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STABILITY ANALYSIS AND HOPF BIFURCATION OF
DENSITY-DEPENDENT PREDATOR-PREY SYSTEMS WITH

BEDDINGTON-DEANGELIS FUNCTIONAL RESPONSE

XIN JIANG, ZHIKUN SHE, ZHAOSHENG FENG

Abstract. In this article, we study a density-dependent predator-prey sys-

tem with the Beddington-DeAngelis functional response for stability and Hopf

bifurcation under certain parametric conditions. We start with the condition
of the existence of the unique positive equilibrium, and provide two sufficient

conditions for its local stability by the Lyapunov function method and the

Routh-Hurwitz criterion, respectively. Then, we establish sufficient conditions
for the global stability of the positive equilibrium by proving the non-existence

of closed orbits in the first quadrant R2
+. Afterwards, we analyze the Hopf bi-

furcation geometrically by exploring the monotonic property of the trace of
the Jacobean matrix with respect to r and analytically verifying that there is

a unique r∗ such that the trace is equal to 0. We also introduce an auxiliary

map by restricting all the five parameters to a special one-dimensional geo-
metrical structure and analyze the Hopf bifurcation with respect to all these

five parameters. Finally, some numerical simulations are illustrated which are
in agreement with our analytical results.

1. Introduction

The dynamic relationship between predators and their preys is one of the dom-
inant themes in both mathematical biology and theoretical ecology. Better under-
standing exact trends of population dynamics can contribute to the environmental
protection and resource utilization. In the past decades, considerable attention has
been dedicated to various predator-prey models [5, 8, 10, 11, 14, 19, 22, 24, 25, 28,
29], of which the following predator-prey system with the Beddington-DeAngelis
functional response, originally proposed by Beddington [4] and DeAngelis [9], inde-
pendently, has been extensively studied by applied mathematicians and biologists
theoretically and experimentally:

dx(t)
dt

= x(t)
(
c− bx(t)− sy(t)

m1 +m2x(t) +m3y(t)

)
,

dy(t)
dt

= y(t)
(
− d+

fx(t)
m1 +m2x(t) +m3y(t)

)
,

(1.1)
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where c, b, s,m1,m2,m3, d and f are positive constants, x(t) and y(t) represent
the population density of the prey and the predator at time t respectively, c is
the intrinsic growth rate of the prey, d is the death rate of the predator, and b
stands for the mutual interference between preys. The predator consumes the prey
with the functional response of Beddington-DeAngelis type sx(t)y(t)

m1+m2x(t)+m3y(t)
and

contributes to its growth with the rate fx(t)y(t)
m1+m2x(t)+m3y(t)

. This is similar to the
well-known Holling type II model with an extra term m3y(t) in the denominator.

System (1.1) is a population model which has received much attention in biol-
ogy and ecology. Cantrell and Cosner [6] presented qualitative analysis of system
(1.1) on permanence, which implies the existence of a locally asymptotically sta-
ble positive equilibrium or periodic orbits. Hwang [15] considered the local and
global asymptotic stability of the positive equilibrium (x̂, ŷ) by the divergence cri-
terion. That is, for system (1.1), under the conditions (f − dm2) cb > dm1 and
tr(J(x̂, ŷ)) ≤ 0, (x̂, ŷ) is globally asymptotically stable. Recently, Hwang [16] pre-
sented the condition (f−dm2) cb > dm1 and tr(J(x̂, ŷ)) > 0 to ensure the uniqueness
of the limit cycle of system (1.1). For more details about biological background of
system (1.1), we refer the reader to [1, 6, 7, 9, 15].

However, abundant evidence suggests that predators do interfere with each
other’s activities so as to result in competition efforts and that the predator may
be of density dependence because of the environmental factors [2, 3]. Kratina et
al have demonstrated a fact that the predator density dependence is significant at
both high predator densities and low predator densities [17]. Hence, the following
more realistic predator and prey density-dependent model with the Beddington-
DeAngelis functional response was proposed [18, 21]:

dx(t)
dt

= x(t)
(
c− bx(t)− sy(t)

m1 +m2x(t) +m3y(t)

)
,

dy(t)
dt

= y(t)
(
− d− ry(t) +

fx(t)
m1 +m2x(t) +m3y(t)

)
,

(1.2)

where r represents the rate of predator density dependence. Compared with system
(1.1), system (1.2) contains not only bx2(t) which stands for intraspecific action of
prey species, but also ry2(t) which stands for intraspecific action of predator species.

Li and She [18] considered dynamics of system (1.2) by showing (f − dm2) cb >
dm1 as the sufficient and necessary condition for the permanence and existence
of the unique positive equilibrium, and (f − dm2) cb ≤ dm1 as the sufficient and
necessary condition for the global asymptotical stability of boundary solution. Fur-
thermore, the dynamics of the stage-structured model of system (1.2) was studied
in [23] and the non-autonomous case of system (1.2) was tackled in [20].

From the point of view of ecological managers, it may be desirable to have a
unique positive equilibrium which is globally asymptotically stable. Although con-
siderable attention has been undertaken on system (1.2), it seems that sufficient
and necessary conditions for local stability and even global stability of the positive
equilibrium have not been comprehensively presented yet. In addition, the exis-
tence of (stable or unstable) limit cycles and Hopf bifurcation with respect to the
parameters are rarely discussed.

In this article, we will discuss the local and global stability of the positive equi-
librium and analyze the Hopf bifurcation of system (1.2) in the first quadrant. For
simplicity, by the re-scaling t→ ct, x→ b

cx, y → bm3
cm2

y, s = s
cm3

, a = bm1
cm2

, b = f
cm2

,
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d = m2d
f and r = crm2

2
bfm3

, system (1.2) is nondimensionalized to

dx(t)
dt

= P (x(t), y(t)) := x(t)(1− x(t))− sx(t)y(t)
x(t) + y(t) + a

,

dy(t)
dt

= Q(x(t), y(t)) := by(t)
(
− d− ry(t) +

x(t)
x(t) + y(t) + a

)
.

(1.3)

We start with the existence of the unique positive equilibrium of system (1.3)
and show that this unique positive equilibrium cannot be a saddle under the given
conditions. To ensure the local stability of this positive equilibrium, we first pro-
vide a sufficient condition by constructing a Lyapunov function, and then give a
concrete condition depending only on the parameters by the Routh-Hurwitz crite-
rion. By virtue of two classical criteria, we discuss the global asymptotic stability
of the positive equilibrium and present several nonequivalent sufficient conditions.
That is, under the permanence condition, we firstly present a condition by Dulac’s
criterion for the global attractiveness of the positive equilibrium. Secondly, by the
divergency criterion, we provide a sufficient condition for the stability of all possibly
existing closed orbits, under which we prove that the positive equilibrium is locally
and globally asymptotic stable because of the non-existence of stable closed orbits.
Thirdly, under a stronger permanence condition for providing concrete bounds of all
possible closed orbits, we apply Grammer’s rule and Green’s theorem to present the
divergency integral, and obtain another sufficient condition on global asymptotical
stability of the positive equilibrium.

Afterwards, we explore the Hopf bifurcation with respect to the parameter r.
We first geometrically explore the monotonic property of the trace of the Jacobian
matrix with respect to r, and then analytically verify that there is a unique r∗

such that the trace is equal to 0. Based on these arguments, we analyze the Hopf
bifurcation with respect to the parameter r. Moreover, in order to generalize our
conclusion on the Hopf bifurcation, we consider the Hopf bifurcation with respect to
all five parameters by introducing an auxiliary map and restrict the five parameters
to a special one-dimensional geometrical structure. Some numerical simulations are
performed to illustrate our analytical results.

Note that Hwang [15] verified that for system (1.1), the local stability and global
stability of the positive equilibrium coincide. However, from the Hopf bifurcation
analysis, we find that for system (1.3), the coincidence between local stability and
global stability does not hold due to the existence of the parameter r. Consequently,
the analysis results show that the rate r of predator density dependence has a
significant effort on the global dynamics of system (1.3).

The rest of this paper is organized as follows. In Section 2, we consider the local
stability of the positive equilibrium. In Section 3, we establish several sufficient
conditions for the global stability of the positive equilibrium by two classical criteria.
In Section 4, we analyze Hopf bifurcations with respect to the parameter r and all
five parameters, respectively. Section 5 presents some numerical simulations and
Section 6 is a brief conclusion.

2. Local stability of positive equilibrium

We know from [18] that system (1.3) has a unique positive equilibrium if and
only if the condition

ad < 1− d (2.1)
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holds, which is the sufficient and necessary condition for permanence of the sys-
tem. This unique positive equilibrium cannot be a saddle point. According to the
definition of permanence [18] and the Poincáre-Bendixson theorem [13], for any
trajectory starting in R2

+ := {(x, y) ∈ R2 : x > 0, y > 0}, there are three cases for
its ω-limit set in R2

+: the positive equilibrium which is not a saddle, a closed orbit
or a saddle together with possible homoclinic orbits. For the third case, in addition
to this saddle, there exists at least another positive equilibrium inside the region
enclosed by the homoclinic orbit simultaneously.

Since the unique positive equilibrium is not a saddle, we now explore the con-
ditions to guarantee the local asymptotic stability of this positive equilibrium.
Let (x∗, y∗) be the unique positive equilibrium, which is short for the expression
(x∗(a, b, d, r, s), y∗(a, b, d, r, s)) and satisfies

1− x∗ − sy∗

x∗ + y∗ + a
= 0,

−d− ry∗ +
x∗

x∗ + y∗ + a
= 0.

(2.2)

Clearly, 0 < x∗ < 1 and 0 < y∗ < 1−d
r . By [27, Theorem 1.2], (x∗, y∗) smoothly

depends on the parameters a, s, r and d. Let x(t)→ x∗+x(t) and y(t)→ y∗+y(t).
Then system (1.3) is equivalent to

dx

dt
= F ∗xx

∗x+ F ∗y x
∗y + g1(x, y),

dy

dt
= G∗xy

∗x+G∗yy
∗y + g2(x, y),

(2.3)

where

F ∗x =
sy∗

(x∗ + y∗ + a)2
− 1, F ∗y = − s(x∗ + a)

(x∗ + y∗ + a)2
,

G∗x =
b(y∗ + a)

(x∗ + y∗ + a)2
, G∗y = − bx∗

(x∗ + y∗ + a)2
− br,

(2.4)

and both g1(x, y) and g2(x, y) are of o(x, y), given by:

g1(x, y) = −F ∗xx∗x− F ∗y x∗y +
(
x− x2 − sxy

x+ y + a

)
,

g2(x, y) = −G∗xy∗x−G∗yy∗y +
(
− bdy − bry2 +

bxy

x+ y + a

)
.

Applying the Lyapunov stability theorem [26], we can find a condition to ensure
the local asymptotic stability of (0, 0) for system (2.3) as follows:

Theorem 2.1. If condition (2.1) holds and F ∗x < 0, then the positive equilibrium
(x∗, y∗) of system (1.3) is locally asymptotically stable.

Proof. Let V (x, y) = 1
2x

2 − x∗F∗y
2y∗G∗x

y2. For system (2.3), we have

dV

dt
(x, y) :=

∂V

∂x

dx

dt
+
∂V

∂y

dy

dt

= x∗F ∗xx
2 −

x∗F ∗yG
∗
y

G∗x
y2 + o(x2, xy, y2).

Obviously, V (x, y) ≥ 0 and V (x, y) = 0 if and only if (x, y) = (0, 0). Under the
condition F ∗x < 0, there exists a neighborhood N of the origin such that dV

dt (x, y) ≤



EJDE-2016/255 DENSITY-DEPENDENT PREDATOR-PREY SYSTEMS 5

0 holds in N and dV
dt (x, y) = 0 if and only if x(t) = y(t) = 0. This implies

that V (x, y) is a Lyapunov function for system (2.3), and thus (0, 0) is locally
asymptotical stable. That is, the positive equilibrium (x∗, y∗) of system (1.3) is
locally asymptotically stable. �

Remark 2.2. Since |x∗F ∗y + y∗G∗x| < min{−2y∗G∗y,−2x∗F ∗x} implies that F ∗x < 0,
we here obtain a weaker local asymptotic stability condition than the one in [18].

Note that the condition of local stability in Theorem 2.3 depends on x∗ and y∗,
and the positive equilibrium (x∗, y∗) usually needs to be solved numerically at first.
It is evident that the condition F ∗x < 0 can be directly derived by s ≤ 2a. So, in
the following, we attempt to seek a weaker condition than s ≤ 2a by applying the
Routh-Hurwitz criterion for the linerization of system (2.3) instead of constructing
a Lyapunov function.

Clearly, the characteristic equation of the linerization of system (2.3) is

λ2 + a1λ+ a2 = 0, (2.5)

where

a1 = x∗ + bry∗ +
(b− s)x∗y∗

(x∗ + y∗ + a)2
,

a2 =
[
r +

x∗ − rsy∗

(x∗ + y∗ + a)2
+

as

(x∗ + y∗ + a)3
]
bx∗y∗.

(2.6)

Since a1 ≤ 0 is equivalent to x∗+ bry∗+ (b−s)x∗y∗
(x∗+y∗+a)2 ≤ 0, it follows from the first

equation in (2.2) that

a1 ≤ 0⇔ s

1− x∗
≤ (s− b)x∗(x∗ + s− 1)
s(x∗ + bry∗)(x∗ + a)

.

Because of the relation s > sy∗

x∗+y∗+a = 1 − x∗, a1 ≤ 0 implies that s > b and
s > 1 + a. Thus, if s ≤ b or s ≤ 1 + a, then a1 > 0, i.e. the trace of the Jacobian
matrix at (x∗, y∗) is negative.

From (2.2), we have x∗ − rsy∗ = 1 + sd− s(x∗+y∗)
x∗+y∗+a > 1 + sd− s. According to

a2 > 0⇔
[
r +

x∗ − rsy∗

(x∗ + y∗ + a)2
+

as

(x∗ + y∗ + a)3
]
bx∗y∗ > 0,

then r + 1+sd−s
(x∗+y∗+a)2 + as

(x∗+y∗+a)3 > 0 implies a2 > 0. Since r + 1+sd−s
(x∗+y∗+a)2 +

as
(x∗+y∗+a)3 > 0 can be derived by s ≤ 1 + sd+ ra2, we see that, if s ≤ 1 + sd+ ra2,
then a2 > 0. Especially, when s ≤ 1

1−d , then a2 > 0, i.e. the determinant of the
Jacobian matrix at (x∗, y∗) is positive.

Let S1 = max{2a, b, 1 + a} and S2 = max{2a, 1+ra2

1−d }. By the Routh-Hurwitz
criterion, it is straightforward to reach a condition, depending only on parameters,
for the local stability of (x∗, y∗) as follows:

Theorem 2.3. If condition (2.1) and

s ≤ min{S1, S2} (2.7)

hold, then the unique positive equilibrium (x∗, y∗) of system (1.3) is locally asymp-
totically stable.
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Remark 2.4. In [21], it shows that for system (1.3), the positive equilibrium is
locally asymptotically stable if d < 1∧ ad < (1− d)

(
1− s− d

r

)
or s+ d

r < 1∧ ad <
(1 − d)

(
1− s− d

r

)
. Clearly, this condition can also generate condition (2.7), but

(2.7) looks succinct.

Remark 2.5. Notice that the unique positive equilibrium is not a saddle under
condition (2.1) and we have derived that when s ≤ 1

1−d (and even s ≤ S2), then
a2 > 0, which will be used for analyzing Hopf bifurcation in Section 4. Here it
is still of our interest whether a2 > 0 always holds or not while we analyze Hopf
bifurcation.

3. Global stability of the positive equilibrium

In the previous section, we have presented conditions for local asymptotic sta-
bility of the positive equilibrium. In this section, we try to establish sufficient
conditions for its global asymptotic stability. For this, by [18, Theorem 4.3], we
need to provide conditions to ensure that there is no closed orbit except for the
positive equilibrium (x∗, y∗) in the first quadrant R2

+. We will use Dulac’s crite-
rion and the divergency criterion for analyzing the global attractiveness of (x∗, y∗),
respectively.

Theorem 3.1. For system (1.3), if condition (2.1) and

min{bd, 2a− b} ≥ 1 (3.1)

hold, then the positive equilibrium is globally asymptotically stable.

Proof. For system (1.3), by choosing B(x, y) = x+ y + a, there holds

∂BP

∂x
+
∂BQ

∂y

= (x+ y + a)(1− bd− 2x− 2bry) + (1 + b)x− (x2 + bry2 + sy + bdy) < 0

in the simply connected region R2
+ due to conditions (2.1) and (3.1). Thus, by

Dulac’s criterion [13], there is no periodic solution in R2
+, and this implies that the

positive equilibrium (x∗, y∗) is globally asymptotically stable. �

Lemma 3.2 (divergency criterion [13]). Assume that L is a closed orbit with period
T . If the condition ∮ T

0

div(x, y)dt < 0 (> 0)

holds, then L is a single stable (unstable) limit cycle.

Based on Lemma 3.2, we obtain the following result.

Theorem 3.3. For system (1.3), if condition (2.1) and

s ≤ max{b+ 4abr, b+ 4a} (3.2)

hold, then the local and global asymptotic stability of the positive equilibrium (x∗, y∗)
coincide.

Proof. For system (1.3), the Jacobian matrix is

J(x(t), y(t)) =
(
J1 J2

J3 J4

)
,



EJDE-2016/255 DENSITY-DEPENDENT PREDATOR-PREY SYSTEMS 7

where

J1 = 1− 2x(t)− sy(t)
x(t) + y(t) + a

+
sx(t)y(t)

(x(t) + y(t) + a)2
, J2 = − sx(t)(x(t) + a)

(x(t) + y(t) + a)2
,

J3 =
by(t)(y(t) + a)

(x(t) + y(t) + a)2
, J4 = b[−d− 2ry +

x(t)
x(t) + y(t) + a

− x(t)y(t)
(x(t) + y(t) + a)2

].

Assume that l(t) = (x(t), y(t)) is an arbitrary but fixed nontrivial periodic orbit of
system (1.3) with period T > 0, then there holds∮ T

0

x′(t)
x(t)

dt =
∮ T

0

[
1− x(t)− sy(t)

x(t) + y(t) + a

]
dt = 0,∮ T

0

y′(t)
y(t)

dt =
∮ T

0

b
[
− d− ry(t) +

x(t)
x(t) + y(t) + a

]
dt = 0.

If s ≤ b, then∮ T

0

trJ(x(t), y(t))dt =
∮ T

0

[−x(t)− bry(t) +
(s− b)x(t)y(t)

(x(t) + y(t) + a)2
]dt < 0.

If s > b, then∮ T

0

trJ(x(t), y(t))dt ≤
∮ T

0

[−x(t)− (s− b)y(t)
4a

+
(s− b)y(t)

4a
]dt < 0

because of the condition s ≤ b + 4abr and
∮ T
0
trJ(x(t), y(t))dt ≤

∮ T
0

[−x(t) +
(s−b)x(t)

4a − bry(t)]dt < 0 by the condition s ≤ b+ 4a.
Consequently, by the divergency criterion, the closed orbit l(t) is stable, which

yields a contradiction with the local asymptotic stability of the positive equilibrium.
So, if (x∗, y∗) is locally asymptotically stable, system (1.3) has no nontrivial periodic
orbit in R2

+. This indicates that the positive equilibrium must be also globally
asymptotically stable. �

Then, from Theorems 2.3 and 3.3, we can directly obtain the following corollary.

Corollary 3.4. For system (1.3), if conditions (2.1), (2.7) and (3.2) hold, then
the unique positive equilibrium is globally asymptotically stable.

Remark 3.5. Provided that conditions (2.1) and (3.2) hold, we can additionally
obtain that system (1.3) has the unique (stable) limit cycle in the first quadrant if
the positive equilibrium is unstable, which will be described as Corollary 4.5.

Note that in the proof of Theorem 3.3, we simply apply the mean inequality
to assure the negativeness of the divergency integral. In fact, the divergency in-
tegral can be further expanded by applying Grammer’s rule and Green’s theorem.
However, this requires boundary values of periodic orbits of system (1.3). For this,
similar to [19, Theorem 2.2], by defining a set

Γ := {(x, y) ∈ R2
+ : x ≤ x ≤ x, y ≤ y ≤ y},

where x = 1− s, x = 1,

y =
1
2

[−d+ r(a+ 1− s)
r

+

√
[
d+ r(a+ 1− s)

r
]2 + 4

(1− d)(1− s)− da
r

]

and y = 1−d(a+1)
d+r(a+1) , we have the following stronger permanent condition for providing

concrete boundary values.
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Theorem 3.6. Suppose that system (1.3) satisfies the condition

ad < (1− d)(1− s) and s < 1. (3.3)

Then for any solution (x(t), y(t)) of system (1.3) with the positive initial condition
(i.e. x(0) > 0 and y(0) > 0), there is a T0 > 0 such that for all t > T0 , (x(t), y(t)) ∈
Γ holds.

Obviously, since ad < (1−d)(1−s) implies that condition (2.1) holds, and s < 1
implies that condition (2.7) holds, by combining Theorem 2.3 and Corollary 3.4,
we directly have the following corollary.

Corollary 3.7. If condition (3.3) holds, then the unique positive equilibrium is
locally asymptotically stable. If conditions (3.2) and (3.3) hold, then the unique
positive equilibrium is globally asymptotically stable.

From Theorem 3.3 and Corollary 3.7, we know that if conditions (3.3) holds and
s ≤ b, the unique positive equilibrium of system (1.3) is globally asymptotically
stable. Further, we can derive from Theorem 3.6 that if condition (3.3) holds, all
possible periodic orbits must lie in Γ. Thus, instead of (2.1), we attempt to employ
condition (3.3) for the case of s > b to derive the divergency integral and obtain
the following theorem.

Theorem 3.8. For system (1.3), if the condition

(s− b)(1− x∗)− sb = 0,

r < min{ as

(x+ y + a)2(x∗ + y∗ + a)
,

sx

b(x+ y + a)2
},

or

(s− b)(1− x∗)− sb > 0,

r < min
{ as

(x+ y + a)2(x∗ + y∗ + a)
,

sx

b(x+ y + a)2
}
,

x(x∗ + x+ y + a− 1) > by(1− d− ry∗),

(3.4)

holds, then the unique positive equilibrium (x∗, y∗) is globally asymptotically stable,
provided that condition (3.3) holds.

Proof. Assume that l(t) = (x(t), y(t)) is an arbitrary but fixed nontrivial periodic
orbit of system (1.3) with period T > 0. Similar to the proof of Theorem 3.3, it
suffices to show that under conditions (3.3) and (3.4),

∮ T
0
trJ(x(t), y(t))dt < 0.

Since (x(t), y(t)) is an orbit of system (1.3) and∮ T

0

trJ(x(t), y(t))dt =
∮ T

0

[
− x(t)− bry(t) +

(s− b)x(t)y(t)
(x(t) + y(t) + a)2

]
dt,

we have ∮ T

0

trJ(x(t), y(t))dt

=
∮ T

0

[
− x(t)− bry(t) + (s− b)d y(t)

x(t) + y(t) + a

]
dt

+
∮ T

0

[
(s− b) y(t)

x(t) + y(t) + a
(

x(t)
x(t) + y(t) + a

− d)
]
dt
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=
∮ T

0

[
− x(t)− bry(t) + (s− b)d

s
(1− x(t)− x′(t)

x(t)
)
]
dt

+
∮ T

0

[
(s− b) y(t)

x(t) + y(t) + a
(ry(t) +

y′(t)
by(t)

)
]
dt

=
∮ T

0

[
− x(t)− bry(t) + (s− b)d

s
(1− x(t))

]
dt

+
∮ T

0

[
(s− b) ry(t)2

x(t) + y(t) + a
+
s− b
b

y′(t)
x(t) + y(t) + a

]
dt

=
∮ T

0

[
− x(t)− bry(t) + (s− b)1

s
(1− x(t))(d+ ry(t))

]
dt

+
∮ T

0

[
− (s− b)ry(t)

s

x′(t)
x(t)

+
s− b
b

y′(t)
x(t) + y(t) + a

]
dt.

Further, since∮ T

0

trJ(x∗, y∗)dt = −
∮ T

0

[x∗ + bry∗ − 1
s

(s− b)(1− x∗)(d+ ry∗)]dt,

it is easy to show that∮ T

0

trJ(x(t), y(t))dt

=
∮ T

0

trJ(x∗, y∗)dt

+
∮ T

0

[s− b
b

y′(t)
x(t) + y(t) + a

− s− b
s

ry(t)
x′(t)
x(t)

]
dt

+
∮ T

0

[
(−(x(t)− x∗)− br(y(t)− y∗))

]
dt

+
∮ T

0

[s− b
s

((d+ ry(t))(1− x(t))− (d+ ry∗)(1− x∗))
]
dt

=
∮ T

0

trJ(x∗, y∗)dt

+
∮ T

0

[s− b
b

y′(t)
x(t) + y(t) + a

− s− b
s

ry(t)
x′(t)
x(t)

]
dt

+
∮ T

0

[(
−1− 1

s
(s− b)(d+ ry(t))

)
(x(t)− x∗)

]
dt

+
∮ T

0

[
r

(
1
s

(s− b)(1− x∗)− b
)

(y(t)− y∗)
]
dt.

(3.5)

Clearly, ∮ T

0

[s− b
b

y′(t)
x(t) + y(t) + a

− s− b
s

ry(t)
x′(t)
x(t)

]
dt

=
s− b
bs

(∮
l

−bry
x
dx+

s

x+ y + a
dy
)
.
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Moreover, since (x(t), y(t)) satisfies system (1.3) and (x∗, y∗) satisfies system (2.2),
we can obtain that

x′(t)
x(t)

= 1− x(t)− sy(t)
x(t) + y(t) + a

= x∗ +
sy∗

x∗ + y∗ + a
− x(t)− sy(t)

x(t) + y(t) + a

=
[
− 1 +

sy∗

(x∗ + y∗ + a)(x(t) + y(t) + a)

]
(x(t)− x∗)

− (x∗ + a)s
(x∗ + y∗ + a)(x(t) + y(t) + a)

(y(t)− y∗),

and

y′(t)
by(t)

= −d− ry(t) +
x(t)

x(t) + y(t) + a

= ry∗ − x∗

x∗ + y∗ + a
− ry(t) +

x(t)
x(t) + y(t) + a

=
y∗ + a

(x∗ + y∗ + a)(x(t) + y(t) + a)
(x(t)− x∗)

−
[
r +

x∗

(x∗ + y∗ + a)(x(t) + y(t) + a)

]
(y(t)− y∗).

Thus, by Crammer’s Rule, we have

x− x∗ =
[ x∗

x∗+y∗+a + r(x(t) + y(t) + a)]x
′(t)
x(t) − [ (x∗+a)s

x∗+y∗+a ] y
′(t)
by(t)

rsy∗−x∗
x∗+y∗+a − r(x(t) + y(t) + a)− as

(x(t)+y(t)+a)(x∗+y∗+a)

,

y − y∗ =
[ y∗+a
x∗+y∗+a ]x

′(t)
x(t) − [ sy∗

x∗+y∗+a − (x(t) + y(t) + a)] y
′(t)
by(t)

rsy∗−x∗
x∗+y∗+a − r(x(t) + y(t) + a)− as

(x(t)+y(t)+a)(x∗+y∗+a)

.

(3.6)

Let D denote the region encloused by the periodic orbit l(t) and

M1(x, y) =
−1− 1

s (s− b)(d+ ry(t))
−r(x(t) + y(t) + a) + rsy∗−x∗

x∗+y∗+a −
as

(x∗+y∗+a)(x(t)+y(t)+a)

,

M2(x, y) =
r[ 1s (s− b)(1− x∗)− b]

−r(x(t) + y(t) + a) + rsy∗−x∗
x∗+y∗+a −

as
(x∗+y∗+a)(x(t)+y(t)+a)

,

M3(x, y) =
−r + as

(x(t)+y(t)+a)2(x∗+y∗+a)

bxy
(
− r(x(t) + y(t) + a) + rsy∗−x∗

x∗+y∗+a −
as

(x∗+y∗+a)(x(t)+y(t)+a)

)2 .
Then, from (3.5) and (3.6), we obtain∮ T

0

[
− 1− 1

s
(s− b)(d+ ry(t))

]
(x(t)− x∗)dt

+
∮ T

0

r
[1
s

(s− b)(1− x∗)− b
]
(y(t)− y∗)dt

=
∮ T

0

M1(x, y)
[( x∗

x∗ + y∗ + a
+ r(x(t) + y(t) + a)

)x′(t)
x(t)

]
dt
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−
∮ T

0

M1(x, y)
[ (x∗ + a)s
x∗ + y∗ + a

y′(t)
by(t)

]
dt

−
∮ T

0

M2(x, y)
[( sy∗

x∗ + y∗ + a
− (x(t) + y(t) + a)

) y′(t)
by(t)

]
dt

+
∮ T

0

M2(x, y)
[ y∗ + a

x∗ + y∗ + a

x′(t)
x(t)

]
dt

=
∮
l

[
M1(x, y)

( x∗

x∗ + y∗ + a
+ r(x+ y + a)

)]dx
x

+
∮
l

[
M2(x, y)

y∗ + a

x∗ + y∗ + a

]dx
x

+
∮
l

[
M2(x, y)

(
(x+ y + a)− sy∗

x∗ + y∗ + a

)]dy
by

−
∮
l

[
M1(x, y)

(x∗ + a)s
x∗ + y∗ + a

]dy
by
.

In the following, we denote that

K1 = −1− 1
s

(s− b)(d+ ry), K2 = r(
1
s

(s− b)(1− x∗)− b).

Then by applying Green’s theorem, we deduce that∮ T

0

trJ(x(t), y(t))dt

=
∮ T

0

trJ(x∗, y∗)dt+
∫∫

D

s− b
bs

(− s

(x+ y + a)2
+
br

x
) dx dy

+
∫∫

D

K1M3(x, y)
[ sx(x∗ + a)
x∗ + y∗ + a

]
dx dy

+
∫∫

D

K1M3(x, y)
[
by(

x∗

x∗ + y∗ + a
+ r(x+ y + a))

]
dx dy

+
∫∫

D

K2M3(x, y)
[ by(y∗ + a)
x∗ + y∗ + a

]
dx dy

+
∫∫

D

K2M3(x, y)
[
x(

sy∗

x∗ + y∗ + a
− (x+ y + a))

]
dx dy

+
∫∫

D

r
by [ 1s (s− b)(1− x∗)− b]

−r(x+ y + a) + rsy∗−x∗
x∗+y∗+a −

as
(x∗+y∗+a)(x+y+a)

dx dy

+
∫∫

D

r
sx (s− b)[ x∗

x∗+y∗+a + r(x+ y + a)]

−r(x+ y + a) + rsy∗−x∗
x∗+y∗+a −

as
(x∗+y∗+a)(x+y+a)

dx dy

+
∫∫

D

r
x [1 + 1

s (s− b)(d+ ry)]
−r(x+ y + a) + rsy∗−x∗

x∗+y∗+a −
as

(x∗+y∗+a)(x+y+a)

dx dy.

It is easy to see that

•
∮ T
0
trJ(x∗, y∗)dt < 0 since (x∗, y∗) is locally asymptotically stable under

conditions (3.3).
•
∫∫
D

(− s
(x+y+a)2 + br

x ) dx dy < 0 because of the condition r < sx
b(x+y+a)2 .

• M3(x, y) > 0 because of r < as
(x+y+a)2(x∗+y∗+a) .
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• the denominator in M1 is negative since condition (3.3) implies that x∗ −
rsy∗ > 1 + sd− s > 0.

Thus, if (s− b)(1− x∗)− sb = 0, then s > b and we have
∮ T
0
trJ(x(t), y(t))dt < 0.

And if (s− b)(1− x∗)− sb > 0, then s > b and we have

by(y∗ + a)
x∗ + y∗ + a

+ x
( sy∗

x∗ + y∗ + a
− (x+ y + a)

)
< 0

by the inequality x(x∗ + x+ y + a− 1) > by(1− d− ry∗), which also implies that∮ T
0
trJ(x(t), y(t))dt < 0.
Consequently, under conditions (3.3) and (3.4), the positive equilibrium (x∗, y∗)

is globally asymptotically stable. �

Remark 3.9. From the proof of Theorem 3.8, we can find that when r = 0,∮ T
0
trJ(x(t), y(t))dt < 0 always holds. Thus, for system (1.3) with r = 0, the local

and global asymptotic stability of the positive equilibrium coincide, which was also
proved in [15].

Remark 3.10. Similarly, it is also interesting to find conditions to ensure that∮ T
0
trJ(x(t), y(t))dt > 0; that is,∮ T

0

[
− x(t)− bry(t) +

(s− b)x(t)y(t)
(x(t) + y(t) + a)2

]
dt > 0, (3.7)

such that the local and global asymptotic stability of the positive equilibrium
(x∗, y∗) coincide.

In Theorem 3.8, we obtained a sufficient condition for global stability of the
positive equilibrium based on the permanence condition (3.3) which is also the
local asymptotic stability condition. But, this condition contains x∗ and y∗ which
we need to numerically solve the positive equilibrium first. Intuitively, condition
(3.4) can be simplified by replacing x∗ and y∗ with boundary values defined in Γ.
However, for the case of s > b, the sub-condition (s−b)(1−x∗)−sb > 0 in condition
(3.4) can not be simplified further since x = 1.

4. Hopf bifurcations with respect to one parameter r and all five
parameters

Compared to the systems studied in [6, 15, 16], system (1.3) involves the density
dependence of the predators and thus has the extra term ry2 with r > 0. In this
section, we will first focus on the Hopf bifurcation with respect to the parameter r,
and then extend our discussions to all other parameters.

From [6], we know that system (1.3) with r = 0 has a unique positive equilibrium
if and only if condition (2.1) holds. Thus, system (1.3) with r ≥ 0 has a unique
positive equilibrium if and only if condition (2.1) holds. Following [27], one can
see that this positive equilibrium (x∗, y∗) must smoothly depend on the parameters
a > 0, d > 0, s > 0, b > 0 and r ≥ 0.

For the Hopf bifurcation, we perform two different choices of parameters to
analyze the change of Sign(a1) by following the ideas in [26].
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Lemma 4.1. For system (1.3) with r = 0, if (2.1) holds and s > max{b, bd
1+d +

1
1−d2 }, then we have a1 < 0 if and only if

a <
1
s

s− b
s+ (s− b)d

[ (s− b)d
s+ (s− b)d

+ s− 1− sd
]
.

Proof. Let ρ = (s−b)d
s+(s−b)d and â = ρ

sd (ρ+ s− 1− sd). Then we see â > 0 if and only
if s > bd

1+d + 1
1−d2 . As r = 0 in system (2.2), it gives ads = x∗(x∗ + s − 1 − sd).

Namely, when a = â, it has x∗ = ρ.
As r = 0 in system (1.3), if s > b, we have a1 = [1 + (1 − b

s )](x∗ − ρ). Because
x∗ = 1

2 [1 + sd− s+
√

(1 + sd− s)2 + 4ads], x∗ increases as a increases. So, we see
that a1 < 0 if and only if a < â. �

Lemma 4.2. Under condition (2.1), if s > S1 and b+ b
s − 1 ≥ 0, then ∂a1

∂r > 0.

Proof. According to the equation x∗ = rsy∗ + asd+ry
∗

x∗ + 1 + sd− s, ry∗ increases
as x∗ increases. Moreover, with the condition b + b

s − 1 ≥ 0, a1 increases as x∗

increases since

a1 = [1 + d(1− b

s
)]x∗ + (b+

b

s
− 1)ry∗ + (1− b

s
)rx∗y∗ − d(1− b

s
).

Hence, it suffices to prove that x∗ increases as r increases.
Since (x∗, y∗) satisfies system (2.2), under the condition s > S1, (x∗, y∗) can

be determined by the two hyperbolic equations, whose corresponding locations can
be roughly shown in Figure 1 (left) and Figure 1 (middle) by the classifications
provided in [18]. Notice that the hyperbolic curves in Figure 1 (left) do not depend
on the parameter r and ( ad

1−d , 0) lies on the right hyperbolic curve in Figure 1
(middle). Further, for the second equation in system (2.2), dy

dx = 1−d−ry
r(x+2y+a)+d > 0

holds for the right curve in the first quadrant, especially for r1 < r2, (x, y) =
( ad
1−d , 0), and 1−d−r1y

r1(x+2y+a)+d >
1−d−r2y

r2(x+2y+a)+d . Moreover, in the first quadrant, when
r1 < r2, the curve corresponding to r1 lies above the curve corresponding to r2,
which is shown in Figure 1 (right). Otherwise, the curve corresponding to r1 must
intersect with the curve corresponding to r2 at a point (x0, y0) in the first quadrant.
However, since 1−d−r1y0

r1(x0+2y0+a)+d
< 1−d−r2y0

r2(x0+2y0+a)+d
, it arrives at a contradiction. As

shown in Figure 1 (left) and Figure 1 (right), as r increases, we see that x∗ increases.
Thus, we complete the proof. �

Based on the above two lemmas, let us first focus on the Hopf bifurcation with
respect to the parameter r, regarding other parameters as fixed constants. Under
condition (2.1), if s > S1 and b+ b

s − 1 ≥ 0, then da1(r)
dr > 0 holds for system (1.3)

with r ≥ 0. Furthermore, by Lemmas 4.1 and 4.2, we have the following result:

Lemma 4.3. For system (1.3), under the same conditions as shown in Lemmas 4.1
and 4.2, there exists a unique r∗ such that a1(r∗) = 0. Moreover, a1(r) < 0 if r < r∗

and a1(r) > 0 if r > r∗.

Proof. Let (x0, y0) be the point in Figure 1 (left) with x0 = d(1− b
s )

1+d(1− b
s )

. Under the
conditions shown in Lemmas 4.1 and 4.2, we can obtain that for the sufficiently
large r, x∗ ≥ x0 holds, and hence a1(r) = [1 + d(1− b

s )]x∗ + (b+ b
s − 1)ry∗ + (1−

b
s )rx∗y∗ − d(1 − b

s ) > 0 holds. Otherwise, for all r ≥ 0 and x∗ < x0, due to the
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Figure 1. Left: Curves for the hyperbolic equation sy = (1 −
x)(x + y + a). Middle: Curves for the hyperbolic equation x =
(d+ ry)(x+ y+ a). Right: Curves for x = (d+ ry)(x+ y+ a) with
r2 > r1 > r0 = 0.

hyperbolic curves in Figure 1 (left) and Figure 1 (middle), y∗ > y0 as r → +∞ and
so ry∗ → +∞ as r → +∞. This contradicts the fact that ry∗ < 1− d.

From Lemmas 4.1 and 4.2, there exists one unique r∗ such that a1(r∗) = 0 and
a1(r) < 0 if and only if r < r∗. �

From Lemma 4.3, a1(r∗) = 0 under the conditions shown in Lemmas 4.1 and
4.2. Moreover, recalling from Section 2 that when s ≤ 1

1−d , we have a2(r) > 0,
and thus a2(r∗) > 0. Since a1 and a2 smoothly depend on the parameters a > 0,
b > 0, d > 0, s > 0 and r ≥ 0, there exists a neighborhood W of r∗ such that for all
r ∈ W , there holds a2

1(r) < 4a2(r). This implies that the characteristic equation
(2.5) has conjugate complex roots for all r ∈ W , denoted as λ := α(r) ± iω(r) =
−a1
2 ±

√
4a2−a2

1
2 i.

Notice that α(r∗) = 0 and ω(r∗) > 0. Hence the characteristic equation (2.5) has
one pair of conjugated pure imaginary roots λ = ±iω(r∗). By the center manifold
theorem [26], the orbit structure near (x, y, r) = (x∗, y∗, r∗) can be determined by
the vector field (2.3) restricted to the center manifold, which has the following form(

dx
dt
dy
dt

)
=
(
α(r) −ω(r)
ω(r) α(r)

)(
x
y

)
+
(
f1(x, y, r)
f2(x, y, r)

)
where f1 and f2 are nonlinear in x and y. Then, by the Hopf bifurcation theory
[26], we can directly obtain the following result on Hopf bifurcation for system (1.3).

Theorem 4.4. For system (1.3), if the following conditions ad < 1− d, s ≤ 1
1−d ,

b+ b
s − 1 ≥ 0, s > max{b, 2a, 1 + a, bd

1+d + 1
1−d2 } and

a <
1
s

s− b
s+ (s− b)d

[ (s− b)d
s+ (s− b)d

+ s− 1− sd
]

hold, then the positive equilibrium (x∗, y∗) is an unstable focus for 0 < r∗ − r � 1
and an asymptotically stable focus for 0 < r − r∗ � 1. Moreover, when u(r∗) > 0,
there exists a neighborhood U of the positive equilibrium (x∗, y∗) such that the system
has a unique unstable periodic orbit in U for 0 < r − r∗ � 1 (and hence a stable
periodic orbit exists outside this unstable periodic orbit). When u(r∗) < 0, there
exists a neighborhood U of the positive equilibrium (x∗, y∗) such that the system has
a unique stable periodic orbit in U for 0 < r∗ − r � 1, where u(r∗) is given in [26]
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as:

u(r∗) =
1
16

[f1
xxx + f1

xyy + f2
xxy + f2

yyy] +
1

16ω(r∗)

[
f1
xy(f1

xx + f1
yy)

− f2
xy(f2

xx + f2
yy)− f1

xxf
2
xx + f1

yyf
2
yy

]
.

In Theorem 4.4, we have discussed the existence of limit cycles for sufficiently
small |r−r∗|. In fact, combining Lemmas 4.3 and 3.2 with the proof of Theorem 3.3,
it is straightforward to obtain the following corollary.

Corollary 4.5. For system (1.3), if the conditions shown in Theorem 4.4 hold,
then there is at least one stable limit cycle when r < r∗. Moreover, the limit cycle
is unique if condition (3.2) is also satisfied.

Additionally, we have the following stability results on the positive equilibrium.

Corollary 4.6. For system (1.3), if the conditions shown in Theorem 4.4 hold,
then the positive equilibrium is unstable if r < r∗ and locally asymptotically stable
if r > r∗. Moreover, the positive equilibrium is globally asymptotically stable when
r > r∗ and condition (3.2) holds.

Up to now, we have discussed the Hopf bifurcation only with respect to the
parameter r. It is also interesting to discuss the Hopf bifurcation with respect to
all parameters. In the rest of this section, we would like to set a special geometrical
structure such that the analysis process can be simplified by applying the classical
Hopf bifurcation theory on systems with one single parameter.

For this, let µ = (b−s)x∗y∗
(x∗+y∗+a)2 + x∗ + bry∗ be an auxiliary map, which can be also

regarded as an auxiliary parameter and will be used to analyze the Hopf bifurcation.
Intuitively, by this parameter µ, we restrict the five parameters of system (1.3) to a
special geometrical structure such that the five-dimensional parameters can be sim-
ply mapped to one-dimensional parameter. Thus, it enables us to consider the Hopf
bifurcation along with this special geometrical structure, where the five parameters
to some extent affect together as one parameter µ. Note that from Lemmas 4.1
and 4.3, there certainly exist conditions on the five parameters a, b, d, r, s to assure
the possibilities of µ > 0, µ < 0 and µ = 0, respectively.

Moreover, since a1 and a2 smoothly depend on the five parameters, a2 > 0 if
s ≤ 1

1−d and µ can be regarded as a continuous map of the five parameters. For
the parameters a, b, d, r, s satisfying µ(a, b, d, r, s) = 0, there exists a neighborhood
K ( R5 of (a, b, d, r, s) (and thus a neighborhood Ω ( R of µ = 0) such that for
all (a, b, d, r, s) ∈ K (and thus µ ∈ Ω), a2

1(a, b, d, r, s) < 4a2(a, b, d, r, s) holds. This
implies that the characteristic equation (2.5) has conjugate complex roots in K,

denoted as λ := β(µ)± iϕ(µ) = −a1
2 ±

√
4a2−a2

1
2 i.

Clearly, when µ = 0, β(0) = 0, β′(0) = − 1
2 < 0 and ϕ(0) > 0, the character-

istic equation (2.5) has one pair of conjugated pure imaginary roots λ = ±iϕ(0).
By the center manifold theorem [26], we can see that the orbit structure near
(x∗, y∗, a, b, d, r, s) with µ(a, b, d, r, s) = 0 (i.e. near (x∗, y∗, µ) with µ = 0) is de-
termined by the vector field (2.3) restricted to the center manifold, which has the
form (

dx
dt
dy
dt

)
=
(
β(µ) −ϕ(µ)
ϕ(µ) β(µ)

)(
x
y

)
+
(
f1(x, y, µ)
f2(x, y, µ)

)
where f1 and f2 are nonlinear in x and y.
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Since β′(0) = − 1
2 < 0, by the classical Hopf bifurcation theory on dynamical

systems with one single parameter [26], we can obtain the following theorem on
the Hopf bifurcation with respect to all the five parameters along with the special
geometrical structure µ = (b−s)x∗y∗

(x∗+y∗+a)2 + x∗ + bry∗.

Theorem 4.7. For system (1.3), if s ≤ 1
1−d , then the positive equilibrium (x∗, y∗)

is an unstable focus for −1 � µ < 0, or an locally asymptotically stable focus for
0 < µ� 1. Moreover, when ψ(0) > 0, there exists a neighborhood Ū of the positive
equilibrium (x∗, y∗) such that the system has a unique unstable periodic orbit in Ū
for 0 < µ� 1 (and hence a stable periodic orbit exists outside this unstable periodic
orbit). When ψ(0) < 0, there exists a neighborhood Ū of the positive equilibrium
(x∗, y∗) such that the system has a unique stable periodic orbit in Ū for −1� µ < 0,
where the coefficient ψ(0) is given as in [26]:

ψ(0) =
1
16

[f1
xxx + f1

xyy + f2
xxy + f2

yyy] +
1

16ϕ(0)

[
f1
xy(f1

xx + f1
yy)

− f2
xy(f2

xx + f2
yy)− f1

xxf
2
xx + f1

yyf
2
yy

]
.

5. Numerical simulations

In this section, we illustrate some numerical examples.

Example 5.1. Let a = 3, b = 5, s = 1, d = 0.2 and r = 1, then system (1.3)
becomes

x′(t) = x(t)(1− x(t))− x(t)y(t)
x(t) + y(t) + 3

,

y′(t) = 5y(t)
(
− 0.2− y(t) +

x(t)y(t)
x(t) + y(t) + 3

)
.

(5.1)

Since 0.6 = ad < 1 − d = 0.8 and 1 = s < 2a = 6, according to Theorem 2.3, the
positive equilibrium (x∗, y∗) ≈ (0.9888, 0.0451) of system (5.1) is locally asymptot-
ically stable. In fact, the positive equilibrium is globally asymptotically stable too,
since 1 = bd ≥ 1 and 1 = 2a−b ≥ 1, and condition (3.1) in Theorem 3.1 holds. The
global asymptotic stability can be seen from Figure 2 (left). Note that in Figure
2 (left), all six orbits go to (0.9888, 0.0451) as t tends to +∞, starting from initial
points (0.1, 0.2), (0.5, 0.3), (0.7, 0.6), (0.9, 1.0), (1.2, 1.05) and (1.5, 1.35), respec-
tively.

Example 5.2. Let a = 1, b = 1, s = 0.5, d = 0.1 and r = 1, then system (1.3)
becomes

x′(t) = x(t)(1− x(t))− 0.5x(t)y(t)
x(t) + y(t) + 1

,

y′(t) = y(t)
(
− 0.1− y(t) +

x(t)y(t)
x(t) + y(t) + 1

)
.

(5.2)

Since 0.1 = ad < (1 − d)(1 − s) = 0.45 and 0.5 = s < 1, according to The-
orem 3.6, the positive equilibrium (x∗, y∗) ≈ (0.9300, 0.3144) of system (5.2) is
locally asymptotically stable. In fact, by Theorem 3.3, the positive equilibrium
is globally asymptotically stable too, since 0.5 = s < b = 1. The global asymp-
totic stability can be seen from Figure 2 (right). Note that in Figure 2 (right), all
six orbits all go to (0.9300, 0.3144) as t tends to +∞, starting from initial points
(0.1, 0.2), (0.5, 0.3), (0.7, 0.6), (0.9, 1.0), (1.2, 1.05) and (1.5, 1.35), respectively.
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Figure 2. Left: Evolutions of six orbits for system (5.1). Right:
Evolutions of six orbits for system (5.2).

Example 5.3. Let a = 2, b = 1/20, s = 1/2, d = 1/6, and r = 1/750, then system
(1.3) becomes

x′(t) = x(t)(1− x(t))−
1
2x(t)y(t)

x(t) + y(t) + 2
,

y′(t) =
1
20
y(t)

(
− 1

6
− 1

750
y(t) +

x(t)y(t)
x(t) + y(t) + 2

)
.

(5.3)

The positive equilibrium is (x∗, y∗) ≈ (0.7969, 1.9126). A straightforward calcula-
tion gives that 1

2 = s < 1, 1
3 = ad < (1 − d)(1 − s) = 5

12 , (s − b)(1 − x∗) − sb ≈
0.0664 > 0, 1

750 = r < as
(a+1+ 1

d )3
= 1

729 , 1
750 = r < s(1−s)

(a+1+ 1
d )2

= 1
324 , and

1
20 = b < d(a − 1)(1 − s) = 1

12 . This implies that conditions (3.3) and (3.4)
in Theorem 3.8 are satisfied. Thus, (x∗, y∗) is globally attractive, which can be
seen from Figure 3. Note that in Figure 3, the six orbits starting from initial
points (0.1, 1.7), (0.3, 3.5), (0.5, 0.3), (1, 2.7), (1.2, 1.05), (1.5, 3), respectively, go to
(0.7969, 1.9126) as t tends to +∞.
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Figure 3. Evolutions of six orbits for system (5.3).
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Example 5.4. Let a = 1
1000 , b = 1, s = 4

3 , and d = 1/4, then system (1.3) becomes

x′(t) = x(t)(1− x(t))−
4
3x(t)y(t)

x(t) + y(t) + 1
1000

,

y′(t) = y(t)
(
− 1

4
− ry(t) +

x(t)
x(t) + y(t) + 1

1000

)
.

(5.4)

A direct calculation shows that 1
4000 = ad < 1 − d = 3

4 , 4
3 = s > max{b, 1 +

a, 2a, bd
1+d + 1

1−d2 } = 19
15 ,

1
1000

= a <
1
s

s− b
s+ (s− b)d

( (s− b)d
s+ (s− b)d

+ s− 1− sd
)

=
3

289
,

and 3
4 = b + b

s − 1 ≥ 0. This indicates that the conditions in Lemmas 4.1 and
4.2 hold, and the condition 4

3 = s ≤ 1
1−d = 4

3 also holds. Hence, there is one
unique r∗, which can be calculated numerically as r∗ ≈ 0.2250395, and then u(r∗) ≈
9929481 > 0. We can choose r = 0.228 > r∗, and find 0.0045 = a2 > 0.0001 >
1
4a

2
1. By Theorem 4.4, the positive equilibrium (x∗, y∗) ≈ (0.0422, 0.1101) is locally

asymptotically stable and there is at least one unstable closed orbit and one stable
closed orbit in the first quadrant. Note that in Figure 4 (left), the orbit starting
from initial points (0.0416, 0.109) and (0.0413, 0.1081) tends to a stable limit cycle
as t approaches +∞; and in Figure 4 (middle) and 4 (right), (x(t), y(t)) starting
from initial points (0.0416, 0.109) tends to a periodic form as t approaches +∞.
Note that the unstable limit cycle in the region enclosed by the stable limit cycle is
very close to the positive equilibrium and thus has not been shown in Figure 4 (left).
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Figure 4. Phase diagram (left) for system (5.4) with evolution of
x(t) (middle) and y(t) (right) as t→ +∞.

Conclusions and future works. In this article, we considered the stability of the
unique positive equilibrium and Hopf bifurcation with respect to parameters in a
density-dependent predator-prey system with the Beddington-DeAngelis functional
response. We started with the existence and uniqueness of the positive equilibrium,
which can not be a saddle, and provided first a weaker sufficient condition by
the Lyapunov function method and then a concrete condition only depending on
parameters by the Routh-Hurwitz criterion for local stability.

Moreover, we presented several sufficient conditions for global stability of the
positive equilibrium by two classical criteria. That is, by Dulac’s criterion, we
directly obtained (2.1) and (3.1) for global stability. By the divergency criterion, we
established (2.1), (2.7) and (3.2) as the sufficient conditions of global attractiveness.



EJDE-2016/255 DENSITY-DEPENDENT PREDATOR-PREY SYSTEMS 19

By Grammer’s rule and Green’s theorem, we derived the divergency integral and
further obtained (3.3) and (3.4) as the sufficient conditions of global attractiveness.

Afterwards, we analyzed the Hopf bifurcation with respect to the parameter r by
exploring the monotonicity of a1(r) and successively obtaining a unique r∗ such that
a1(r∗) = 0. Furthermore, we introduced an auxiliary map µ = (b−s)x∗y∗

(x∗+y∗+a)2 +x∗+bry∗

to restrict the five parameters to a special one-dimensional geometrical structure
and analyzed the Hopf bifurcation with respect to all five parameters along with
this geometrical restriction.

Note that Hwang verified that for system (1.1), the local stability and global
stability of the positive equilibrium coincide in [15]. However, from analysis in
Section 4, we find that for system (1.3), the coincidence between local stability
and global stability does not hold because of the occurrence of the parameter r.
Consequently, the analysis results show that the predator density dependence rate
r has a significant effort on the global dynamics of system (1.3).

Finally, some numerical simulations have been performed to illustrate our ana-
lytical results.

Notice that from the analysis in Section 4, system (1.3) has limit cycles under
certain conditions. However, the problem on the number of limit cycles is not
involved at this stage. So, it is interesting to further explore the number of the
limit cycles with their location estimate in our future work, as well as the necessary
and sufficient conditions for the uniqueness of limit cycles.
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