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SHARP INTERFACE LIMIT OF A HOMOGENIZED PHASE
FIELD MODEL FOR PHASE TRANSITIONS IN POROUS

MEDIA

MARTIN HÖPKER

Abstract. A homogenized phase field model for phase transitions in porous
media is considered. By making use of the method of formal asymptotic ex-

pansion with respect to the interface thickness, a sharp interface limit problem

is derived. This limit problem turns out to be similar to the classical Stefan
problem with surface tension and kinetic undercooling.

1. Introduction

The study of the phase change between water and ice in porous media plays
a vital role in the understanding of important phenomena like the frost attack
on concrete or the thawing of permafrost soil. In [8], a mathematical microscale
model of this process, based on the standard Caginalp phase field model for phase
transitions, is presented and homogenized via two-scale convergence. Let Ω ⊂ R3

be a bounded Lipschitz domain that represents a porous body, and let S := (0, T )
be a time interval. The homogenized problem is of the form: Find u, θ, and χ such
that

|Zs|ρsu
′ − div(P s∇u) + |Γ|κRI(u− θ) = 0, (1.1a)

|Zp|ρpθ
′ + |Zp|λ

2
χ′ − div(P p∇θ) + |Γ|κRI(θ − u) = 0, (1.1b)

|Zp|αξ2χ′ − ξ2 div(P∇χ) + |Zp| 1
2a

(χ3 − χ) = |Zp|2θ (1.1c)

in S × Ω, supplemented by exchange boundary conditions and initial conditions.
In the system (1.1), u and θ are the effective temperatures in the solid matrix

and in the pore space of the porous medium, respectively, and χ is the effective
phase field variable. The constant parameter ξ represents the small interface thick-
ness of the phase field. The coefficients ρs, ρp, κRI , λ, α, a are positive and constant
parameters, and P s, P p, P are homogenized, positive definite tensors. The con-
stants |Zs| and |Zp| represent the volume of the solid matrix and of the pore space
in the reference cell in the homogenization, and |Γ| denotes the surface measure of
their interface. For the details of the modeling and the homogenization that lead
to (1.1), we refer to [8]. We also refer to [4], [1], and [12] for an introduction to
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phase field models for phase transitions, as well as to [10] for the similar concept of
mushy regions.

In this article, we apply the method of formal asymptotic expansion, with respect
to the interface thickness ξ, to derive a sharp interface model from the homogenized
phase field model (1.1). To this end, we follow the lines of [1], where the main
difference lies in the homogenized tensor P in equation (1.1c), which replaces the
identity matrix from the standard phase field model. The sharp interface model
turns out to be similar to the classical Stefan problem (see, e.g., [11], [9], [12],
and [5]) with surface tension and kinetic undercooling but involves some additional
terms.

This article is organized as follows: In 2, the system (1.1) is appropriately scaled.
In 3, we introduce a local coordinate system near the phase interface. Sections 4, 5
are concerned with the asymptotic expansions of the variables u, θ, and χ outside
of and near the interface. Limit equations are derived from the system (1.1) by
neglecting terms of high order. Finally, in 6, the full sharp interface limit model is
stated.

2. Scaling

Similarly as in [1, Section IV], we will consider the limit ξ → 0 and a→ 0 with
fixed ξ√

a
. To this end, we introduce the scaling ε = ξ2 and ε

a = C0 in equation
(1.1c), which yields

|Zp|αε2χ′ − ε2 div(P∇χ) + |Zp|C0

2
(χ3 − χ) = ε|Zp|2θ. (2.1)

We define g(χ) := |Zp|C0
2 (χ− χ3) and, for simplicity, also rename the constants in

the equations (1.1a), (1.1b), and (2.1) such that we obtain the scaled system

ρsu
′ − div(P s∇u) + κRI(u− θ) = 0 (2.2a)

ρpθ
′ +

λ

2
χ′ − div(P p∇θ) + κRI(θ − u) = 0. (2.2b)

αε2χ′ − ε2 div(P∇χ) = g(χ) + εβθ in Ω× S. (2.2c)

Note that θ, χ, and u depend on the scaling parameter ε.

Remark 2.1. Different scalings of phase field models may yield different asymp-
totic limits. See, e.g., [1] and [2], where various limit models are derived from the
Caginalp phase field model.

3. Interface and Local Coordinates

Using the phase field variable χ, we define the interface between the solid and
the liquid phase at time t to be given by the set

Γ(t, ε) := {x ∈ Ω : χ(t, x) = 0}.
In the following, we assume that Γ(t, ε) is a closed, connected, and sufficiently
smooth surface. A point x ∈ Ω near Γ(t, ε) can then be represented in the local
orthogonal coordinate system (r, s1, s2), which is often used when deriving sharp
limits of phase field models (see, e.g., [1, 3, 7]): By r(t, x, ε), we denote the signed
distance of x to the interface Γ(t, ε) (which is chosen positive if x lies in the liquid
phase), and s1(t, x, ε) and s2(t, x, ε) are measures of arc length along Γ(t, ε) from
a reference point. We write s = (s1 s2). The coordinate system (r, s) satisfies
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|∇r| = 1 and ∆r = κ near Γ(t, ε), where κ is the mean curvature of Γ(t, ε) (The
sign of the mean curvature is chosen such that κ > 0 for a strictly convex solid
phase.). Furthermore, ∇r·∇si = 0 for i = 1, 2. We assume the following asymptotic
expansions of the coordinates:

r(t, x, ε) = r0(t, x) + εr1(t, x) + ε2r2(t, x) + . . . ,

si(t, x, ε) = s0
i (t, x) + εs1

i (t, x) + ε2s2
i (t, x) + . . . , for i = 1, 2.

We assume that, for ε → 0, the interfaces Γ(t, ε) converge (uniformly in dis-
tance) to a closed, connected, and smooth interface Γ0(t) that has a neighbourhood
parametrized by r0 and s0 = (s0

1 s
0
2). The liquid and the solid phase, which are

seperated by Γ0(t), are denoted by Ωl(t) and Ωs(t), respectively. By ~n(t, x), we
denote the unit normal vector on Γ0(t) at point x into the liquid phase Ωl(t).

Let A ∈ R3×3 be a constant and symmetric matrix, and let u : S ×R3 ×R→ R.
We consider the coordinate change

u(t, x, ε) = ũ(t, r, s, ε).

For later reference, we note that this transformation yields

div(A∇u) =
∂2ũ

∂r2
∇rTA∇r +

∂ũ

∂r
div(A∇r) + 2

2∑
l=1

∂2ũ

∂r∂sl
∇sT

l A∇r

+
2∑
l=1

∂ũ

∂sl
div(A∇sl) +

2∑
l,m=1

∂2ũ

∂sl∂sm
∇sT

mA∇sl

(3.1)

and
∂u

∂t
=
∂ũ

∂t
+
∂r

∂t

∂ũ

∂r
+

2∑
l=1

∂sl
∂t

∂ũ

∂sl
. (3.2)

4. Outer Expansions

Outside of Γ(t, ε), we assume the following outer expansions in the cartesian
coordinate system

u(t, x, ε) = u0(t, x) + εu1(t, x) + ε2u2(t, x) + . . . , (4.1a)

θ(t, x, ε) = θ0(t, x) + εθ1(t, x) + ε2θ2(t, x) + . . . , (4.1b)

χ(t, x, ε) = χ0(t, x) + εχ1(t, x) + ε2χ2(t, x) + . . . .. (4.1c)

The terms on the right-hand side of the equations (4.1b) and (4.1c) are assumed to
be twice differentiable in Ω\Γ0(t) but may be discontinuous across the limit phase
interface Γ0(t). Since the variable u is not directly connected to the phase change,
we assume the uk, for all k ∈ N, to be twice differentiable in the whole domain Ω.
From the order O(1) of (2.2a), we deduce the equation

ρsu
0′ − div(P s∇u0) + κRI(u0 − θ0) = 0, (4.2)

which is valid in the whole domain Ω. By using the expansion of χ, it is easy to
obtain that

g(χ) = |Zp|C0

2
(χ0 − (χ0)3) + ε|Zp|C0

2
(χ1 − 3(χ0)2χ1) +O(ε2)

= g(χ0) + εg′(χ0)χ1 +O(ε2).
(4.3)
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Equations (2.2b) and (2.2c) thus yield the order O(1) equations

ρpθ
0′ +

λ

2
χ0′ − div(P p∇θ0) + κRI(θ0 − u0) = 0 (4.4)

and
g(χ0) = 0, (4.5)

respectively. Note that equation (4.4) is only valid on each side of Γ0(t), due to
the possible discontinuity of θ0 and χ0 across Γ0(t). Equation (4.5) implies that χ0

takes one of the constant values 0, 1, or −1 on each side of Γ0(t). Hence, χ0′ = 0,
and we can thus deduce

ρpθ
0′ − div(P p∇θ0) + κRI(θ0 − u0) = 0 (4.6)

from (4.4), outside of Γ0(t).
Furthermore, we consider the coordinate change

u(t, x, ε) = ũ(t, r, s, ε),

θ(t, x, ε) = θ̃(t, r, s, ε),

χ(t, x, ε) = χ̃(t, r, s, ε)

and assume the following expansions to hold:

ũ(t, r, s, ε) = ũ0(t, r, s) + εũ1(t, r, s) + ε2ũ2(t, r, s) + . . . ,

θ̃(t, r, s, ε) = θ̃0(t, r, s) + εθ̃1(t, r, s) + ε2θ̃2(t, r, s) + . . . ,

χ̃(t, r, s, ε) = χ̃0(t, r, s) + εχ̃1(t, r, s) + ε2χ̃2(t, r, s) + . . . .

5. Inner Expansions

In a neighbourhood of Γ(t, ε), we introduce a coordinate change, using the
stretched variable z := r

ε :

ũ(t, r, s, ε) = U(t, z, s, ε),

θ̃(t, r, s, ε) = ϑ(t, z, s, ε),

χ̃(t, r, s, ε) = X(t, z, s, ε),

and assume the inner expansions

U(t, z, s, ε) = U0(t, z, s) + εU1(t, z, s) + ε2U2(t, z, s) + . . . ,

ϑ(t, z, s, ε) = ϑ0(t, z, s) + εϑ1(t, z, s) + ε2ϑ2(t, z, s) + . . . ,

X(t, z, s, ε) = X0(t, z, s) + εX1(t, z, s) + ε2X2(t, z, s) + . . . .

In the context of the above coordinate change, we note that ∂
∂r = 1

ε
∂
∂z . By using

the identities (3.1) and (3.2), we can thus rewrite equation (2.2b) as

ρp
∂ϑ

∂t
+

1
ε
ρp
∂r

∂t

∂ϑ

∂z
+ ρp

2∑
l=1

∂sl
∂t

∂ϑ

∂sl
+
λ

2
∂X

∂t
+

1
ε

λ

2
∂r

∂t

∂X

∂z
+
λ

2

2∑
l=1

∂sl
∂t

∂X

∂sl

− 1
ε2
∂2ϑ

∂z2
∇rTP p∇r − 1

ε

∂ϑ

∂z
div(P p∇r)− 1

ε
2

2∑
l=1

∂2ϑ

∂z∂sl
∇sT

l P
p∇r

−
2∑
l=1

∂ϑ

∂sl
div(P p∇sl)−

2∑
l,m=1

∂2ϑ

∂sl∂sm
∇sT

mP
p∇sl + κRI(ϑ− U) = 0.
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Multiplying by ε2 yields

ε2ρp
∂ϑ

∂t
+ ερp

∂r

∂t

∂ϑ

∂z
+ ε2ρp

2∑
l=1

∂sl
∂t

∂ϑ

∂sl
+ ε2

λ

2
∂X

∂t
+ ε

λ

2
∂r

∂t

∂X

∂z

+ ε2
λ

2

2∑
l=1

∂sl
∂t

∂X

∂sl
− ∂2ϑ

∂z2
∇rTP p∇r − ε∂ϑ

∂z
div(P p∇r)

− ε2
2∑
l=1

∂2ϑ

∂z∂sl
∇sT

l P
p∇r − ε2

2∑
l=1

∂ϑ

∂sl
div(P p∇sl)

− ε2
2∑

l,m=1

∂2ϑ

∂sl∂sm
∇sT

mP
p∇sl + ε2κRI(ϑ− U) = 0.

(5.1)

By using the inner expansions, we deduce from the phase field equation (2.2c) that

ε2α
∂X

∂t
+ εα

∂r

∂t

∂X

∂z
+ ε2α

2∑
l=1

∂sl
∂t

∂X

∂sl

− ∂2X

∂z2
∇rTP∇r − ε∂X

∂z
div(P∇r)− ε2

2∑
l=1

∂2X

∂z∂sl
∇sT

l P∇r

− ε2
2∑
l=1

∂X

∂sl
div(P∇sl)− ε2

2∑
l,m=1

∂2X

∂sl∂sm
∇sT

mP∇sl

= g(X) + εβϑ.

(5.2)

Similarly as with equation (4.3), we obtain

g(X) = g(X0) + εg′(X0)X1 +O(ε2). (5.3)

The order O(1) of equation (5.1) yields

−∂
2ϑ0

∂z2
∇r0T

P p∇r0 = 0.

From |∇r| = 1, it follows that ∇r0 6= 0. Since P p is positive definite, we can hence
deduce

−∂
2ϑ0

∂z2
= 0.

This yields ϑ0(t, z, s) = a(t, s)z + b(t, s) with a(t, s), b(t, s) ∈ R. We apply the
matching condition (see, e.g., [1])

θ̃0(t,Γ0
±) = lim

z→±∞
ϑ0(t, z, s), (5.4)

which connects the inner and the outer expansions. Here, we denote by θ̃0(t,Γ0
±) the

value of θ̃0 when approaching Γ0(t) from the liquid and the solid phase, respectively.
From the natural assumption that θ̃0 is bounded at the interface Γ0(t), we deduce
a = 0 from the equation (5.4). Thus,

ϑ0(t, z, s) = b(t, s), (5.5)

independently of z. Analogously to (5.4), we apply the matching condition

lim
z→±∞

X0(t, z, s) = χ̃0(t,Γ0
±) = ±1. (5.6)
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We note that X(t, 0, s, ε) = 0 by the definition of Γ(t, ε). It, thus, directly follows
that

X0(t, 0, s) = 0.
We now consider the O(ε) balance of equation (5.1):

ρp
∂r0

∂t

∂ϑ0

∂z
+
λ

2
∂r0

∂t

∂X0

∂z
− 2

∂2ϑ0

∂z2
∇r1T

P p∇r0 − ∂2ϑ1

∂z2
∇r0T

P p∇r0

− ∂ϑ0

∂z
div(P p∇r0)− 2

2∑
l=1

∂2ϑ0

∂z∂sl
∇s0

l
T
P p∇r0 = 0.

Since ϑ0 is constant with respect to the variable z, we obtain

λ

2
∂r0

∂t

∂X0

∂z
=
∂2ϑ1

∂z2
∇r0T

P p∇r0.

Thus, integration with respect to z yields

λ

2
∂r0

∂t
X0 + c =

∂ϑ1

∂z
∇r0T

P p∇r0,

where c may depend on t and s but not on z. In the following, we will apply the
matching condition (see, e.g., [1])

∂θ̃0

∂r
(t,Γ0

±) = lim
z→±∞

∂ϑ1

∂z
(t, z, s).

We calculate
∂θ̃0

∂r
(t,Γ0

±)∇r0T
P p∇r0 = lim

z→±∞

∂ϑ1

∂z
∇r0T

P p∇r0 =
λ

2
∂r0

∂t
lim

z→±∞
X0 + c

= ±λ
2
∂r0

∂t
+ c.

Thus,

∇r0T
P p∇r0

[∂θ̃0

∂r

]
Γ0
±

= −λV on Γ0(t), (5.7)

where V = −∂r
0

∂t is the normal velocity of Γ0(t) (in the direction ~n) and [∂θ̃
0

∂r ]Γ0
±

=

[∂θ
0

∂~n ]Γ0
±

denotes the jump of the normal derivative ∂θ0

∂~n across Γ0(t).
We now consider the problem of order O(ε) of equation (5.2):

α
∂r0

∂t

∂X0

∂z
− 2

∂2X0

∂z2
∇r1T

P∇r0 − ∂2X1

∂z2
∇r0T

P∇r0

− ∂X0

∂z
div(P∇r0)− 2

2∑
l=1

∂2X0

∂z∂sl
∇sl0

T
P∇r0

= g′(X0)X1 + βϑ0,

(5.8)

to which we (see, e.g., [6]) add the boundary condition

lim
z→±∞

X1(t, z, s) = 0, (5.9)

meaning that the phase field variable equals zero up to order ε. The order O(1)
problem of equation (5.2) reads

∂2X0

∂z2
∇r0T

P∇r0 + g(X0) = 0,



EJDE-2016/258 SHARP INTERFACE LIMIT 7

from which we deduce, by differentiating,

∂

∂z

∂2X0

∂z2
∇r0T

P∇r0 + g′(X0)
∂X0

∂z
= 0.

Thus, using integration by parts and the condition (5.9) (compare to the approach
in [5, Section 7.9]), we obtain∫

R

(∂2X1

∂z2
∇r0T

P∇r0 + g′(X0)X1
)∂X0

∂z
dz

=
∫

R

∂2X1

∂z2
∇r0T

P∇r0 ∂X
0

∂z
+ g′(X0)X1 ∂X

0

∂z
dz

=
∫

R
X1∇r0T

P∇r0 ∂

∂z

∂2X0

∂z2
+ g′(X0)X1 ∂X

0

∂z
dz

=
∫

R
X1
(
∇r0T

P∇r0 ∂

∂z

∂2X0

∂z2
+ g′(X0)

∂X0

∂z

)
dz = 0.

By using this relation, we directly deduce from the multiplication of equation (5.8)
by ∂X0

∂z and integration that(
α
∂r0

∂t
− div(P∇r0)

)∫
R
|∂X

0

∂z
|2 dz

−
∫

R
2
∂2X0

∂z2
∇r1T

P∇r0 ∂X
0

∂z
dz −

∫
R

2
2∑
l=1

∂2X0

∂z∂sl
∇sl0

T
P∇r0 ∂X

0

∂z
dz

= βϑ0

∫
R

∂X0

∂z
dz.

(5.10)

6. The Sharp Interface Model

We note that (see [1]) the surface tension is given by

σ =
∫

R
|∂X

0

∂z
|2 dz.

Furthermore, the mean curvature of Γ0(t) is given by κ0 = ∆r0. Hence, κ :=
div(P∇r0), which equals κ0 in the case P = I, is related to the mean curvature.
From the relation (5.6), we deduce

∫
R
∂X0

∂z dz = 2, and we can thus rewrite equation
(5.10) as

(−αV − κ)σ −
∫

R
2
∂2X0

∂z2
∇r1T

P∇r0 ∂X
0

∂z
dz

−
∫

R
2

2∑
l=1

∂2X0

∂z∂sl
∇sl0

T
P∇r0 ∂X

0

∂z
dz

= 2βϑ0.

(6.1)

We collect the terms that would vanish in the derivation if P = I as

additional := −
∫

R
2
∂2X0

∂z2
∇r1T

P∇r0 ∂X
0

∂z
dz−

∫
R

2
2∑
l=1

∂2X0

∂z∂sl
∇sl0

T
P∇r0 ∂X

0

∂z
dz.
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By recalling that ϑ0 does not depend on z and by applying the matching condition
(5.4), we deduce

θ̃0(t,Γ0
±) =

(−αV − κ)σ
2β

+
additional

2β
and, thus,

θ0(t, x) =
(−αV − κ)σ

2β
+

additional
2β

on Γ0(t).

This relation and the identities (4.2), (4.6), and (5.7) now yield the sharp interface
model

ρsu
0′ − div(P s∇u0) + κRI(u0 − θ0) = 0 in S × Ω,

ρpθ
0′ − div(P p∇θ0) + κRI(θ0 − u0) = 0 for t ∈ S, x ∈ Ωl(t) ∪ Ωs(t),

∇r0T
P p∇r0

[∂θ0

∂~n

]
Γ0
±

= −λV for t ∈ S, x ∈ Γ0(t)

with

θ0 =
(−αV − κ)σ

2β
+

additional
2β

for t ∈ S, x ∈ Γ0(t),

which is of similar structure as the Stefan problem with surface tension and kinetic
undercooling, compare to [1].
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