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EXACT CONTROLLABILITY OF THE EULER-BERNOULLI
PLATE WITH VARIABLE COEFFICIENTS AND SIMPLY

SUPPORTED BOUNDARY CONDITION

FENGYAN YANG

Abstract. This article studies the exact controllability of an Euler-Bernoulli

plate equation with variable coefficients, subject to the simply supported
boundary condition. By the Riemannian geometry approach, the duality

method, the multiplier technique, and the compactness-uniqueness argument,

we establish the corresponding observability inequality and obtain the exact
controllability results.

1. Introduction

Let A(x) = (aij(x)) be a symmetric, positive matrix for each x ∈ Rn, where
aij(x) are C∞ functions in Rn , such that

n∑
i,j=1

aij(x)ξiξj > 0, ∀x ∈ Rn, 0 6= ξ = (ξ1, . . . , ξn)T ∈ Rn.

We introduce
g = A−1(x) for x ∈ Rn,

as a Riemannian metric on Rn and consider the couple (Rn, g) as a Riemannian
manifold. We denote by g = 〈·, ·〉g the inner product. Then

〈X,Y 〉g = 〈A−1(x)X,Y 〉 for X,Y ∈ Rnx , x ∈ Rn,
where 〈·, ·〉 is the Euclidean product of Rn.

Let Ω ⊂ Rn be an open, bounded set with a sufficient smooth boundary Γ =
Γ0 ∪ Γ1 and Γ0 ∩ Γ1 = ∅, where Γ1 is nonempty. We consider the following Euler-
Bernoulli plate model

utt + A 2u = 0 in Q = (0, T )× Ω,

u = 0 on Σ0 = (0, T )× Γ0,

u = ϕ on Σ1 = (0, T )× Γ1,

A u+ a(x)Bu = 0 on Σ0,

A u+ a(x)Bu = ψ on Σ1,

u(0) = u0, ut(0) = u1 on Ω.

(1.1)
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with two controls ϕ and ψ, where utt stands for ∂2u/∂t2,

A u =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
and B is a boundary operator, defined by

Bu = −
n∑
i=2

ei〈ei,∇Γgu〉g + kuνA .

Here ν is the outside normal along Γ, νA = A(x)ν, and uνA = 〈∇gu, ν〉 =
〈A(x)∇u, ν〉. For 2 ≤ i ≤ n, ei is the tangential vector fields on Γ such that
e1 = νA /|νA |g, e2, . . . , en form a unit orthogonal basis of (Rnx , g(x)) for each x ∈ Γ,
∇Γg is the gradient of Riemannian manifold (Γ, g). k and a(x) are bounded positive
functions on Γ and Ω respectively, which are related to the material. The boundary
condition we consider here is known as the simply supported boundary condition of
the plate (see [2, 8]), which arises from the physical models and includes moments
of inertia realistically present in the system.

In the case of constant coefficients where A(x) is the unit matrix and n = 2,
exact controllability results of problem (1.1) have been obtained by Horn [6]. The
objective of this paper is to generalize the exact controllability results to the case
where A(x) is a non-constant, symmetric, positive n-order matrix and represents
some property of the materials, for example, the mass of the plate is not uniformly
distributed with respect to spatial position. The problem is of practical and theo-
retical importance. From the physical point of view, the variable-coefficient model
is more realistic. Meanwhile, this together with the simply supported boundary
condition also introduces additional non-trivial complications for the mathematical
analysis.

The high-dimensional Euler-Bernoulli equations (n ≥ 2), as a kind of classi-
cal partial differential equation, are used to describe the vibration of elastic thin
plates. Stimulated by the extensive applications in the architectural structures,
automobile and aerospace industries, etc. (see [17, 18]), there have been a great
amount of research on the control problems of Euler Bernoulli plates. We shall
only cite the literature closely related to this paper, the exact controllability of
the Euler Bernoulli plates with different choices of controls active in the vary-
ing boundary conditions. For the constant coefficient case, we refer the reader to
[6, 7, 8, 10, 11, 14, 24], and the references therein. Particularly, in [14], Lions
considered the exact controllability of the Euler-Bernoulli model with one control
acting through Neumann boundary condition. Later, Lasiecka and Triggiani [10]
studied the situation where control acts only on the Dirichlet boundary condition,
in which they also managed to get rid of some geometrical conditions by further
adding a Neumann control. And in [11], they discussed the exact controllability
problem with boundary controls for displacement u and moment ∆u, which act in
the Dirichlet boundary conditions. Horn [6] derived the exact controllability of the
Euler-Bernoulli plate with a simply supported boundary condition only via bend-
ing moments on the space of optimal regularity. For the variable coefficient case,
Yao [22] used the Riemannian geometry approach to give checkable conditions for
the exact controllability of two Euler-Bernoulli models with clamped and hinged
boundary conditions respectively, which has been extended by many others like
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[1, 4, 5, 12, 13]. In particular, Guo and Zhang [4] showed that the exact control-
lability of an Euler-Bernoulli plate with variable coefficients and partial boundary
Neumann control is equivalent to the exponential stability of its closed-loop system
under proportional output feedback.

The Riemannian geometry is a useful tool for the controllability of variable –
coefficient systems mainly due to its two virtues: The Bochner technique can be
used to simplify computation to obtain the multiplier identities, and the curvature
theory provides the global information on the existence of an escape vector field
which guarantees the exact controllability. Given this, we shall use the Riemannian
geometry approach to study our problem.

Since the dynamics of system (1.1) are time-reversible and it is well known that
exact controllability is equivalent to null controllability in that case, we attempt
to prove the following property: Given any (u0, u1) ∈ H1

0 (Ω) × H−1(Ω), there
exist some T > 0 and controls (ϕ,ψ) ∈ H1

0 (0, T ;L2(Γ1)) × L2(Σ1) such that the
corresponding solution of problem (1.1) satisfies

u(T ) ≡ ut(T ) ≡ 0.

Remark 1.1. The above corresponding regularity results for problem (1.1) can
be obtained by the cosine operator theory in a similar argument as in the case
of constant coefficients (see [9]), during which, however, some computations on
Riemannian manifold are needed to deal with the variable coefficients. Besides, it
is worth noting that the recent work by Wen et al. [19] gave the well-posedness and
regularity of two types of Euler–Bernoulli equations with variable coefficients and
Dirichlet boundary control, in which semigroup theory and the multiplier technique
with Riemannian geometry are utilized. This method can also apply to the same
question for our problem (1.1), because the operator A we define below is quite
similar to the operator A which is fundamentally used in [19].

This article is organized as follows: In Section 2, we will introduce the escape
vector field and state our primary results. In Section 3, we use the duality method
to find the observability inequality. The proofs of the results are given in the last
section.

2. Main results

We denote the Levi-Civita connection in the metric g by D. Let X be a vector
field on (Rn, g). The covariant differential DX of X determines a bilinear form on
Rnx × Rnx for each x ∈ Rn by

DX(Y,Z) = 〈DZX,Y 〉g,∀Y,Z ∈ Rnx ,
where DZX is the covariant derivative of X with respect to Z.

Definition 2.1. A vector field H is said to be an escape vector field for the metric
g on Ω if there exists a constant ρ0 > 0 such that

DH(x) ≥ ρ0g(x) for all x ∈ Ω. (2.1)

Remark 2.2. Escape vector field was introduced by Yao [21] as a checkable as-
sumption for the exact controllability of the wave equation with variable coefficients.
Actually, the existence of such a vector field can also guarantee the exact controlla-
bility of an Euler-Bernoulli plate equation with variable coefficients and the simply
supported boundary condition (see our results below).
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If h is a strictly convex function in the metric g on Ω, then H = Dh is such
an escape vector field owing to D2h, i.e., the Hessian of h, is positive. It is well
known that the square of the distance function initiating from a given point x0 ∈ Ω
in the metric g is strictly convex in a neighborhood of x0 (see, e.g.,[20]), then the
escape vector field certainly exists locally. Fortunately, the sectional curvature of
the Riemannian metric g can provide the global information on its existence. Here
are some relevant results from [21] and [23]:

Proposition 2.3. Let x0 ∈ Rn be given. For any x ∈ Rn, κ(x,Π) denotes the
sectional curvature of a two-dimensional subspace Π ⊂ Rnx in the metric g, set

κ(Ω) = sup
x∈Ω,Π⊂Rnx

κ(x,Π).

Let Bg(x0, γ) be a geodesic ball in (Rn, g) centered at x0 with radius γ. Denote
by ρ(x) = dg(x, x0) the distance function of the metric g from x to x0. If γ > 0
satisfies 4γ2κ(Ω) < π2 and Ω ⊂ Bg(x0, γ), then H = ρDρ is an escape vector field
for the metric g on Ω .

Proposition 2.4. Suppose (Rn, g) is a Riemannian manifold, then
(a) If (Rn, g) has non-positive sectional curvature, then there exists an escape

vector field for the metric g on the whole space Rn.
(b) If (Rn, g) is noncompact, complete, and its sectional curvature is positive

everywhere on Rn, then there exists an escape vector field in the metric g on the
whole space Rn.

Now we present the main results.

Theorem 2.5. Let H be an escape vector field for the metric g on Ω and let T > 0
be given. Let ‖k‖2L∞(Γ) < k0, which will be given concretely in Section 4. Then
system (1.1) is exactly controllable on the space H1

0 (Ω) × H−1(Ω) with controls
(ϕ,ψ) ∈ H1

0 (0, T ;L2(Γ1))× L2(Σ1), where

Γ1 = {x|〈H, ν〉 > 0, x ∈ Γ}.

3. Observability inequality

The dual problem of system (1.1) can be readily derived as follows

wtt + A 2w = 0 in Q,

w = 0 on Σ,

A w + a(x)Bw = 0 on Σ,

w(0) = w0, wt(0) = w1 on Ω.

(3.1)

Let A : L2(Ω)→ L2(Ω) be a linear operator defined by

Af = A 2f,D(A) = {f ∈ H4(Ω) : f |Γ = 0,A f + a(x)Bf |Γ = 0}.

It is easy to check that A is a positive, self-adjoint operator. According to the
interpolation results in [15], we have the following space identifications:

D(Aθ) = H4θ(Ω), 0 < θ <
1
8
,

D(Aθ) = {f ∈ H4θ(Ω) : f |Γ = 0}, 1
8
< θ <

5
8
.

(3.2)
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In particular, A1/2f = −A f and D(A1/2) = H2(Ω) ∩H1
0 (Ω).

We introduce the energy of system (3.1) by

2E(t) =
∫

Ω

[(A1/4w)2 + (A−1/4wt)2]dx.

Differentiating the above identity with respect to t, we have

E′(t) = (A1/4wt, A
1/4w) + (A−1/4wtt, A

−1/4wt)

= (A1/4wt, A
1/4w)− (A3/4w,A−1/4wt) = 0,

then E(t) ≡ E(0) for all t > 0.
For (w0, w1) ∈ H1

0 (Ω) ×H−1(Ω), we solve problem (3.1) to obtain the solution
w. Then we solve the terminal value problem

utt + A 2u = 0 in Q,

u(T ) = ut(T ) = 0 on Ω,

u|Σ0 = 0, u|Σ1 = −(A w)νA ,

A u+ a(x)Bu = 0 on Σ0,

A u+ a(x)Bu = −a(x)
n∑
i=2

ei〈ei,∇Γgu〉g − wνA on Σ1.

(3.3)

Further, we define an operator Λ : H1
0 (Ω)×H−1(Ω)→ H−1(Ω)×H1

0 (Ω) by

Λ(w0, w1) = (ut(0),−u(0)) on Ω.

Using equations (3.1) and (3.3), we obtain

(Λ(w0, w1), (w0, w1))L2(Ω)×L2(Ω)

= (ut(0), w0)− (u(0), w1) = [(u,wt)− (ut, w)]|T0

=
∫
Q

(wttu− uttw)dQ =
∫
Q

(wA 2u− uA 2w)dQ

=
∫

Σ

[w(A u)νA − wνA A u− u(A w)νA + uνA A w]dΣ

=
∫

Σ1

[w2
νA

+ (A w)2
νA

]dΣ.

By the duality method given by Lions [14], the exact controllability of problem
(1.1) on the space H1

0 (Ω)×H−1(Ω) is equivalent to the following statement:
There is a CT > 0 such that∫

Σ1

[w2
νA

+ (A w)2
νA

]dΣ ≥ CT ‖(w0, w1)‖2H1
0 (Ω)×H−1(Ω). (3.4)

Using a result in [23], the norm

‖(w0, w1)‖2? = ‖|∇g(A (A −1w0))|g‖2L2(Ω) + ‖|∇g(A −1w1)|g‖2L2(Ω)

is equivalent norm on H1
0 (Ω)×H−1(Ω). Then inequality (3.4) becomes∫
Σ1

[w2
νA

+ (A w)2
νA

]dΣ ≥ CTE(0).

Let z = A−1/2w and define

Dξ = ζ if A ζ = 0 in Ω, and ζ|Γ = ξ. (3.5)
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Elliptic regularity theory (see [15]) gives

D ∈ L (L2(Γ)→ H1/2(Ω)). (3.6)

Clearly, z satisfies the boundary conditions

z|Γ = A z|Γ = 0.

Moreover, we find that

ztt = A−1/2wtt = −A−1/2A 2w

= −A−1/2A1/2(A 2z −D(A 2z|Γ))

= −A 2z + D(A 2z|Γ).

Since w|Γ = 0, we obtain

A 2z|Γ = −A w|Γ = a(x)Bw = −ka(x)(A z)νA . (3.7)

Consequently, z satisfies the equation

ztt + A 2z = −D(ka(x)(A z)νA ),

z|Γ = A z|Γ = 0,

z(0) = z0, zt(0) = z1.

(3.8)

Then the observability inequality becomes∫
Σ1

[(A z)2
νA

+ (A 2z)2
νA

]dΣ ≥ CTE(0), (3.9)

where the energy is now represented as

2E(t) =
∫

Ω

[(A3/4z)2 + (A1/4zt)2]dx.

4. Proofs of the results

We consider u as a regular solution to the problem

utt + A 2u = f in (0,∞)× Ω, (4.1)

where f is a given function.
The following lemma from [23] will play an important role in establishing our

multiplier identities.

Lemma 4.1. Let f , h be functions on Rn and let H be a vector field on Rn. Then

〈∇gf,∇g(H(h))〉g + 〈∇gh,∇g(H(f))〉g
= div(〈∇gf,∇gh〉gH)− 〈∇gf,∇gh〉g divH +DH(∇gh,∇gf) +DH(∇gf,∇gh),

where divH is the divergence of the vector field H in the Euclidean metric.

Next are our main geometric multiplier identities.
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Lemma 4.2. Let H be a vector field on Ω and let p be a function on Ω, set
q = divH. Suppose that u is a solution to problem (4.1). Then (1)∫

Σ

{2[qut +H(ut)](ut)νA + 2H(A u)(A u)νA − u2
t 〈∇gq, ν〉

− (2utA ut + |∇gut|2g + |∇g(A u)|2g)〈H, ν〉}dΣ

=
∫
Q

{2DH(∇gut,∇gut) + 2DH(∇g(A u),∇g(A u))

+ [|∇gut|2g − |∇g(A u)|2g]q − u2
tA q + 2fH(A u)}dQ− 2(ut, H(A u))|T0 .

(4.2)

and (2) ∫
Σ

{
2p[ut(ut)νA −A u(A u)νA ] + [(A u)2 − u2

t ]pνA

}
dΣ

= 2(ut, pA u)
∣∣T
0

+
∫
Q

{
A p[(A u)2 − u2

t ] + 2p[|∇gut|2g

− |∇g(A u)|2g − fA u]
}

dQ.

(4.3)

Proof. We multiply equation (4.1) by 2H(A u) and 2pA u, respectively. Then in-
tegrating over Q by parts with Lemma 4.1 yields these identities. �

Using these multiplier identities, we can derive the following estimates.

Lemma 4.3. Let T > 0 be given and let H be an escape vector field for the metric
g on Ω. Assume z is the solution to (3.8). Then there is a CT,1 > 0 such that

‖(zt)νA ‖2L2(Σ1) + ‖(A z)νA ‖2L2(Σ1) ≥ CT,1E(0). (4.4)

Lemma 4.4. Let z be the solution to (3.8). Then there is a CT,2 > 0 such that

‖(zt)νA ‖2L2(Σ) + ‖(A z)νA ‖2L2(Σ) ≤ CT,2E(0). (4.5)

Proof of Lemma 4.3. Since H is escaping on Ω, there is ρ0 > 0 such that

DH(X,X) ≥ ρ0|X|2g for X ∈ Rnx , x ∈ Ω. (4.6)

By the boundary conditions, z = A z = 0 on Γ, we have

∇gzt =
n∑
i=1

〈∇gzt, ei〉gei = 〈∇gzt,
νA

|νA |g
〉g

νA

|νA |g
=

(zt)νA

|νA |2g
νA .

Similarly, ∇g(A z) = (A z)νA

|νA |2g
νA . Thus,

|∇gzt|2g =
(zt)2

νA

|νA |2g
, H(zt) =

〈H, ν〉
|νA |2g

(zt)νA , (4.7)

|∇g(A z)|2g =
(A z)2

νA

|νA |2g
, H(A z) =

〈H, ν〉
|νA |2g

(A z)νA . (4.8)



8 F. YANG EJDE-2016/257

Using the boundary conditions of problem (3.8), the relations (4.7) and (4.8) in
identity (4.2) with f = −D(ka(x)(A z)νA ), we obtain∫

Σ

[(zt)2
νA

+ (A z)2
νA

]〈H, ν〉/|νA |2gdΣ

=
∫
Q

{
[2DH(∇gzt,∇gzt) + 2DH(∇g(A z),∇g(A z))]

+ [|∇gzt|2g − |∇g(A z)|2g] divH − z2
tA q − 2D(ka(x)(A z)νA )H(A z)

}
dQ

− 2(zt, H(A z))|T0 .

(4.9)

Firstly,∫
Σ

[(zt)2
νA

+ (A z)2
νA

]〈H, ν〉/|νA |2gdΣ ≤ C
∫

Σ1

[(zt)2
νA

+ (A z)2
νA

]dΣ. (4.10)

Next, we shall estimate all terms on the right-hand side of (4.9). For the first
term, by means of (4.6), we obtain∫

Q

[2DH(∇gzt,∇gzt) + 2DH(∇g(A z),∇g(A z))]dQ

≥ 2ρ0

∫
Q

[|∇gzt|2g + |∇g(A z)|2g]dQ = 4ρ0TE(0).
(4.11)

For the second term, using the boundary conditions of problem (3.8) in identity
(4.3) with p = divH/2 and f = −D(ka(x)(A z)νA ), we obtain∣∣ ∫

Q

[|∇gzt|2g − |∇g(A z)|2g] divHdQ
∣∣ ≤ ε‖(A z)νA ‖2L2(Σ) + CεL(z), (4.12)

where

L(z) = ‖z(0)‖2L2(Ω) + ‖z(T )‖2L2(Ω) + ‖z‖2L2(Q) + ‖zt(0)‖2L2(Ω) + ‖zt(T )‖2L2(Ω)

+ ‖zt‖2L2(Q) + ‖|D2z|g(0)‖2L2(Ω) + ‖|D2z|g(T )‖2L2(Ω) + ‖|D2z|g‖2L2(Q),

are the lower terms relative to the energy E(t).
For the third term, we have∫

Q

−z2
tA qdQ ≥ − sup

x∈Ω
|A q|‖zt‖2L2(Q). (4.13)

For the fourth term, by (3.2) and (3.6), AθD ∈ L(L2(Γ)→ L2(Ω)) for θ < 1/8,
we have

|(D(ka(x)(A z)νA ), H(A z))L2(Q)|

= |(A−θAθD(ka(x)(A z)νA ), H(A z))L2(Q)|

≤ ε‖AθD(ka(x)(A z)νA )‖2L2(Q) + Cε‖(A−θH(A z)‖2L2(Q)

≤ ε‖(A z)νA ‖2L2(Σ) + CεT‖A−θH(A z)‖2C[0,T ;L2(Ω)].

(4.14)

Applying Lemma 4.4, we obtain

ε‖(A z)νA ‖2L2(Σ) = ε‖(A z)νA ‖2L2(Σ1) + ε‖(A z)νA ‖2L2(Σ0)

≤ ε‖(A z)νA ‖2L2(Σ1) + εCT,2E(0).
(4.15)
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For the last term, we have

|(zt, H(A z))| ≤ sup
x∈Ω
|H|g

∫
Ω

|zt||∇g(A z)|gdx

≤ ε
∫

Ω

|∇g(A z)|2gdx+ Cε

∫
Ω

z2
t dx

≤ 2εE(0) + Cε

∫
Ω

z2
t dx.

(4.16)

Thus

− 2(zt, H(A z))|T0 ≥ −8εE(0)− 2Cε(‖zt(0)‖2L2(Ω) + ‖zt(T )‖2L2(Ω)). (4.17)

Combining (4.9)–(4.17), we have

C

∫
Σ1

[(zt)2
νA

+ (A z)2
νA

]dΣ

≥ 4(ρ0T − 2ε− ε

2
CT,2)E(0)− 2CεL(z)− ε‖(A z)νA ‖2L2(Σ)

− 2ε‖(A z)νA ‖2L2(Σ1) − 2CεT‖A−θH(A z)‖2C[0,T ;L2(Ω)].

(4.18)

Then for ε small enough, there are constants Ci > 0 for 1 ≤ i ≤ 3 such that

C1

∫
Σ1

[(zt)2
νA

+ (A z)2
νA

]dΣ + C2L(z) ≥ C3E(0), (4.19)

for all solutions z to (3.8). Then inequality (4.4) follows by Lemma 4.5 below. �

Lemma 4.5. Let inequality (4.19) hold for all solutions z of (3.8). Then there is
a C > 0 such that ∫

Σ1

[(zt)2
νA

+ (A z)2
νA

]dΣ ≥ CE(0). (4.20)

To prove this lemma, we need the following uniqueness result from [16].

Proposition 4.6. Let Γ̂ be a relatively open subset of Γ. If w solves the problem

A 2w = F (w,Dw,D2w,D3w) on Ω,

w = wνA = A w = (A w)νA = 0 on Γ̂,
(4.21)

then w = 0 on Ω .

Proof of Lemma 4.5. Step 1. Let Y = {z ∈ H3(Q) : z is a solution to problem
(3.8) satisfying (zt)νA |Σ1 = (A z)νA |Σ1 = 0}. Then

Y = {0}. (4.22)

Indeed, from inequality (4.19), we have

C2L(z) ≥ C3E(0) for all z ∈ Y,
which implies that any bounded closed set in Y ∩ H3(Q) is compact in H3(Q).
Then Y is a finite-dimensional linear space. For any z ∈ Y , we can readily obtain
that zt ∈ Y . Then ∂t : Y → Y is a linear operator. Let Y 6= {0}, then ∂t has at
least one eigenvalue λ. Assume that v 6= 0 is one of its eigenfunctions, then vt = λv.
Further, v is a nonzero solution to the problem

A 2v = −λ2v −D(ka(x)(A v)νA ) on Ω,

v = (vt)νA = A v = (A v)νA = 0 on Γ1.
(4.23)
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However, by Proposition 4.6, problem (4.23) only has zero solution, this contradic-
tion shows that (4.22) holds.
Step 2. Suppose that the estimate (4.20) is not true. Then there are (zk0 , z

k
1 ) ∈

H3
0 (Ω)×H1

0 (Ω), whose solutions are denoted by zk, such that

E(zk, 0) = 1,
∫

Σ1

[(zkt )2
νA

+ (A zk)2
νA

]dΣ ≤ 1
k

for k ≥ 1. (4.24)

Then ‖zk‖2H3(Q) = 2T for all k ≥ 1. Thus there is a subsequence, still denoted by
zk, such that

zk converges in H2(Ω) for each t ∈ [0, T ], and (4.25)

zk converges in H2(Q). (4.26)

It follows from relations (4.19), (4.24), (4.25) and (4.26) that zk converges in H3(Q).
Then there exists a solution z0 to problem (3.8) such that

zk → z0 as k →∞ in H3(Q).

Then

E(z0, 0) = 1,
∫

Σ1

[(z0
t )2
νA

+ (A z0)2
νA

]dΣ = 0.

Thus
(z0
t )νA |Σ1 = (A z0)νA |Σ1 = 0.

Then 0 6= z0 ∈ Y , it contradicts the relation (4.22). �

Proof of Lemma 4.4. We choose a vector field H on Ω such that

H = A(x)ν for x ∈ Γ,

and let f = −D(ka(x)(A z)νA ). Then using the boundary conditions of problem
(3.8), relations (4.7) and (4.8) in identity (4.2), it gives∫

Σ

[(zt)2
νA

+ (A z)2
νA

]dΣ

=
∫
Q

{2DH(∇gzt,∇gzt) + 2DH(∇g(A z),∇g(A z))

+ (|∇gzt|2g − |∇g(A z)|2g) divH − z2
tA q

− 2D(ka(x)(A z)νA )H(A z)}dQ− 2(zt, H(A z))|T0 .

(4.27)

We shall estimate all terms on the right-hand side of (4.27) separately. For the first
term, we have ∫

Q

[2DH(∇gzt,∇gzt) + 2DH(∇g(A z),∇g(A z))]dQ

≤ C
∫
Q

[|∇gzt|2g + |∇g(A z)|2g]dQ = 2CTE(0).
(4.28)

We have already estimated the second term in the proof of Lemma 4.3.
For the third term, we have

−
∫
Q

z2
tA qdQ ≤ T sup

x∈Ω
|A q|‖zt‖2C[0,T ;L2(Ω)]. (4.29)
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For the fourth term, we have∣∣ ∫
Q

D(ka(x)(A z)νA )H(A z)dQ
∣∣

≤ ε‖D(ka(x)(A z)νA )‖2L2(Q) + sup
x∈Ω
|H|2gCε‖|∇g(A z)|g‖2L2(Q)

≤ ε‖(A z)νA ‖2L2(Σ) + 2T sup
x∈Ω
|H|2gCεE(0).

(4.30)

For the last term, we have

− 2(zt, H(A z))|T0

≤ 2
∫

Ω

[|zt(0)||H(A z)(0)|+ |zt(T )||H(A z)(T )|]dx

≤ ‖zt(0)‖2L2(Ω) + ‖zt(T )‖2L2(Ω) + sup
x∈Ω
|H|2g

∫
Ω

[|∇g(A z)(0)|2g + |∇g(A z)(T )|2g]dx

≤ 2‖zt‖2C[0,T ;L2(Ω)] + 4 sup
x∈Ω
|H|2gE(0).

Since zt = A z = 0 on Γ, according to the Poincare’s inequality, we have

‖zt‖2 ≤ C‖|∇gzt|g‖2L2(Ω), ‖A z‖2 ≤ C‖|∇g(A z)|g‖2L2(Ω). (4.31)

Combining (4.12), (4.27)–(4.31), we obtain the desired estimate (4.5). �

Using some ideas from [6], we can eliminate the term ‖(zt)νA ‖2L2(Σ1) from the
inequality (4.4). Firstly, we have the following lemma.

Lemma 4.7. Let α > 0 be a given constant and define Σα = [−α, T + α] × Γ.
Assume z satisfies problem (3.8). Then for any ε > 0, there is a CT,3 > 0 such that

‖(zt)νA ‖2L2(Σ1)

≤ ‖(A z)νA ‖2L2(Σα1 ) + εCT,3E(0) + (
8
ε

+ 2)CK,D,T ‖ka(x)(A z)νA ‖2L2(Σα)

+ C(‖z0‖2L2(Ω) + ‖z1‖2L2(Ω)).

(4.32)

Proof. We shall take four steps to prove it.
Step 1. Let z be a complex solution to problem (3.8). By using the cosine operator
theory (see [3]), we obtain

z(t) = eiA tz̃0 + e−iA tz̃1 + A −1

∫ t

0

1
2i

(eiA (t−τ) − e−iA (t−τ))Df(τ)dτ, (4.33)

where

f = −ka(x)(A z)νA , z̃0 =
z0

2
− i

2
A −1z1, z̃1 =

z0

2
+
i

2
A −1z1.

To simplify notation, we define

A1 = (A eiA tz̃0)νA , B1 =
1
2

(
∫ t

0

e−iA (t−τ)Df(τ)dτ)νA ,

A2 = (A e−iA tz̃1)νA , B2 =
1
2

(
∫ t

0

eiA (t−τ)Df(τ)dτ)νA .

(4.34)

Using these definitions, we have

(zt)νA = i(A1 −A2) + (B1 +B2), (4.35)
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(A z)νA = (A1 +A2) + i(B1 −B2). (4.36)

Thus, we obtain

|(zt)νA |2 − |(A z)νA |2 = 4Re(−A1Ā2 + iA1B̄1 − iA2B̄2 + B̄1B2). (4.37)

Step 2. Let φ(t) ∈ C∞0 (R) be such that 0 ≤ φ(t) ≤ 1, φ(t) ≡ 1 on [0, T ], and
φ(t) ≡ 0 on (−∞,−α) ∪ (T + α,∞). From (4.37), we obtain

‖(zt)νA ‖2L2(Σ1)

≤ ‖(A z)νA ‖2L2(Σα1 ) + 4
∣∣ ∫ ∞
−∞

φ(t)
∫

Γ1

A1Ā2dxdt
∣∣

+ 4
∣∣ ∫ ∞
−∞

φ(t)
∫

Γ1

A1B̄1dxdt
∣∣+ 4

∣∣ ∫ ∞
−∞

φ(t)
∫

Γ1

A2B̄2dxdt
∣∣

+ 4
∣∣ ∫ ∞
−∞

φ(t)
∫

Γ1

B̄1B2dxdt
∣∣.

(4.38)

Step 3.

A1Ā2 = (A eiA tz̃0)νA × (A eiA t ¯̃z1)νA

= (
∞∑
n=1

λne
−iλnt(z̃0, φn)(φn)νA )× (

∞∑
m=1

λme
−iλmt(¯̃z1, φm)(φm)νA ),

(4.39)

where λi and φi denote the eigenvalues and eigenfunctions corresponding to the
operator −A with |φi| = 1. Since

|(φn)νA | ≤ C|A φn| ≤ Cλn|φn| = Cλn,

we have ∫
Γ1

|(φn)νA ||(φm)νA |dΓ ≤ Cλnλm. (4.40)

Combining (4.39) and (4.40), we find∣∣ ∫ ∞
−∞

φ(t)
∫

Γ1

A1Ā2dxdt
∣∣

≤ C
∞∑
n=1

∞∑
m=1

λ2
nλ

2
m|(z̃0, φn)||(¯̃z1, φm)|

∣∣ ∫ ∞
−∞

φ(t)e−i(λn+λm)tdt
∣∣.

Since φ(t) ∈ C∞0 (R), for any N , we have∣∣ ∫ ∞
−∞

φ(t)e−i(λn+λm)tdt
∣∣ ≤ cφ
|λn + λm|N

. (4.41)

Thus,∣∣ ∫ ∞
−∞

φ(t)
∫

Γ1

A1Ā2dxdt
∣∣ ≤ Cφ(

∞∑
n=1

|(z̃0, φn)|2

λN−4
n

+
∞∑
m=1

|(¯̃z1, φm)|2

λN−4
m

)

= Cφ(‖A 2−N2 z̃0‖2L2(Ω) + ‖A 2−N2 ¯̃z1‖2L2(Ω))

≤ C(‖z0‖2H4−N (Ω) + ‖z1‖2H2−N (Ω)).

(4.42)
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Step 4. Before we complete the proof of Lemma 4.7, we shall need the following
result to estimate the remaining three terms on the right-hand side of inequality
(4.38).

Proposition 4.8. Let y be a solution of the problem

yt = iA1/2y + Dξ,

y(0) = y0 ∈ D(A1/4).
(4.43)

Then

‖yνA ‖2L2(Σ) ≤ CT,3‖A
1/2y0‖2L2(Ω) + CK,D,T ‖ξ‖2L2(Σ). (4.44)

The above proposition will be proven later. Applying the result of Proposition
4.8 with ξ = 0, we obtain

‖A1‖2L2(Σα) + ‖A2‖2L2(Σα) ≤ CT,3(‖A 3/2z̃0‖2L2(Ω) + ‖A 3/2z̃1‖2L2(Ω))

≤ CT,3(‖A 3/2z0‖2L2(Ω) + ‖A 1/2z1‖2L2(Ω)),
(4.45)

with y0 = 0, we obtain

‖B1‖2L2(Σα) + ‖B2‖2L2(Σα) ≤ CK,D,T ‖f‖
2
L2(Σα) = CK,D,T ‖ka(x)(A z)νA ‖2L2(Σα).

Then ∫ T+α

−α

∫
Γ1

(|A1B̄1|+ |A2B̄2|+ |B̄1B2|)dxdt

≤
∫

Σα1

[ε(|A1|2 + |A2|2) + (Cε +
1
2

)(|B1|2 + |B2|2)]dΣ

≤ εCT,3(‖A 3/2z0‖2L2(Ω) + ‖A 1/2z1‖2L2(Ω))

+ (Cε +
1
2

)CK,D,T ‖ka(x)(A z)νA ‖2L2(Σα).

(4.46)

Combining (4.38), (4.42) and (4.46), we obtain the desired inequality (4.32). �

Proof of Proposition 4.8. Let

y(t) = y1 + y2 = e−iA ty0 +
∫ t

0

e−iA (t−τ)Dξ(τ)dτ. (4.47)

Clearly, y satisfies (4.43). We shall do the proof by several steps.

Step 1. We firstly prove the estimate

‖yνA ‖2L2(Σ) ≤ CT,4(‖Dξ‖2L1[0,T ;L2(Ω)] + ‖A 1/2y‖2L∞[0,T ;L2(Ω)]). (4.48)
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Proof. We multiply (4.43) by h(ȳ), where h|Γ = νA , and integrate over Q by parts,
with Lemma 4.1 to obtain

Im
∫
Q

yth(ȳ)dQ

= Im
(
−
∫
Q

iA yh(ȳ) + Dξh(ȳ)dQ
)

=
∫
Q

Re[−div h(ȳ)A(x)∇y + 〈∇gh(ȳ),∇gy〉]dQ+ Im
∫
Q

Dξh(ȳ)dQ

=
∫
Q

{Re[−div h(ȳ)A(x)∇y +Dh(∇gy,∇g ȳ)]

+
1
2

div(〈∇gy,∇g ȳ〉gh)− 1
2
〈∇gy,∇g ȳ〉g div h}dQ+ Im

∫
Q

Dξh(ȳ)dQ

= Im
∫
Q

Dξh(ȳ)dQ− 1
2

∫
Σ

|yνA |2dΣ

+
∫
Q

[ReDh(∇gy,∇g ȳ)− 1
2
|∇gy|2g div h]dQ,

(4.49)

where the notation “Im” and “Re” denote the imaginary part and the real part of
a complex number, respectively.

On the other hand, using the divergence theorem, we find

div ȳyth = ȳyt div h+ yth(ȳ) + [ȳh(y)]t − ȳth(y). (4.50)

Thus,

Im
∫
Q

yth(ȳ)dQ = − i
2

∫
Σ

ȳyt|νA |2gdΣ +
i

2

∫
Q

ȳyt div hdQ

+
i

2

∫
Ω

[ȳ(T )h(y)(T )− ȳ(0)h(y)(0)]dΩ.
(4.51)

Combining (4.49) and (4.51), we obtain

1
2

∫
Σ

|yνA |2dΣ

= Im
∫
Q

Dξh(ȳ)dQ− i

2

∫
Q

ȳyt div hdQ

+
i

2

∫
Ω

[ȳ(0)h(y)(0)− ȳ(T )h(y)(T )]dΩ

+
∫
Q

[ReDh(∇gy,∇g ȳ)− 1
2
|∇gy|2g div h]dQ.

(4.52)

Next, we multiply (4.43) by ȳ and integrate over Q by parts to obtain∫
Q

ytȳdQ = −i
∫
Q

ȳA ydQ+
∫
Q

ȳDξdQ = i

∫
Q

〈∇g ȳ,∇gy〉gdQ+
∫
Q

ȳDξdQ.
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Thus, ∣∣ ∫
Q

ytȳdQ
∣∣ ≤ ∫

Q

|∇gy|2gdQ+
∫
Q

|ȳDξ|dQ

≤
∫
Q

|∇gy|2gdQ+
1
2

∫
Q

(|ȳ|2 + |Dξ|2)dQ

≤ C
∫
Q

|∇gy|2gdQ+
1
2
T‖Dξ‖2L∞[0,T ;L2(Ω)]

≤ CT (‖|∇gy|g‖2L∞[0,T ;L2(Ω)] + ‖Dξ‖2L1[0,T ;L2(Ω)]).

(4.53)

Furthermore, we can bound all terms of the right-hand side of (4.52) as follows:

Im
∫
Q

Dξh(ȳ)dQ

≤
∣∣ ∫
Q

Dξh(ȳ)dQ
∣∣

≤ 1
2
T‖Dξ‖2L∞[0,T ;L2(Ω)] +

1
2

sup
x∈Ω
|h|2g

∫ T

0

‖|∇g ȳ|g‖2L2(Ω)dt

≤ 1
2
T‖Dξ‖2L1[0,T ;L2(Ω)] +

1
2

sup
x∈Ω
|h|2gT‖|∇g ȳ|g‖2L∞[0,T ;L2(Ω)];

(4.54)

∣∣− i

2

∫
Q

ȳyt div hdQ
∣∣ ≤ 1

2
sup
x∈Ω
|div h|

∣∣ ∫
Q

ytȳdQ
∣∣; (4.55)

∣∣ i
2

∫
Ω

[ȳ(0)h(y)(0)− ȳ(T )h(y)(T )]dx
∣∣

≤ 1
2

∫
Ω

[|ȳ(0)〈h,∇gy〉g(0)|+ |ȳ(T )〈h,∇gy〉g(T )|]dx

≤ 1
4

sup
x∈Ω
|h|g

∫
Ω

[|∇gy(0)|2g + |ȳ(0)|2 + |∇gy(T )|2g + |ȳ(T )|2]dx

≤ 1
2

sup
x∈Ω
|h|g(‖|∇gy|g‖2L∞[0,T ;L2(Ω)] + ‖ȳ‖2L∞[0,T ;L2(Ω)])

≤ C sup
x∈Ω
|h|g‖|∇gy|g‖2L∞[0,T ;L2(Ω)];

(4.56)

∫
Q

ReDh(∇gy,∇g ȳ)dQ ≤ CT ‖|∇gy|g‖2L∞[0,T ;L2(Ω)]; (4.57)

−
∫
Q

1
2
|∇gy|2g div hdQ ≤ CT sup

x∈Ω
|div h|‖|∇gy|g‖2L∞[0,T ;L2(Ω)]. (4.58)

Finally, by combining (4.52), (4.53) - (4.58), we obtain the desired inequality (4.48).
�

Step 2. Estimates for y1

‖A 1/2y1(t)‖2L2(Ω) = ‖A 1/2e−iA ty0‖2L2(Ω) = ‖A 1/2y0‖2L2(Ω) = constant.

Therefore,
‖A 1/2y1‖2L∞[0,T ;L2(Ω)] = ‖A 1/2y0‖2L2(Ω). (4.59)
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Step 3. Estimates for y2. We shall prove

‖y2‖2L∞[0,T ;H1
0 (Ω)] ≤ CK‖ξ‖

2
L2(Σ). (4.60)

Proof. We define a closed and dense operator L : L2(Σ)→ L2(Q) by

(Lf)(t) = A

∫ t

0

e−iA (t−τ)Df(τ)dτ. (4.61)

Then we can obtain

(L∗Φ)(t) = D∗A
∫ t

0

e−iA (t−τ)Φ(τ)dτ, (4.62)

where Φ = Df .
Let η =

∫ t
0
e−iA (t−τ)Φ(τ)dτ , then η satisfies the equation

ηt = iA1/2η + Φ,

η(0) = 0.
(4.63)

As in the proof of Step 1, we can show that

‖ηνA ‖2L2(Σ) ≤ CT,5(‖Φ‖2L1[0,T ;L2(Ω)] + ‖A 1/2η‖2L∞[0,T ;L2(Ω)]). (4.64)

Moreover.

‖A 1/2η‖L2(Ω) ≤
∫ t

0

‖A 1/2Φ(τ)‖L2(Ω)dτ ≤ ‖A 1/2Φ‖L1[0,T ;L2(Ω)]. (4.65)

Combining (4.64) and (4.65) yields

‖ηνA ‖2L2(Σ) ≤ CT,5‖Φ‖
2
L1[0,T ;H1

0 (Ω)]. (4.66)

In addition,

(D∗A η, f)L2(Γ) = (A η,Df)L2(Ω)

=
∫

Γ

[ηνA Df − η(Df)νA ]dx+
∫

Ω

ηA (Df)dx

= (ηνA , f)L2(Γ),

(4.67)

the last equality holds because of the definition of the operator D and η ∈ D(A1/2).
Therefore, ηνA = D∗A η = L∗Φ. It tell us that

L∗ ∈ L (L1[0, T ;H1
0 (Ω)]→ L2(Σ)). (4.68)

And then, we have

L ∈ L (L2(Σ)→ L∞[0, T ;H−1(Ω)]). (4.69)

Let K be defined by
Kf = A −1Lf ; (4.70)

then K ∈ L (L2(Σ)→ L∞[0, T ;H1
0 (Ω)]). Since Kξ = y2, we obtain

‖y2‖2L∞[0,T ;H1
0 (Ω)] ≤ CK‖ξ‖

2
L2(Σ). (4.71)

Thus, inequality (4.60) holds. �



EJDE-2016/257 EXACT CONTROLLABILITY OF THE EULER-BERNOULLI PLATE 17

Step 4. Combining (4.59) and (4.71), we find

‖A 1/2y‖2L∞[0,T ;L2(Ω)] = ‖A 1/2y1 + A 1/2y2‖2L∞[0,T ;L2(Ω)]

≤ 2‖A 1/2y1‖2L∞[0,T ;L2(Ω)] + 2‖y2‖2L∞[0,T ;H1
0 (Ω)]

≤ 2‖A 1/2y0‖2L2(Ω) + 2CK‖ξ‖2L2(Σ).

(4.72)

By substituting inequality (4.72) into (4.48) and recalling that D ∈ L (L2(Γ) →
L2(Ω)), the desired result of Proposition 4.8 is found.

Now, we are ready to complete the proof of the observability inequality (3.9).
Combining the results of Lemmas 4.3 and 4.7 with ε = CT,1

2CT,3
, we obtain

CT,1E(0) ≤ 4‖(A z)νA ‖2L2(Σα1 ) + 2C(‖z0‖2L2(Ω) + ‖z1‖2L2(Ω))

+ 4(
8CT,3
CT,1

+ 1)CK,D,T ‖ka(x)(A z)νA ‖2L2(Σα).
(4.73)

From Lemma 4.4, we find∫ T+α

−α
‖ka(x)(A z)νA ‖2L2(Γ)dt ≤ a‖k‖

2
L∞(Γ)‖(A z)νA ‖2L2(Σα)

≤ a‖k‖2L∞(Γ)CT,2E(0).
(4.74)

Thus, if

‖k‖2L∞(Γ) < k0 =
C2
T,1

4aCT,2CK,D,T (8CT,3 + CT,1)
,

where a = supx∈Γ |a(x)|2, by combining (4.73) and (4.74), we obtain

CTE(0) ≤ ‖(A z)νA ‖2L2(Σα1 ) + C
(
‖z0‖2L2(Ω) + ‖z1‖2L2(Ω)

)
≤ ‖(A z)νA ‖2L2(Σα1 ) + ‖(A 2z)νA ‖2L2(Σα1 ) + CL(z).

(4.75)

Again, the lower terms in the right-hand side of inequality (4.75) can be absorbed
by using the following compactness-uniqueness argument:
Step 1. Let U = {z ∈ H3(Q) : z is a solution to problem (3.8) satisfying
(A z)νA |Σα1 = (A 2z)νA |Σα1 = 0}. Then

U = 0. (4.76)

Indeed, from inequality (4.75), we have

CL(z) ≥ CTE(0) for all z ∈ U,
which implies that any bounded closed set in U ∩ H3(Q) is compact in H3(Q).
Then U is a finite-dimensional linear space.

For any z ∈ U , we have zt ∈ U . Then ∂t : U → U is a linear operator. Let
U 6= 0, then ∂t has at least one eigenvalue λ. Assume that v 6= 0 is one of its
eigenfunctions, then vt = λv. Further, v is a nonzero solution to the problem

A 2v = −λ2v −D(ka(x)(A v)νA ) on Ω,

v = A v = (A v)νA = (A 2v)νA = 0 on Γ1.
(4.77)

Let Ψ = A1/2v, using relations (3.5) and (4.77), it is easy to find that Ψ satisfies
the problem

A 2Ψ = −λ2Ψ on Ω,

Ψ = ΨνA = A Ψ = (A Ψ)νA = 0 on Γ1.
(4.78)
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By Proposition 4.6, the above problem only has zero solution, thus Ψ ≡ 0 in Ω∪Γ1,
i.e., A v ≡ 0 in Ω ∪ Γ1. Moreover, v|Γ = 0, therefore we can obtain v ≡ 0, this
contradiction shows that (4.76) holds.

Since the subsequent proof is basically the same as that in Step 2 of Lemma 4.5,
we omit it.

Finally, we obtain ∫
Σα1

[(A z)2
νA

+ (A 2z)2
νA

]dΣ ≥ CTE(0). (4.79)

Introducing the new variable z̃ = z(t− α) into (4.79) yields∫ T+2α

0

∫
Γ1

[(A z̃)2
νA

+ (A 2z̃)2
νA

]dΣ ≥ CTE(0). (4.80)

Since both z̃ and z are solutions to the same problem (3.8), the inequality (3.9)
holds with T replaced by T + 2α. �
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