problems involving the well-known p-Laplacian equation

(φp(u′(t)))′ = f(t, u(t), u′(t)), t ∈ [0, 1],

where φp(s) := |s|p−2s, (p > 1), have received a lot of attention, see for instance,
[6, 16, 17, 31] and the references therein. The key condition in these works is a
growth restriction imposed on the response f .

When seeking a positive solution of the problem and the positivity of the non-
linearity is guaranteed, most of the authors mentioned above, are frequently led
to use the Krasnoselskii’s fixed point theorem applying to a completely continuous
operator T which is defined on an appropriate cone in some Banach space. A type
of a barrier strip on the function f is used elsewhere (see, e.g., [24, 25, 32] and the
references therein) and then apply the Topological Transversality Theorem. The
disadvantage in the latter situations is that no sign of the solutions is known.
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The presence of a generally nonlinear operator Φ was introduced in [21, 22],
which was assumed to be a sup-multiplicative-like function in the following sense:
Φ is a sup-multiplicative-like function, if it is an odd homeomorphism of the real
line R onto itself, for which there exists a homeomorphism φ of [0,+∞) onto itself,
that supports Φ, in the sense that, for all v1, v2 ≥ 0, it holds φ(v1)Φ(v2) ≤ Φ(v1v2).
For instance, a function of the form Φ(v) :=

∑k
0 cj |v|jv, v ∈ R is sup-multiplicative-

like, provided that cj ≥ 0 and
∑
cj > 0. Here a supporting function is defined by

φ(u) := min{uk+1, u}, u ≥ 0. A good use of sup-multiplicative-like functions is
made elsewhere, see, e.g., [4, 20].

The motivation of considering limiting boundary conditions comes, mainly, from
the works of [9, 10, 30], which refer to R, or to Rn and are of the form

− 1
p(t)

(p(t)y′(t))′ = q(t)f(t, y(t)), 0 < t < T,

with boundary conditions,

−αy(0) + β lim
t→0+

p(t)y′(t) = c, γy(T ) + δ lim
t→T−

p(t)y′(t) = d,

where α, β, γ, δ are nonnegative real numbers. In these problems the moment-
function p is positive on (0, 1) and∫ 1

0

ds

p(s)
< +∞,

as well as either it is a C1 function, or such that mint∈I p(t) > 0. The latter is not
required in our first main result.

In this work we give two existence results covering the case where the operator
F is a C0- or a C1-type operator. To prove our main theorems we shall apply the
following well known Schauder-Tychonoff Fixed Point Theorem (see, e.g., [29] and
[7, p. 26]).

Theorem 1.2. Let C be a closed convex subset of a normed linear space and let
f : C→ C be a compact map (i.e. it is continuous and f(C) is relatively compact),
then f has a fixed point.

We shall apply twice Theorem 1.2. First in the linear space C1(I,R), when it
is furnished with the norm ‖ · ‖0 and second in the same space, endowed with its
natural norm ‖ · ‖1. Notice that with respect to the first norm the space C1 is not
complete.

2. Some auxiliary facts

In the sequel we assume the following:
(H1) The function Φ is an increasing homeomorphism of R onto R, with Φ(0) = 0.

Let Ψ be the inverse of Φ.
(H2) The function p : I → (0,+∞) is measurable, and the function Ψ(kp ) is

Lebesgue integrable on I, for all k ∈ R.
(H3) The measure-functions η, ζ : [0, 1] → [0,+∞) are nondecreasing and non

constants on I, and, moreover, satisfy the conditions

η(0) = ζ(0) = 0, η(1)ζ(t) ≤ ζ(1)η(t), for all t ∈ I.
(H4) The quantity (F0)(t) is not identically equal to zero for a.a. t ∈ I. (Obvi-

ously, the latter implies that the problem does not admit the zero solution.)
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Lemma 2.1. Under the conditions (H1)–(H4) the problem does not have a non-
negative solution u with (Fu)(t) = 0, a.e. on I.

Proof. Indeed, if such a solution u exists, it satisfies p(t)Φ(u′(t)) = c, a.e. on I,
for some c. From (1.2) we obtain both c ≥ 0 and c ≤ 0. Thus c = 0 and so
Φ(u′(t)) = 0, a.e. on I, which means that u is a constant, v, say. Again, from the
first of (1.2) we obtain vη(1) = 0, and so v = 0. Thus we have (F0)(t) = 0, a.a
t ∈ I, which contradicts to (H4). �

Next, for i = 0, 1 we consider the condition:
(H5)i The operator F has the following properties:

(i) It holds (Fu)(t) ≥ 0, t ∈ I, for all u ∈ Ci, with u(t) ≥ 0.
(ii) The operator u → p(Fu) =: Gu maps the set Ci into L1 and it is a

Ci-type Caratheodory operator. Recall that, by definition, the latter
condition ensures that, for each c > 0, there is somemc ∈ L1, satisfying
the condition 0 ≤ p(t)(Fu)(t) ≤ mc(t), for a.a. t ∈ I and u ∈ Ci with
0 ≤ ‖u‖i ≤ c and 0 ≤ u(t), t ∈ I.

In the sequel, the most important role in our discussion will be played by the
quantity

D(x, φ) := η(1)(x− φ(1)) + ζ(1)x+
∫ 1

0

(ζ(1)η(t)− η(1)ζ(t))Ψ
( 1
p(t)

[x− φ(t)]
)
dt,

which is defined for each real number x and any continuous function φ : [0, 1]→ R.
This functional has the following properties:

Lemma 2.2. Given any nondecreasing continuous function φ : [0, 1] → R+, there
exists a unique real number X

(
φ) ∈ [0, φ(1)

]
, satisfying the equation

D(X (φ), φ) = 0.

If φ(0) = 0 < φ(1), then X
(
φ) ∈ (0, φ(1)

)
. Moreover the operator φ → X (φ) is

(C0,R)-continuous.

Proof. It is obvious that if φ(1) = 0 then D(x, φ) = 0, if and only if x = 0. Assume
that it holds φ(1) > 0. Then the existence of such a real number follows from the
continuity of D(·, φ) and the fact that the value

D(0, φ) = −η(1)φ(1) +
∫ 1

0

(ζ(1)η(t)− η(1)ζ(t))Ψ
( 1
p(t)

[−φ(t)]
)
dt,

is negative, while, for any fixed v ≥ φ(1), the value

D(v, φ) = η(1)(v − φ(1)) + ζ(1)v

+
∫ 1

0

(ζ(1)η(t)− η(1)ζ(t))Ψ
( 1
p(t)

[v − φ(t)]
)
dt,

(2.1)

is positive. The uniqueness is implied from the monotonicity of D(x, φ) with respect
to x.

Finally, let (φn) be a sequence of nonnegative continuous functions defined on I.
Assume that (φn) converges, in the sense of ‖ · ‖0-norm, to a function φ. (By the
uniform converge of bounded functions, it follows that there is a common upper
bound B of all functions φn, n = 1, 2, . . . . Hence, by the first part of the lemma, we
conclude that the quantities (X (φn)) belong to [0, B], for all n = 1, 2, . . . ). If there
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are subsequences (X (φkn
)) and (X (φln)) converging to v1 and v2 respectively, we

must have
D(X (φkn

), φkn
) = 0 = D(X (φln), φln).

Then, by the continuity of Ψ, we obtain

D(v1, φ) = 0 = D(v2, φ),

which, by the uniqueness, implies that v1 = X (φ) = v2. This shows the continuity
of X . �

Next assume that F satisfies condition (H5)i. Then the operator P defined by

P (u)(t) :=
∫ t

0

p(s)(Fu)(s)ds, u ∈ C0
+ ∩ Ci, (2.2)

is (Ci, C0)-continuous and the function P (u) is nonnegative and non-decreasing,
with P (u)(0) = 0 < P (u)(1). Therefore, by Lemma 2.2, the operator u→ X (P (u))
is (Ci,R)-continuous on the set C0

+ ∩Ci. Moreover, the previous arguments ensure
that the quantity X (P (u)) satisfies the relation

X (P (u)) =
η(1)

η(1) + ζ(1)

[
P (u)(1)

−
∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[X (P (u))− P (u)(s)]
)
dsd(ζ + η)(t)

]
+
∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[X (P (u))− P (u)(s)]
)
dsdη(t).

(2.3)

3. Reformulation of the Problem

By a positive solution of the problem (1.1)-(1.2) we mean a function u ∈ C1∩C0
+,

satisfying the conditions (1.2), and being such that the function t → p(t)Φ(u′(t))
is absolutely continuous on the interval I and the relation (1.1) is satisfied almost
everywhere on the interval I.

To set the problem (1.1)-(1.2) in a form of seeking a fixed point of an appropriate
functional operator, we shall reformulate it to an integral equation. To this end,
assume that u(t), t ∈ I, is a nonnegative solution. Then, for all τ, t ∈ [0, 1], we
have

p(t)Φ(u′(t)) = p(τ)Φ(u′(τ))−
∫ t

τ

p(s)(Fu)(s)ds. (3.1)

By using the boundary conditions (1.2) we obtain

p(t)Φ(u′(t)) =
∫ 1

0

u(s)dη(s)−
∫ t

0

p(s)(Fu)(s)ds, (3.2)

as well as

−
∫ 1

0

u(s)dζ(s) =
∫ 1

0

u(s)dη(s)−
∫ 1

0

p(s)(Fu)(s)ds. (3.3)

From relation (3.2) it follows that

Φ(u′(t)) =
1
p(t)

[ku − P (u)(t)],
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where ku is the non-negative real number

ku :=
∫ 1

0

u(s)dη(s)

and P (u) is the function defined by (2.2). From Lemma 2.1 we have P (u)(1) > 0.
Also, it is clear that it holds

P (u)(t) ≤
∫ 1

0

mc(s)ds =: Bc (3.4)

where c := ‖u‖0. Moreover we have

u′(t) = Ψ
( 1
p(t)

[ku − P (u)(t)]
)
. (3.5)

Thus the solution u satisfies the integral equation

u(t) = u(0) +
∫ t

0

Ψ
( 1
p(s)

[ku − P (u)(s)]
)
ds. (3.6)

The value of the function u at 0, is not known, so we shall express it by using
the boundary values (1.2). In order to do it, we observe that, on one hand, we have∫ 1

0

u(s)dζ(s) = u(0)ζ(1) +
∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[ku − P (u)(s)]
)
dsdζ(t),

and, on the other hand∫ 1

0

u(s)dη(s) = u(0)η(1) +
∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[ku − P (u)(s)]
)
dsdη(t),

Then, by using relation (3.3) we obtain

u(0) =
1

η(1) + ζ(1)

[
P (u)(1)−

∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[ku − P (u)(s)]
)
dsd(ζ + η)(t)

]
.

Replacing this value of u(0) in equation (3.6) we obtain that

u(t) =
1

η(1) + ζ(1)

[
P (u)(1)−

∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[ku − P (u)(s)]
)
dsd(ζ + η)(t)

]
+
∫ t

0

Ψ
( 1
p(s)

[ku − P (u)(s)]
)
ds.

(3.7)

The latter equation gives a useful expression of the quantity ku, as follows:

ku =
∫ 1

0

u(s)dη(s)

=
η(1)

η(1) + ζ(1)

[
P (u)(1)−

∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[ku − P (u)(s)]
)
dsd(ζ + η)(t)

]
+
∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[ku − P (u)(s)]
)
dsdη(t),

(3.8)

which, after some obvious manipulations, becomes

ku =
1

η(1) + ζ(1)

[
η(1)P (u)(1)

+
∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[ku − P (u)(s)]ds
)
d[ζ(1)η(t)− η(1)ζ(t)]

]
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=
1

η(1) + ζ(1)

[
η(1)P (u)(1)−

∫ 1

0

(ζ(1)η(t)− η(1)ζ(t))Ψ
( 1
p(t)

[ku − P (u)(t)]
)
dt
]
.

This relation means that the quantity ku =: x satisfies the equation

D(x, P (u)) = 0.

Then, by Lemma 2.2, we conclude that ku is the unique quantity which satisfies
(3.8) and it is such that

ku = X (P (u)) = X
( ∫ ·

0

p(s)(Fu)(s)ds
)
∈ (0, Bc). (3.9)

Lemma 3.1. A function u ∈ C0
+ solves the problem (1.1)-(1.2), if and only if it

satisfies the integral equation

u(t) =
1

η(1) + ζ(1)

[
P (u)(1)−

∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[X (P (u))− P (u)(s)]
)
dsd(ζ + η)(t)

]
+
∫ t

0

Ψ
( 1
p(s)

[X (P (u))− P (u)(s)]
)
ds,

(3.10)
where P (u) is defined by (2.2).

Proof. If u is such a solution, then, by using (3.9) and (3.7) we obtain the “if”
part. To prove the “only if” part, assume that a nonnegative function u satisfies
(3.10). Clearly, u is differentiable and its derivative satisfies (1.1). We shall show
that (1.2) is satisfied, too. To do it, observe that∫ 1

0

u(s)dη(s) =
η(1)

η(1) + ζ(1)

[
P (u)(1)

−
∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[X (P (u))− P (u)(s)]
)
dsd(ζ + η)(t)

]
+
∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[X (P (u))− P (u)(s)]
)
dsdη(t).

which, by (2.3), shows that the quantity
∫ 1

0
u(s)dη(s) is equal to X (P (u)), namely

we have

X (P (u)) =
∫ 1

0

u(s)dη(s) = ku.

Also, we have∫ 1

0

u(s)dζ(s) =
ζ(1)

η(1) + ζ(1)

[
P (u)(1)

−
∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[ku − P (u)(s)]
)
dsd(ζ + η)(t)

]
+
∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[ku − P (u)(s)]
)
dsdζ(t)
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and therefore∫ 1

0

u(s)d(ζ(s) + η(s))

=
ζ(1) + η(1)
ζ(1) + η(1)

[
P (u)(1)−

∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[ku − P (u)(s)]
)
dsd(ζ + η)(t)

]
+
∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[ku − P (u)(s)]
)
dsd(ζ(t) + η(t)),

(3.11)

from which it follows that

−
∫ 1

0

u(s)dζ(s) = ku − P (u)(1) = ku −
∫ 1

0

p(s)(Fu)(s)ds. (3.12)

On the other hand we observe that

p(t)Φ(u′(t)) = ku −
∫ t

0

p(s)(Fu)(s)ds

and hence the function t → p(t)Φ(u′(t)) is absolutely continuous in the interval
I. Moreover, from this relation and (3.12) we conclude that conditions (1.2) are
satisfied. �

4. Main results

By the results of the previous section, the problem of existence of solutions of
the problem (1.1)-(1.2) is equivalent to the problem of existence of a fixed point of
the operator defined by

(T u)(t) : =
1

η(1) + ζ(1)

[ ∫ 1

0

p(s)(Fu)(s)ds

−
∫ 1

0

∫ θ

0

Ψ
( 1
p(s)

[X (P (u))−
∫ s

0

p(r)(Fu)(r)dr]
)
dsd(ζ + η)(θ)

]
+
∫ t

0

Ψ
( 1
p(s)

[X (P (u))−
∫ s

0

p(r)(Fu)(r)dr]
)
ds,

(4.1)

where P (u) is defined by (2.2). Recall that X (P (u)) is an element of the interval
[0, Bc], where c := ‖u‖0.

Lemma 4.1. Assume that conditions (H1)–(H4) and (H5)0 are satisfied. Then the
operator T is (C0, C0)-continuous on C0

+.

Proof. Let (un) be a sequence of functions in C0
+ converging to a certain u0 ∈ C0

+

in the ‖ · ‖0-sense. It is clear that there is some b > 0 satisfying 0 ≤ un(t) ≤ b, for
all t ∈ I and n = 1, 2, . . . . Hence all points X (P (un)) exist in [0, Bb] and it holds

|gn(s)| ≤ max{−Ψ(
−Bb
p(s)

),Ψ(
Bb
p(s)

)}, n = 1, 2, . . . (4.2)

where

gn(s) := Ψ
( 1
p(s)

[X (P (un))−
∫ s

0

p(r)(Fun)(r)dr]
)
, n = 0, 1, 2, . . . .

Notice that the right side of (4.2) defines an integrable function and, moreover, due
to (H5)0 (ii), it holds

lim gn(s) = g0(s), s ∈ I.
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Finally observe that (T u) takes the form

(T un)(t) =
1

η(1) + ζ(1)

[ ∫ 1

0

p(s)(Fun)(s)ds

−
∫ 1

0

(η(1) + ζ(1)− η(s)− ζ(s))gn(s)ds+
∫ t

0

gn(s)ds
]

Now, we apply the Lebesgue Dominated Convergence Theorem and get the desired
result. �

Lemma 4.2. Assume that conditions (H1), (H3) and (H5)1 are satisfied. Then the
operator T is (C0, C1)-continuous, provided that the following condition holds:

p : I → (0,+∞) is continuous. (4.3)

Proof. Condition (4.3) implies that there is some ρ > 0 such that p(t) ≥ ρ, for t ∈ I.
As in previous lemma, let (un) be a sequence of functions in C0

+ converging to a
certain u ∈ C0

+ in the ‖·‖0-sense. Since, obviously, condition (4.3) implies condition
(H2), from the previous lemma we know that the sequence (T un) converges to T u
in the ‖ · ‖0-sense.

Notice, also, that the function

u→ X (P (u))−
∫ ·

0

p(r)(Fu)(r)dr

is (C0, C0)-continuous. From the form of the operator T we see that it holds

d

dt
(T u)(t) = Ψ(w(t;u)),

where

w(t;u) :=
1
p(t)

[X (P (u))−
∫ t

0

p(r)(Fu)(r)dr].

To proceed, consider any ε > 0. By the uniform continuity of the function Ψ on the
interval [−Bb

ρ ,
Bb

ρ ], there is a δ0 > 0 such that for all v1, v2 ∈ [−Bb

ρ ,
Bb

ρ ], it holds

|v1 − v2| < δ0 =⇒ |Ψ(v1)−Ψ(v2)| < ε.

Fix any δ ∈ (0, δ0ρ). By the previous argument it follows that there is some n0

such that

|[X (P (un))−
∫ t

0

p(r)(Fun)(r)dr]− [X (P (u))−
∫ t

0

p(r)(Fu)(r)dr]| ≤ δ,

for all t ∈ I and n ≥ n0. This and the assumption that p(t) ≥ ρ, for all t ∈ I, imply
that

|w(t;un)− w(t;u)| ≤ δ

ρ
< δ0,

for all t ∈ I and n ≥ n0. We conclude that

|Ψ(w(t, un))−Ψ(w(t;u))| ≤ ε,

for all t ∈ I and n ≥ n0. The proof is complete. �
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4.1. Existence in the C0 case. Our first main result is the following.

Theorem 4.3. Let the conditions (H1)–(H4) and (H5)0 be satisfied. Also, assume
that there is a c > 0 such that

(H6)
Bc
η(1)

+
∫ 1

0

η(s)
η(1)

Ψ
( Bc
p(s)

)
ds−

∫ 1

0

Ψ
(−Bc
p(s)

)
ds ≤ c,

where Bc is defined by (3.4), and
(H7) for all λ ∈ [0, Bc], it holds

λ ≥ max
{∫ 1

0

[ζ(1)− ζ(t) + η(1)− η(t)]Ψ
( λ

p(t)
)
dt, −

∫ 1

0

[ζ(t) + η(t)]Ψ
( −λ
p(t)

)
dt
}
.

Then the operator T admits a fixed point in the set

Sc := {u ∈ C0
+ : 0 < ‖u‖0 ≤ c}.

Proof. Because of (H5)0, to prove the result it is sufficient to show that the Schauder’s
fixed point theorem is applicable on the ‖ · ‖0-closure cl0Sc of the set Sc.

We shall show that the operator T maps the set Sc into itself. Fix any u ∈ cl0Sc
and consider the quantity P (u) defined in (2.2). Then, from the relation

0 = (η(1) + ζ(1))X (P (u))− η(1)P (u)(1)

+
∫ 1

0

(ζ(1)η(t)− η(1)ζ(t))Ψ
( 1
p(t)

[X (P (u))− P (u)(t)]
)
dt

= η(1)(X (P (u))− P (u)(1)) + ζ(1)X (P (u))

+
∫ 1

0

(ζ(1)η(t)− η(1)ζ(t))Ψ
( 1
p(t)

[X (P (u))− P (u)(t)]
)
dt,

(4.4)

it follows that we must have X (P (u))− P (u)(1) < 0. Thus

0 ≤ X (P (u)) ≤ P (u)(1) ≤ Bc.
Also, by using the non-negativity of F , on the set C0

+, we have

0 ≤ P (u)(t) ≤ P (u)(1).

These facts imply that there is a certain point ξ ∈ (0, 1) such that

(ξ − t)[X (P (u))− P (u)(t)] ≥ 0, t ∈ (0, 1).

Now, from the form of the operator T , we observe that it holds

d

dt
(T u)(t) = Ψ

( 1
p(t)

[X (P (u))−
∫ t

0

p(r)(Fu)(r)dr]
)

and so we conclude that at the point ξ the function T u admits a maximum, it is
increasing for t ≤ ξ and decreasing for t ≥ ξ.

From these remarks it follows that to show that 0 ≤ (T u)(t) ≤ c, for all t ∈ I, it
is sufficient to show that the following two inequalities hold:

(T u)(ξ) ≤ c, (4.5)

min{(T u)(0), (T u)(1)} ≥ 0. (4.6)

To show (4.5), we use relation (2.3). We have

(T u)(ξ) =
1

η(1)

[
X (P (u))−

∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[X (P (u))− P (u)(s)]
)
dsdη(t)

]
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+
∫ ξ

0

Ψ
( 1
p(s)

[X (P (u))− P (u)(s)]
)
ds

=
X (P (u))
η(1)

+
∫ 1

0

η(s)
η(1)

Ψ
( 1
p(s)

[X (P (u))− P (u)(s)]
)
ds

−
∫ 1

ξ

Ψ
( 1
p(s)

[X (P (u))− P (u)(s)]
)
ds

≤ X (P (u))
η(1)

+
∫ 1

0

η(s)
η(1)

Ψ
( 1
p(s)

[X (P (u))]
)
ds−

∫ 1

0

Ψ
( 1
p(s)

[−P (u)(s)]
)
ds

≤ Bc
η(1)

+
∫ 1

0

η(s)
η(1)

Ψ
( Bc
p(s)

)
ds−

∫ 1

0

Ψ
(−Bc
p(s)

)
ds.

Because of (H6), the latter quantity is less than or equal to c.
To show (4.6), by the contrary, we assume that (T u)(0) < 0. Then from (4.1)

we must have

P (u)(1) <
∫ 1

0

∫ t

0

Ψ
( 1
p(s)

[X (P (u))− P (u)(s)]
)
dsd(ζ(t) + η(t))

=
∫ 1

0

[ζ(1)− ζ(t) + η(1)− η(t)]Ψ
( 1
p(t)

[X (P (u))− P (u)(t)]
)
dt

≤
∫ 1

0

[ζ(1)− ζ(t) + η(1)− η(t)]Ψ
( 1
p(t)

[X (P (u))]
)
dt

and so

X (P (u)) ≤ P (u)(1) <
∫ 1

0

[ζ(1)− ζ(t) + η(1)− η(t)]Ψ
( 1
p(t)

[X (P (u))]
)
dt,

which is impossible because of (H7).
Next, assuming that (T u)(1) < 0, we obtain

P (u)(1) < −
∫ 1

0

[ζ(t) + η(t)]Ψ
( 1
p(t)

[X (P (u))− P (u)(t)]
)
dt

≤ −
∫ 1

0

[ζ(t) + η(t)]Ψ
( 1
p(t)

[−P (u)(1)]
)
dt.

This is impossible, too, because of (H7) and the fact that 0 ≤ P (u)(1) ≤ Bc.
Now we recall Lemma 4.1 which says that the operator T is (C0, C0)-continuous

on C0
+. Also, as we have shown above, the set cl0Sc has a bounded image. The fact

that the family {T u : u ∈ cl0Sc} is equicontinuous, follows easily from the relation

|(T u)(t)− (T u)(τ)| ≤
∣∣∣ ∫ t

τ

Ψ
( 1
p(s)

[X (P (u))− P (u)(s)]
)
ds
∣∣∣ ≤ ∫ t

τ

Y (s)ds,

for all τ, t ∈ I, with τ ≤ t, where

Y (s) := max{Ψ
( Bc
p(s)

)
,−Ψ

(−Bc
p(s)

)
}.

Hence, by Arzelá Ascoli’ s Theorem, we conclude that the set T cl0Sc is relatively
‖ · ‖0-compact. Now, the desired result follows by applying Schauder’s Fixed Point
Theorem 1.2. �
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4.2. Existence in the C1 case. Our next result is the following.

Theorem 4.4. Assume that conditions (H1), (H3), (H5)1 and (4.3) are satisfied.
Also, assume that there is some c > 0, satisfying the conditions (H6) and (H7), as
well as

(H8)

max{Ψ(
Bc
ρ

),−Ψ(−Bc
ρ

)} ≤ c,

where ρ := mint∈I p(t).

Then the operator T defined by (4.1) admits a fixed point in the set

Rc := {u ∈ C1(I, [0,+∞)), 0 < ‖u‖1 ≤ c}.

Proof. First we notice that Rc ⊆ Sc and cl1Rc = Rc ∪ {0}. Then, by the first part
of the proof of Theorem 4.3, we conclude that the operator T maps the set Rc into
Sc, namely, for any u ∈ Rc it holds

0 ≤ (T u)(t) ≤ c, t ∈ I. (4.7)

Also we have T0 ∈ T (cl0Sc) ⊆ cl0Sc and, so, 0 ≤ (T 0)(t) ≤ c, t ∈ I. This and (4.7)
imply that 0 ≤ (T u)(t) ≤ c, t ∈ I, u ∈ cl1Rc.

Consider a function u ∈ cl1Rc. At first we observe that the function

(T u)′(t) = Ψ
( 1
p(t)

[X (P (u))−
∫ t

0

p(r)(Fu)(r)dr]
)
, t ∈ I

is continuous. Also, since, 0 ≤ ‖u‖0 ≤ ‖u‖1 ≤ c, it holds

−Bc ≤ X (P (u))−
∫ t

0

p(r)(Fu)(r)dr ≤ Bc, t ∈ I

and so condition (H8) gives

|(T u)′(t)| ≤ max{Ψ(
Bc
ρ

),−Ψ(−Bc
ρ

)} ≤ c, t ∈ I.

This and (4.7) imply that ‖T u‖1 ≤ c, hence T maps cl1Rc into itself.
Now, by (H5)1, to complete the proof of the theorem, it is sufficient to show

that the Schauder’s fixed point theorem is applicable on the set cl1Rc, namely on
Rc = {0} ∪ Rc. This is a ‖ · ‖1-closed, bounded, convex subset of the space C1. It
remains to prove that T cl1Rc is a relatively compact subset of C1.

We shall show that the operator T is compact, namely it is continuous and the
set T cl1Rc is a (relatively) compact subset of C1.

First we notice that, by Lemma 4.2, the operator T is (C1, C1)-continuous.
Then taking into account, also, that the set Rc is a subset of Sc, we have T cl1Rc ⊆
cl1T Rc. Therefore it is enough to show that T Sc is a (relatively) ‖ · ‖1-compact
subset of C1.

To do that consider a sequence (Un) in T Sc. Then there is a sequence un ∈ Sc
such that Un = T un. As we proved previously, it holds

‖T un‖0 ≤ ‖T un‖1 ≤ c, n = 1, 2, . . .
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and, moreover, it satisfies

|Un(t)− Un(τ)| =
∣∣∣ ∫ t

τ

Ψ
( 1
p(s)

[X (P (u))−
∫ s

0

p(r)(Fun)(r)dr]
)
ds
∣∣∣

≤ max{Ψ(
Bc
ρ

),−Ψ(−Bc
ρ

)}|t− τ |

≤ c|t− τ |.

(4.8)

The latter says that the sequence (Un) is equicontinuous. By Arzelá-Ascoli Theorem
it follows that a subsequence (Ukn

) = (T ukn
) exists, which converges in the ‖ · ‖0-

norm to a function y ∈ C0(I,R).
Next, we take any ε > 0. By the uniform continuity of the function Ψ on the

interval [−Bc/ρ,Bc/ρ], there is a δ1 > 0 such that, for all v1, v2 ∈ [−Bc/ρ,Bc/ρ],
it holds

|v1 − v2| < δ1 =⇒ |Ψ(v1)−Ψ(v2)| < ε. (4.9)
It is clear that the sequence of functions defined by

zn(t) :=
1
p(t)

[X (P (ukn))−
∫ t

0

p(s)(Fukn)(s)ds], t ∈ I

is ‖ · ‖0-bounded1 and, for all τ, t ∈ I, it satisfies

|zn(t)− zn(τ)| =
∣∣∣( 1
p(t)
− 1
p(τ)

)
X (P (ukn

))

− 1
p(t)

∫ t

0

p(s)(Fukn)(s)ds+
1

p(τ)

∫ τ

0

p(s)(Fukn)(s)ds
∣∣∣

≤ 1
p(t)

∣∣∣ ∫ t

τ

p(s)(Fukn
)(s)ds

∣∣∣
+
∣∣∣ 1
p(t)
− 1
p(τ)

∣∣∣∣∣∣X (P (ukn
))−

∫ τ

0

p(s)(Fukn
)(s)ds

∣∣∣
≤ 1
p(t)

∣∣∣ ∫ t

τ

mc(s)ds
∣∣∣+
∣∣∣ 1
p(t)
− 1
p(τ)

∣∣∣Bc.
Therefore, the sequence (zn) is equicontinuous and so it has a subsequence (zln),
which converges to a function z ∈ C0 in the sense of ‖ · ‖0-norm. Equivalently,
the sequence (Φ

(
(T ukln

)′(·)
)
) converges to the function z(·) in the ‖ · ‖0-norm and

hence it is a ‖ · ‖0-Cauchy sequence. Therefore, given any δ > 0 with δ ≤ δ1, there
is some index k0 such that

|Φ
(
(T ukln

)′(t)
)
− Φ

(
(T uklm

)′(t)
)
| < δ, t ∈ I,

for all m,n ≥ k0. Thus, from 4.9, we obtain

|(T ukln
)′(t)− (T uklm

)′(t)| < ε, t ∈ I,
for all m,n ≥ k0. This proposition says that the sequence ((T ukln

)′(·)) is a Cauchy
sequence and so it converges to the function Ψ(z) in the ‖ · ‖0-norm. By a stan-
dard criterion of the uniform converge of sequences of differentiable functions, we
conclude that y′ exists, it is equal to Ψ(z) and, moreover it satisfies the limiting
relation

lim ‖T ukln
− y‖1 = 0.

1with a bound Bc
ρ
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These arguments and the continuity of T imply the relative ‖ · ‖1-compactness of
the set T Sc. This implies that the set T cl1Rc is relatively ‖ · ‖1-compact. Now, the
Schauder’s Fixed Point Theorem 1.2 completes the proof. �

5. An application of Theorem 4.3

We consider the equation

t1/6
[
t−1/6Φ(u′(t))

]′+β0t+β1u
2(t) +β2u

3(γt)‖u‖0 +β3

∫ 1

0

u(s)ds = 0, t ∈ (0, 1],

with γ ∈ (0, 1) and β0 > 0, β1, β2, β3 ≥ 0, associated with the boundary conditions

lim
t→0

t−1/6Φ(u′(t)) = a0u(0),

lim
t→1

t−1/6Φ(u′(t)) = −a1u(0)− b1u(
1
3

),

with a0 > 0, a1, b1 ≥ 0, where Φ is the inverse of the function

Ψ(v) := v + v3,

namely,

Φ(w) :=
(w − (w2 + 4

27 )1/2

2

)1/3

− 1
3

(w − (w2 + 4
27 )1/2

2

)−1/3

.

This is of the form (1.1)-(1.2), with

p(t) := t−1/6, t ∈ (0, 1],

η := a0χ(0,1], ζ := a1χ(0, 13 ] + (a1 + b1)χ( 1
3 ,1].

We take c = 1 and define

m(t) := β0t
5/6 + (β1 + β2 + β3)t−1/6, t ∈ (0, 1],

B :=
6
11
β0 +

6
5

(β1 + β2 + β3).

We can assume that the coefficients of the problem satisfy the following condi-
tions (which are easily computable):

B(
1
a0

+
12
7

) +
4B3

3
≤ 1,

(a0 + a1)(
3
7

+
B2

3
) + b1

3
7

(
1− 1

37/6

)
+ b1

B2

3

(
1− 1

33/2

)
≤ 1

2
.

One can see that, in case c = 1, these conditions show, respectively, that (H6)
and (H7) are satisfied. Hence, Theorem 4.3 guarantees the existence of a solution
u ∈ C0 such that 0 < ‖u‖0 ≤ 1.

6. An application of Theorem 4.4

We consider the equation
d

dt
Φ(u′(t)) + α+

β1

1 + |u( t2 )|
+

β2

1 + (u′(t))2
= 0, t ∈ I,

with α, β1, β2 ≥ 0, and α+ β1 + β2 > 0, associated with the boundary conditions

lim
t→0

Φ(u′(t)) = au(
1
2

), lim
t→1

Φ(u′(t)) = −bu(1),
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(a, b > 0) where Φ is the function defined by Φ(v) := ln(1 + |v|)sign(v). This
problem is of the form (1.1)-(1.2), with

p(t) := 1, t ∈ I,
η := aχ[ 12 ,1], ζ := bχ{1}.

Assuming that the condition

b+
a

2
≤ α+ β1 + β2

eα+β1+β2 − 1
(6.1)

is satisfied, we shall show that the problem admits a solution u with

0 < ‖u‖1 ≤
2(α+ β1 + β2)

a
+ 3(eα+β1+β2 − 1).

To do that it is sufficient to prove that the conditions of Theorem 4.4 are satisfied
with

c :=
α+ β1 + β2

a
+

3
2

(eα+β1+β2 − 1).

Indeed, first of all observe that the inverse of Φ is the function Ψ(v) := (e|v| −
1) sign(v). We set m := α + β1 + β2 and observe that mc(t) := m = Bc. Then
conditions (H6) and (H8) become

m

a
+

3
2

(em − 1) ≤ c, em − 1 ≤ c.

Clearly, this is true because of the choice of c. Condition (H7) becomes

λ ≥ (b+
a

2
)(eλ − 1), λ ≥ a

2
(eλ − 1).

Both relations are satisfied if we have

b+
a

2
≤ λ

eλ − 1
,

for all λ ∈ [0,m]. Since the right side of this inequality decreases with λ, the
condition is satisfied, provided that it holds for the value λ = m. But the latter is
true because of (6.1). Thus, Theorem 4.4 applies and the result follows.
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