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CONTROLLABILLITY OF SECOND-ORDER SOBOLEV-TYPE
NEUTRAL IMPULSIVE INTEGRODIFFERENTIAL SYSTEMS IN

BANACH SPACES

BHEEMAN RADHAKRISHAN, PARAMAN ANUKOKILA

Abstract. In this article, we prove sufficient conditions for the controllabil-

ity of second-order Sobolev-type nonlinear neutral impulsive integrodifferential

systems in Banach spaces. The results are obtained by using strongly continu-
ous cosine families of operators and the fixed point approach. An application

is provided to illustrate the theory.

1. Introduction

The field of differential equations is very rich and contains a large variety of
species. However, there is one basic feature common to all problems defined by
a differential equation: the equation relates a function to its derivatives in such a
way that the function itself can be determined. In many applications, one assumes
the system under consideration is governed by a principle of causality; that is, the
future state of the system is independent of the past states and is determined solely
by the present. If it is also assumed that the system is governed by an equation
involving the state and rate of change of the state, then, generally, one is considering
either ordinary or partial differential equations. However, under closer scrutiny, it
becomes apparent that the principle of causality is often only a first approximation
to the true situation and that a more realistic model would include some of the
past states of the system.

A dynamical system may evolve through an observable quantity rather than the
state of the system, a general class of evolutionary equations is defined. This class
includes standard ordinary and partial differential equations as well as functional
differential equations of retarded and neutral type. In this way, the theory serves
as a unification of these classical problems. Dynamical systems theory holds the
supreme position among all mathematical disciplines as it provides the founda-
tion for unlocking many of the mysteries in nature and the universe which involve
the evolution of time. The dynamics of many evolving processes are subject to
abrupt changes, such as shocks, harvesting, and natural disasters. These phenom-
ena involve short-term perturbations from continuous and smooth dynamics, whose
duration is negligible in comparison with the duration of an entire evolution. In
models involving such perturbations, it is natural to assume these perturbations
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act instantaneously or in the form of “impulses”. As a consequence, impulsive dif-
ferential equations have been developed in modeling impulsive problems in physics,
population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics,
optimal control, and so forth. Again, associated with this development, a theory of
impulsive differential equations has been given extensive attention.

A neutral functional differential equation is one in which the derivatives of the
past history or derivatives of functionals of the past history are involved as well as
the present state of the system [9, 11]. The theory of impulsive differential equations
[9, 17, 18] has seen considerable development by the monographs of Bainov and
Simeonov [2]. Sobolev type equation appears in variety of physical problems such
as flow of fluid through rocks, thermodynamics, propagation of long waves of small
amplitude and shear in second order fluid and so on [1, 7]. Balachandran and
Dauer [3] provide some sufficient conditions for controllability of integer functional
evolution equations of Sobolev type by the theory of semigroup theory via the
techniques of fixed point theorem [5, 16, 20].

The concept of impulsive control and its mathematical foundation called impul-
sive differential equations, or differential equations with impulse effects, or differ-
ential equations with discontinuous right hand sides have a long history. In fact, in
mechanical systems impulsive phenomena had been studied for a long time under
different names such as: mechanical systems with impacts. The study of impulsive
control systems (control systems with impulse effects) has also a long history that
can be traced back to the beginning of modern control theory. Many impulsive con-
trol methods were successfully developed under the framework of optimal control
and were occasionally called impulse control.

Controllability is an important property of a control system, and the controlla-
bility property plays a crucial role in many control problems, such as stabilization
of unstable systems by feedback, or optimal control. A state x is controllable at
time t if for some finite time t there exists an input u(t) that transfers the state
x(t) from x to the origin at time t. That is a system is called controllable at time t
if every state x in the state-space is controllable. It means a system with internal
state vector x is called controllable if and only if the system states can be changed
by changing the system input. The concept of controllability plays a major role
in finite dimensional control theory, so that it is natural to try to generalize it to
infinite dimensional system. The nonlinear system of controllability represented
by differential equations in a finite dimensional space is discussed many authors
by means of fixed point approach [12, 19]. Second order nonlinear differential and
integrodifferential equations arise in problems connected with many other physi-
cal phenomena. So it is quite significant to study controllability problem for such
systems in Banach spaces [4, 14, 15]. An abstract linear second order differen-
tial equations are related to strongly continuous cosine families of bounded linear
operators [21, 22, 23].

From the above literature, it should be noted that there are several contribu-
tions on the existence and controllability of differential equations, existence and
controllability of integrodifferential equations with and without randomness using
one or more parameter families. Till now, the exact controllability of second order
Sobolev-type neutral impulsive integrodifferential systems untreated in the litera-
ture.
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Motivated by this fact, in this article, we make an attempt to fill this gap by
studying controllability of second order Sobolev-type neutral impulsive integrodif-
ferential systems in Banach spaces.

2. Preliminaries

Consider the nonlinear impulsive neutral integrodifferential systems with Sobolev
type of the form

d

dt

[
(Bx(t))′ + f(t, x(t), x′(t))

]
= Ax(t) +

∫ t

0

D(t− s)x(s)ds+Gu(t) + g(t, x(t), x′(t))

+
∫ t

0

k(t, s, x(s), x′(s))ds, t ∈ I, t 6= tk,

(2.1)

x(0) = x0 x′(0) = y0 (2.2)

∆x(tk) = Ik
(
x(tk), x′(tk)

)
, ∆x′(tk) = Jk

(
x(tk), x′(tk)

)
, k = 1, 2, . . . ,m, (2.3)

where the state x(·) takes the values in the Banach space X, x0, y0 ∈ X, A is
the infinitesimal generator of a strongly continuous cosine family {C(t), t ∈ I} of
bounded linear operators in the Banach space X, the interval I = [0, b], G is a
bounded linear operator from U to X and the control function u(·) is given in
L 2(I, U), a Banach space of admissible control functions with U as a Banach
space. B is a linear operator with domain and range contained in a Banach space
X. D(t − s) is closed operator on X with dense domain X which is independent
of t and the nonlinear operators f, g : I × X × X → X, k : I2 × X × X → X
and Ik, Jk : X × X → X, k = 1, 2, · · · , are given appropriate functions and the
symbol ∆x(t) represent the jump of the function x at t, which is defined by ∆x(t) =
x(t+)− x(t−).

Through out this paper, X is a Banach spaces endowed with the norm ‖ · ‖.
In what follows, we put t = 0, tn+1 = b and we denote by PC the space formed
by the functions u : I → X such that u(·) is continuous at t 6= ti, x(t−i ) = x(ti)
and x(t+i ) exist for all i = 1, 2, . . . ,m. It is clear that PC, endowed with the
norm ‖x‖PC := supt∈I ‖x(t)‖, is a Banach space. Similarly, PC′ will be the space
of the functions x(·) ∈ PC such that x()̇ is continuously differentiable on I, ti,
i = 1, 2, . . . , n and the derivatives

u′R(t) = lim
s→0

u(t+ s)− u(t+)
s

, u′L(t) = lim
s→0

u(t+ s)− u(t−)
s

are continuous on [0, b[ and ]0, b], respectively. Next, for x ∈ PC′, we represent, by
u′(t), the left derivative at t ∈]0, b] and, by u′(0), the right derivative at zero. It
easy to see that PC′, provided with the norm

‖u‖PC′ := ‖u‖PC + ‖u′‖PC
is a Banach space.

The operator-valued function H(t) =
[
C(t) S(t)
AS(t) C(t)

]
is strongly continuous

group of linear operators on the space E×X generated by the operator A =
[

0 I
A 0

]
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defined on D(A)×E. From this, it follows that AS(t) : E → X is bounded linear op-
erator and that AS(t)x→ 0 as t→ 0 for each x ∈ E. Furthermore, if x : [0,∞[→ X

is locally integrable, then z(t) :=
∫ t
0
S(t− s)x(s)ds defines an E-valued continuous

function, which is a consequence of the fact that∫ t

0

H(t− s)
[

0
x(s)

]
ds =

[∫ t
0
S(t− s)x(s)ds∫ t

0
C(t− s)x(s)ds

]
defines an E ×X-valued continuous function.

To prove our main theorem we assume certain conditions on the operators A
and B. Let X and Y be Banach spaces with norm | · | and ‖ · ‖ respectively. The
operators A : D(A) ⊂ X → Y and B : D(A) ⊂ X → Y satisfy the following
hypothesis:

(1) A and B are closed linear operators,
(2) D(B) ⊂ D(A) and B is bijective,
(3) B−1 : Y → D(B) is continuous.

These hypothesis and the closed graph theorem imply the boundedness of the linear
operator AB−1 : Y → Y . Let Br = {x ∈ X : ‖x‖ ≤ r} for some r ≥ 1.

Definition 2.1. A one parameter family {C(t), t ∈ I} of bounded linear operators
in the Banach space X is called a strongly continuous cosine family if

(i) C(s+ t) + C(s− t) = 2C(s)C(t), for all s, t ∈ I;
(ii) C(0) = I;

(iii) C(t)x is continuous in t on I, for each x ∈ X.

Define the associated sine family S(t), t ∈ I by

S(t)x :=
∫ t

0

C(s)xds, x ∈ X, t ∈ I

The infinitesimal generator of a strongly continuous cosine family {C(t), t ∈ I} is
the operator A : X → X, defined by

Ax =
d2

dt2
C(t)x|t=0, x ∈ D(A),

where D(A) := {x ∈ X : C(t)x is twice continuously differentiable in t}.
Define E := {x ∈ X : C(t)x is twice continuously differentiable in t}. We as-

sume
(A1) A is the infinitesimal generator of a strongly continuous cosine family

{C(t), t ∈ I} of bounded linear operators in the Banach space X.
To establish our main theorem, we need the following lemmas.

Lemma 2.2. Let (A1) hold. Then
(i) there exist constants M ≥ 1 and ω ≥ 0 such that ‖C(t)‖ ≤Meω|t| and

‖S(t)− S(t∗)‖ ≤M |
∫ t∗

t

eω|s|ds|, for t, t∗ ∈ I;

(ii) S(t)X ⊂ E and S(t)E ⊂ D(A), for t ∈ I;
(iii) d

dtC(t)x = AS(t)x, for x ∈ E and t ∈ I;
(iv) d2

dt2C(t)x = AC(t)x, for x ∈ D(A) and t ∈ I.
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Lemma 2.3 ([23]). Let (A1) hold and v : R → X be such that v is continuous and
let q(t) =

∫ t
0
S(t − s)v(s)ds. Then q is twice continuously differentiable and, for

t ∈ I: q(t) ∈ D(A), q′(t) =
∫ t
0
C(t− s)v(s)ds and

q′′(t) =
∫ t

0

C(t− s)v′(s)ds+ C(t)v(0) = Aq(t) + v(t).

First we study the following Sobolev type neutral impulsive integrodifferential
system

d

dt

[
(Bx(t))′ + f(t, x(t))

]
= Ax(t) +

∫ t

0

D(t− s)x(s)ds+Gu(t) + g(t, x(t))

+
∫ t

0

k(t, s, x(s))ds, t ∈ (0, b], t 6= tk,

(2.4)

x(0) = x0, x′(0) = y0 (2.5)

∆x(tk) = Ik(xtk), ∆x′(tk) = Jk(xtk), k = 1, 2, . . . ,m. (2.6)

Definition 2.4. A continuous solution x(·) of the integral equation

x(t) = B−1S(t)[By0 + f(0, x(0))] +B−1C(t)Bx0

−
∫ t

0

B−1C(t− s)f(s, x(s))ds

+
∫ t

0

B−1S(t− s)
∫ s

0

D(s− τ)x(τ)dτds

+
∫ t

0

B−1S(t− s)Gu(s)ds+
∫ t

0

B−1S(t− s)
[
g(s, x(s))

+
∫ s

0

k(s, τ, x(τ))dτ
]
ds+

∑
0<tk<t

B−1C(t− tk)Ikx(tk)

+
∑

0<tk<t

B−1S(t− tk)Jkx(tk)

(2.7)

is said to be a mild solution of problem (2.4)-(2.6) on I.
If x(·) is a mild solution of (2.4)-(2.6), then by the properties of a second order

differential equation and Lemma 2.3, we have

x′(t) = B−1C(t)[By0 + f(0, x(0))] +B−1AS(t)Bx0 −B−1f(t, x(t))

−
∫ t

0

B−1AS(t− s)f(s, x(s))ds+
∫ t

0

B−1C(t− s)
∫ s

0

D(s− τ)x(τ)dτds

+
∫ t

0

B−1C(t− s)Gu(s)ds+
∫ t

0

B−1C(t− s)
[
g(s, x(s))

+
∫ s

0

k(s, τ, x(τ))dτ
]
ds+

∑
0<tk<t

B−1AS(t− tk)Ikx(tk)

+
∑

0<tk<t

B−1C(t− tk)Jkx(tk), t ∈ I.

To study the controllability problem, we assume the following hypotheses:
(H1) A is the infinitesimal generator of a strongly continuous cosine family

{C(t), t ∈ I} of bounded linear operators in the Banach space X. There
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exist constants M1 ≥ 1 and M2,LD ≥ 0 such that ‖C(t)‖ ≤M1, ‖S(t)‖ ≤
M2, and ‖D(t − s)‖ ≤ LD, for every t ∈ I. Furthermore we take M3 =
supt∈I ‖AS(t)‖, N1 = ‖B−1‖, and N2 = ‖B‖.

(H2) The linear operator W1 : L 2(I, U)→ X defined by

W1u =
∫ b

0

B−1S(b− s)Gu(s)ds

has an inverse operator W −1
1 which takes values in L 2(I, U)/ ker W1 and

there exists a positive constant K1 such that ‖GW −1
1 ‖ ≤ K1.

(H3) The linear operator W2 : L 2(I, U)→ X defined by

W2u =
∫ b

0

B−1C(b− s)Gu(s)ds

has an inverse operator W −1
2 which takes values in L 2(I, U)/ ker W2 and

there exists a positive constant K2 such that ‖GW −1
2 ‖ ≤ K2.

(H4) W1W
−1

2 x = W2W
−1

1 x = 0, for every x ∈ X.
(H5) The function f : I ×X → X is continuous for a.e. t ∈ I. and the function

f(., x) : I × X → X is strongly measurable, for each x ∈ X. Then there
exist positive constants Lf > 0, F0 > 0 such that

‖f(t, x1(t))− f(s, x2(t))‖ ≤ Lf [|t− s|+ ‖x1 − x2‖],
for t, s ∈ I and xi ∈ X, i = 1, 2, and

max
t∈I
‖f(t, 0)‖ = F0.

(H6) The function g : I ×X → X satisfies the following conditions:
(i) For each t ∈ I, the function g(t, ·) : I ×X → X is continuous and for

each x ∈ X, the function g(·, x) : I ×X → X is strongly measurable.
(ii) There exist a constants Lg > 0,G0 such that

‖g(t, x1)− g(s, x2)‖ ≤ Lg[|t− s|+ ‖x1 − x2‖], for t ∈ I and xi ∈ X, i = 1, 2

and
max
t∈I
‖g(t, 0)‖ ≤ G0, for t ∈ I.

(H7) The function k : I2 ×X → X satisfies the following condition:
(i) For each t, s ∈ I, the function k(t, s, ·) : I2 × X → X is continuous

and for each x ∈ X, the function k(·, ·, x) : I2 × X → X is strongly
measurable.

(ii) There exists a constant Lk > 0, K0 such that

‖k(t, s, x1)− k(t, s, x2)‖ ≤ Lk[‖x1 − x2‖], for t, s ∈ I and xi ∈ X, i = 1, 2

and
max
t∈I
‖k(t, s, 0)‖ ≤ K0, for t, s ∈ I.

(H8) Ik, Jk : X → X, k = 1, 2, . . . ,m, are continuous and there exist constants
LI > 0, LJ > 0, I0 > 0 and J0 > 0 such that

‖Ik(x1)− Ik(x2)‖ ≤ LI‖x1 − x2‖,
‖Jk(x1)− Jk(x2)‖ ≤ LJ‖x1 − x2‖,

I0 = ‖Ik(0)‖, J0 = ‖Jk(0)‖, k = 1, 2, · · · .
for all x1, x2 ∈ X and k = 1, 2, . . . ,m.
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(H9) There exist constants ρ > 0, ρ̂ > 0 such that

N1M2[N2‖y0‖+ F0] + N1N2M1‖x0‖+ bN1M1[rLf + F0]

+ b2rN1M2LD + bN1M2S0 + bR1M2[rLg + G0 + b{rLk + K0}]

+ R1M1

m∑
k=0

[rLI + I0] + R1M2

m∑
k=0

[rLJ + J0] ≤ ρ

and

N1M1[N2‖y0‖+ F0] + N1M3N2‖x0‖+ N1[rLf + F0] + bN1M3[rLf + F0]

+ b2rN1M1LD + bN1M1S0 + bN1M1[rLg + G0 + b{rLk + K0}]

+ N1M3

m∑
k=0

[rLI + I0] + N1M1

m∑
k=0

[rLJ + J0] ≤ ρ̂,

where

S0

= K1

[
‖xb‖+ N1M2[N2‖y0‖+ F0] + N1M1N2‖x0‖+ bM1N1[rLf + F0]

+ b2rN1M2LD + bN1M2[rLg + G0 + b{rLk + K0}] + N1M1

m∑
k=0

[rLI + I0]

+ N1M2

m∑
k=0

[rLJ + J0]
]

+ K2

[
‖yb‖+ N1M1[N2‖y0‖+ F0] + N1M3N2‖x0‖

+ N1[rLf + F0] + bM3N1[rLf + F0] + b2rN1M1LD + N1M3

m∑
k=0

[rLI + I0]

+ bN1M1[rLg + G0 + b{rLk + K0}] + N1M1

m∑
k=0

[rLJ + J0]
]
.

Definition 2.5 ([13]). System (2.4)-(2.6) is said to be controllable on the interval
I, if for every initial functions x0, xb ∈ X and y0, yb ∈ X, there exists a control
u ∈ L 2(I, U) such that the solution x(·) of (2.4)-(2.6) satisfies x(0) = x0, x(b) = xb
and x′(0) = y0, x

′(b) = yb.

3. Controllability result

Theorem 3.1. If assumptions (H1)–(H9) hold and if 0 ≤ Λ1, Λ2 < 1, then system
(2.4)–(2.6) is controllable on I, provided that there exist constants

Λ1 = (1 + bN1M2K1)
[
bM1N1Lf + b2N1M2LD + bN1M2[Lg + bLk]

+ N1M1

m∑
k=0

LI + N1M2

m∑
k=0

LJ

]
+ bN1M2K2

[
N1Lf + bM3N1Lf

+ b2N1M1LD + bN1M1Lg + bLk + N1M3

m∑
k=0

LI + N1M1

m∑
k=0

LJ

]
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and

Λ2 = bN1M1W1

[
bM1N1Lf + b2N1M2LD + bN1M2[Lg + bLk] + N1M1

m∑
k=0

LI

+ N1M2

m∑
k=0

LJ

]
+ (1 + bN1M1)W2

[
N1Lf + bM3N1Lf + b2N1M1LD

+ bN1M1Lg + bLk + N1M3

m∑
k=0

LI + N1M1

m∑
k=0

LJ

]
.

Proof. Using (H2), (H3) for an arbitrary function x(·), define the control

u(t) = W −1
1

[
xb −B−1S(b)[By0 + f(0, x(0))]−B−1C(b)Bx0

+
∫ b

0

B−1C(b− s)f(s, x(s))ds−
∫ b

0

B−1S(b− s)
∫ s

0

D(s− τ)x(τ)dτds

−
∫ b

0

B−1S(b− s)
[
g(s, x(s)) +

∫ s

0

k(s, τ, x(τ))dτ
]
ds

−
∑

0<tk<b

B−1C(b− tk)Ikx(tk) +
∑

0<tk<b

B−1S(b− tk)Jkx(tk)
]
(t)

+ W −1
2

[
yb −B−1C(b)[By0 + f(0, x(0))]−B−1AS(b)Bx0 + f(b, x(b))

+
∫ b

0

B−1AS(b− s)f(s, x(s))ds−
∫ b

0

B−1C(b− s)
∫ s

0

D(s− τ)x(τ)dτds

−
∫ b

0

B−1C(b− s)
[
g(s, x(s)) +

∫ s

0

k(s, τ, x(τ))dτ
]
ds

−
∑

0<tk<b

B−1AS(b− tk)Ikx(tk) +
∑

0<tk<b

B−1C(b− tk)Jkx(tk)
]
(t).

Now we have to show that, when using this control u(t), the nonlinear operator

P : PC → PC

defined by

(Px)(t)

= B−1S(t)[By0 + f(0, x(0))] +B−1C(t)Bx0

−
∫ t

0

B−1C(t− s)f(s, x(s))ds+
∫ t

0

B−1S(t− s)
∫ s

0

D(s− τ)x(τ)dτds

+
∫ t

0

B−1S(t− s)
{
GW −1

1

[
xb −B−1S(b)[By0 + f(0, x(0))]−B−1C(b)Bx0

+
∫ b

0

B−1C(b− s)f(s, x(s))ds−
∫ b

0

B−1S(b− s)
∫ s

0

D(s− τ)x(τ)dτds

−
∫ b

0

B−1S(b− s)
[
g(s, x(s)) +

∫ s

0

k(s, τ, x(τ))dτ
]
ds

−
∑

0<tk<b

B−1C(b− tk)Ikx(tk) +
∑

0<tk<b

B−1S(b− tk)Jkx(tk)
]
(s)
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+GW −1
2

[
yb −B−1C(b)[By0 + f(0, x(0))]−B−1AS(b)Bx0 +B−1f(b, x(b))

+
∫ b

0

B−1AS(b− s)f(s, x(s))ds−
∫ b

0

B−1C(b− s)
∫ s

0

D(s− τ)x(τ)dτds

−
∫ b

0

B−1C(b− s)
[
g(s, x(s)) +

∫ s

0

k(s, τ, x(τ))dτ
]
ds

−
∑

0<tk<b

B−1AS(b− tk)Ikx(tk) +
∑

0<tk<b

B−1C(b− tk)Jkx(tk)
]
(s)
}
ds

+
∫ t

0

B−1S(t− s)
[
g(s, x(s)) +

∫ s

0

k(s, τ, x(τ))dτ
]
ds

+
∑

0<tk<t

B−1C(t− tk)Ikx(tk) +
∑

0<tk<t

B−1S(t− tk)Jkx(tk)

has a fixed point x(·), which is the solution of the system (2.4)–(2.6). Clearly x(b) =
xb, x

′(b) = yb, which imply that the system is controllable. Since all the functions
involved in the operator are continuous, P is continuous. For convenience, let

S (s, x)

= GW −1
1

[
xb −B−1S(b)[By0 + f(0, x(0))]−B−1C(b)Bx0

+
∫ b

0

B−1C(b− s)f(s, x(s))ds−
∫ b

0

B−1S(b− s)
∫ s

0

D(s− τ)x(τ)dτds

−
∫ b

0

B−1S(b− s)
[
g(s, x(s)) +

∫ s

0

k(s, τ, x(τ))dτ
]
ds

−
∑

0<tk<b

B−1C(b− tk)Ikx(tk) +
∑

0<tk<b

B−1S(b− tk)Jkx(tk)
]
(s)

+GW −1
2

[
yb −B−1C(b)[By0 + f(0, x(0))]−B−1AS(b)Bx0 +B−1f(b, x(b))

+
∫ b

0

B−1AS(b− s)f(s, x(s))ds−
∫ b

0

B−1C(b− s)
∫ s

0

D(s− τ)x(τ)dτds

−
∫ b

0

B−1C(b− s)
[
g(s, x(s)) +

∫ s

0

k(s, τ, x(τ))dτ
]
ds

−
∑

0<tk<b

B−1AS(b− tk)Ikx(tk) +
∑

0<tk<b

B−1C(b− tk)Jkx(tk)
]
(s).

From assumptions (H1)–(H9), we have

‖S (s, x)‖

≤ K1

[
‖xb‖+ N1M2[N2‖y0‖+ F0] + N1M1N2‖x0‖+ bM1N1[rLf + F0]

+ b2rN1M2LD + bN1M2[rLg + G0 + b{rLk + K0}] + N1M1

m∑
k=0

[rLI + I0]

+ N1M2

m∑
k=0

[rLJ + J0]
]

+ K2

[
‖yb‖+ N1M1[N2‖y0‖+ F0] + N1M3N2‖x0‖

+ N1[rLf + F0] + bM3N1[rLf + F0] + b2rN1M1LD + bN1M1[rLg + G0
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+ b{rLk + K0}] + N1M3

m∑
k=0

[rLI + I0] + N1M1

m∑
k=0

[rLJ + J0]
]

= S0

and

‖S (s, x1)−S (s, x2)‖

≤
{

K1

[
bM1N1Lf + b2N1M2LD + bN1M2Lg + bLk + N1M1

m∑
k=0

LI

+ N1M2

m∑
k=0

LJ

]
+ K2

[
N1Lf + bM3N1Lf + b2N1M1LD + bN1M1Lg

+ bLk + N1M3

m∑
k=0

LI + N1M1

m∑
k=0

LJ

]}
‖x1 − x2‖.

First we show that P maps PC into itself. Now

‖(Px)(t)‖ ≤ ‖B−1S(t)[By0 + f(0, x(0))]‖+ ‖B−1C(t)Bx0‖

+
∫ t

0

‖B−1C(t− s)f(s, x(s))‖ds+
∫ t

0

‖B−1S(t− s)S (s, x)‖ds

+
∫ t

0

‖B−1S(t− s)
∫ s

0

D(s− τ)x(τ)dτ‖ds

+
∫ t

0

‖B−1S(t− s)
[
g(s, x(s)) +

∫ s

0

k(s, τ, x(τ))dτ
]
‖ds

+
∑

0<tk<t

‖B−1C(t− tk)Ikx(tk)‖+
∑

0<tk<t

‖B−1S(t− tk)Jkx(tk)‖

≤ N1M2[N2‖y0‖+ Lf ] + N1M1N2‖x0‖+ bN1M1[rLf + F0]

+ b2rN1M2LD + bN1M2S0 + bN1M2[rLg + G0

+ b{rLk + K0}] + N1M1

m∑
k=0

[rLI + I0] + N1M2

m∑
k=0

[rLJ + J0]

< ρ

and

‖(Px)′(t)‖
≤ ‖B−1C(t)[By0 + f(0, x(0))]‖+ ‖B−1AS(t)Bx0‖+ ‖B−1f(t, x(t))‖

+
∫ t

0

‖B−1AS(t− s)f(s, x(s))‖ds+
∫ t

0

‖B−1C(t− s)S (s, x)‖ds

+
∫ t

0

‖B−1C(t− s)
∫ s

0

D(s− τ)x(τ)dτ‖ds

+
∫ t

0

‖B−1C(t− s)
[
g(s, x(s)) +

∫ s

0

k(s, τ, x(τ))dτ
]
‖ds

+
∑

0<tk<t

‖B−1AS(t− tk)Ikx(tk)‖+
∑

0<tk<t

‖B−1C(t− tk)Jkx(tk)‖

≤ N1M1[N2‖y0‖+ F0] + N1M3N2‖x0‖+ N1[rLf + F0]
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+ bN1M3[rLf + F0] + b2rN1M1LD + bN1M1S0 + bN1M1[rLg + G0

+ br{Lk + K0}] + N1M3

m∑
k=0

[rLI + I0] + N1M1

m∑
k=0

[rLJ + J0] < ρ̂.

Therefore P maps from PC into itself. Moreover, if x1, x2 ∈ PC, then

‖(Px1)(t)− (Px2)(t)‖

≤
∥∥∥∫ t

0

B−1C(t− s)[f(s, x1(s))− f(s, x2(s))]ds
∥∥∥

+
∥∥∥∫ t

0

B−1S(t− s)
∫ s

0

D(s− τ)[x1(τ)− x2(τ)]dτds
∥∥∥

+
∥∥∥∫ t

0

B−1S(t− s)[S (s, x1)−S (s, x2)]ds
∥∥∥

+
∥∥∥∫ t

0

B−1S(t− s)[g(s, x1(s))− g(s, x2(s))]ds
∥∥∥

+
∥∥∥∫ t

0

B−1S(t− s)
∫ s

0

[(k(s, τ, x1(τ))− k(s, τ, x2(τ)))dτ ]ds
∥∥∥

+
∥∥∥ ∑

0<tk<t

B−1C(t− tk)[Ikx1(tk)− Ikx2(tk)]
∥∥∥

+
∥∥∥ ∑

0<tk<t

B−1S(t− tk)[Jkx1(tk)− Jkx2(tk)]
∥∥∥

≤
{
bN1M1LF + b2N1M2LD + bN1M2[Lg + bLk] + N1M1

m∑
k=0

LI

+ N1M2

m∑
k=0

LJ + bN1M2K1

[
bM1N1Lf + b2N1M2LD + bN1M2Lg

+ bLk + N1M1

m∑
k=0

LI + N1M2

m∑
k=0

LJ

]
+ bN1M2K2

[
N1Lf

+ bM3N1Lf + b2N1M1LD + bN1M1Lg + bLk + N1M3

m∑
k=0

LI

+ N1M1

m∑
k=0

LJ

]}
‖x1 − x2‖ = Λ1‖x1 − x2‖.

Also

‖(Px1)′(t)− (Px2)′(t)‖

≤
∥∥∥B−1[f(s, x1(s))− f(s, x2(s))]

∥∥∥
+
∥∥∥∫ t

0

B−1AS(t− s)[f(s, x1(s))− f(s, x2(s))]ds
∥∥∥

+
∥∥∥∫ t

0

B−1C(t− s)
∫ s

0

D(s− τ)[x1(τ)− x2(τ)]dτds
∥∥∥



12 B. RADHAKRISHAN, P. ANUKOKILA EJDE-2016/259

+
∥∥∥ ∫ t

0

B−1C(t− s)[S (s, x1)−S (s, x2)]ds
∥∥∥

+
∥∥∥ ∫ t

0

B−1C(t− s)[g(s, x1(s))− g(s, x2(s))]ds
∥∥∥

+
∥∥∥ ∫ t

0

B−1C(t− s)
∫ s

0

[(k(s, τ, x1(τ))− k(s, τ, x2(τ))dτ)]ds
∥∥∥

+
∥∥∥ ∑

0<tk<t

B−1AS(t− tk)[Ikx1(tk)− Ikx2(tk)]
∥∥∥

+
∥∥∥ ∑

0<tk<t

B−1C(t− tk)[Jkx1(tk)− Jkx2(tk)]
∥∥∥

≤
{

N1Lf + bN1M3Lf + b2N1M1LD + bN1M1[Lg + bLk]

+ N1M3

m∑
k=0

LI + N1M1

m∑
k=0

LJ + bN1M1K1

[
bM1N1Lf

+ b2N1M2LD + bN1M2[Lg + bLk] + N1M1

m∑
k=0

LI

+ N1M2

m∑
k=0

LJ

]
+ bN1M1K2

[
N1Lf + bM3N1Lf + b2N1M1LD

+ bN1M1[Lg + bLk] + N1M3

m∑
k=0

LI + N1M1

m∑
k=0

LJ

]}
‖x1 − x2‖

= Λ2‖x1 − x2‖.

Since Λ1 < 1 and Λ2 < 1, the operator P is a contraction. Consequently by the
Banach contraction fixed point theorem, there exists a unique fixed point x ∈ PC
such that (Px)(t) = x(t). This fixed point is then the solution of the problem (2.4)-
(2.6). Then clearly, (Px)(b) = x(b) = xb, (Px)′(b) = x′(b) = yb which implies
that the system (2.4)-(2.6) is controllable on I. Thus the proof is complete. �

Now to study the controllability of (2.1)-(2.3), we impose the following additional
hypotheses:
(H10) The function f : I × X × X → X is continuous for a.e. t ∈ I. and the

function f(., x, y) : I ×X×X → X is strongly measurable, for each x ∈ X.
Then there exist positive constants LF > 0, F0 > 0 such that

‖f(t, x1(t), y1(t))− f(s, x2(t), y2(t))‖ ≤ LF [|t− s|+ ‖x1 − x2‖+ ‖y1 − y2‖],

for t, s ∈ I, xi, yi ∈ X, i = 1, 2 and

max
t∈I
‖f(t, 0, 0)‖ = F0.

(H11) The function g : I ×X ×X → X satisfies the following conditions:
(i) For each t ∈ I, the function g(t, ·.·) : I × X × X → X is continuous

and for each x ∈ X, the function g(·, x, y) : I×X×X → X is strongly
measurable.

(ii) There exist a constants LG > 0, G0 > 0 such that

‖g(t, x1, y1)− g(s, x2, y2)‖ ≤ LG[|t− s|+ ‖x1 − x2‖+ ‖y1 − y2‖],
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for t, s ∈ I, and xi, yi ∈ X, i = 1, 2, and

max
t∈I
‖g(t, 0, 0)‖ ≤ G0, for t ∈ I.

(H12) The function k : I2 ×X ×X → X satisfies the following conditions:
(i) For each t, s ∈ I, the function k(t, s, ·.·) : I2×X×X → X is continuous

and for each x ∈ X, the function k(·, ·, x, y) : I2 × X × X → X is
strongly measurable.

(ii) There exists a constant LK > 0, K0 > 0 such that

‖k(t, s, x1, y1)− k(t, s, x2, y2)‖ ≤ LK [‖x1 − x2‖+ ‖y1 − y2‖],

for t, s ∈ I, and xi, yi ∈ X, i = 1, 2, and

max
t∈I
‖k(t, s, 0, 0)‖ ≤ K0, for t, s ∈ I

(H13) Ik, Jk : X × X → X, k = 1, 2, . . . ,m, are continuous and there exist con-
stants LI > 0, LJ > 0, I0 > 0 and J0 > 0 such that

‖Ik(x1, y1)− Ik(x2, y2)‖ ≤ LI [‖x1 − x2‖+ ‖y1 − y2‖],
‖Jk(x1, y1)− Jk(x2, y2)‖ ≤ LJ [‖x1 − x2‖+ ‖y1 − y2‖]

for all x1, x2, y1, y2 ∈ X and k = 1, 2, . . . ,m, and

I0 = ‖Ik(0)‖, J0 = ‖Jk(0)‖, k = 1, 2, . . . ,m.

Definition 3.2. A continuous solution x(·) of the integral equation

x(t) = B−1S(t)[By0 + f(0, x(0), x′(0))] +B−1C(t)Bx0

−
∫ t

0

B−1C(t− s)f(s, x(s), x′(s))ds

+
∫ t

0

B−1S(t− s)
∫ s

0

D(s− τ)x(τ)dτds+
∫ t

0

B−1S(t− s)Gu(s)ds

+
∫ t

0

B−1S(t− s)
[
g(s, x(s), x′(s)) +

∫ s

0

k(s, τ, x(τ), x′(τ))dτ
]
ds

+
∑

0<tk<t

B−1C(t− tk)Ik(x(tk), x′(tk))

+
∑

0<tk<t

B−1S(t− tk)Jk(x(tk), x′(tk))

(3.1)

is said to be a mild solution of (2.1)-(2.3) on I.
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If x(·) is a mild solution of (2.1)-(2.3), then by the properties of a second order
differential equation and Lemma 2.3, we have

x′(t) = B−1C(t)[By0 + f(0, x(0), x′(0))] +B−1AS(t)Bx0

−B−1f(t, x(t), x′(t))−
∫ t

0

B−1AS(t− s)f(s, x(s), x′(s))ds

+
∫ t

0

B−1C(t− s)
∫ s

0

D(s− τ)x(τ)dτds

+
∫ t

0

B−1C(t− s)
[
g(s, x(s), x′(s)) +

∫ s

0

k(s, τ, x(τ), x′(τ))dτ
]
ds

+
∫ t

0

B−1C(t− s)Gu(s)ds+
∑

0<tk<t

B−1AS(t− tk)Ik(x(tk), x′(tk))

+
∑

0<tk<t

B−1C(t− tk)Jk(x(tk), x′(tk)), t ∈ I.

(3.2)

Theorem 3.3. If assumptions (H1)–(H4), (H10)–(H13) hold, then system (2.1)-
(2.3) is controllable on I.

The proof of the above is similar to Theorem 3.1 and hence, is omitted.

4. Nonlocal Initial Conditions

The study of abstract nonlocal initial value problems was initiated by Byszewski
[8]. Because it is demonstrated that the nonlocal problems have better effects in
applications than the classical Cauchy problems. Several authors have discussed
the nonlocal problem in abstract spaces [5, 6]. The importance of nonlocal is
studied in [3, 8]. In this section we consider a second order Sobolev type neutral
integrodifferential equations with nonlocal initial condition

x(0) +
n∑
i=1

p(xi) = x0 x′(0) +
n∑
i=1

w(xi) = y0 (4.1)

In addition the assumptions in Section 2 and 3, we also assume the following hy-
potheses.

(H14) The function p, w : PC(I, X) → X is continuous function, and then there
exist positive constants Pα > 0,Qα > 0 such that

‖
n∑
i=1

p(xi)‖ ≤Pα, ‖
n∑
i=1

w(xi)‖ ≤ Qα

‖
n∑
i=1

p(xi)−
n∑
i=1

p(yi)‖ ≤Pα[‖x− y‖],

‖
n∑
i=1

w(xi)−
n∑
i=1

w(yi)‖ ≤ Qα[‖x− y‖],

for xi, yi ∈ X, i = 1, 2, . . . , n.
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Definition 4.1. A continuous solution x(·) of the integral equation

x(t) = B−1S(t)
[
B{y0 −

n∑
i=1

w(xi)}+ f(0, x(0), x′(0))
]

+B−1C(t)B[x0 −
n∑
i=1

p(xi)]−
∫ t

0

B−1C(t− s)f(s, x(s), x′(s))ds

+
∫ t

0

B−1S(t− s)
∫ s

0

D(s− τ)x(τ)dτds

+
∫ t

0

B−1S(t− s)
[
g(s, x(s), x′(s)) +

∫ s

0

k(s, τ, x(τ), x′(τ))dτ
]
ds

+
∫ t

0

B−1S(t− s)Gu(s)ds+
∑

0<tk<t

B−1C(t− tk)Ik(x(tk), x′(tk))

+
∑

0<tk<t

B−1S(t− tk)Jk(x(tk), x′(tk))

(4.2)

is said to be a mild solution of (2.1)-(2.3) and (4.1) on I.

If x(·) is a mild solution of (2.1)-(2.3) and (4.1), then by the properties of a
second order differential equation and Lemma 2.3, we have

x′(t) = B−1C(t)
[
B
{
y0 −

n∑
i=1

w(xi)
}

+ f(0, x(0), x′(0))
]

+B−1AS(t)B[x0 −
n∑
i=1

p(xi)]−B−1f(t, x(t), x′(t))

−
∫ t

0

B−1AS(t− s)f(s, x(s), x′(s))ds

+
∫ t

0

B−1C(t− s)
∫ s

0

D(s− τ)x(τ)dτds+
∫ t

0

B−1C(t− s)Gu(s)ds

+
∫ t

0

B−1C(t− s)
[
g(s, x(s), x′(s)) +

∫ s

0

k(s, τ, x(τ), x′(τ))dτ
]
ds

+
∑

0<tk<t

B−1AS(t− tk)Ik(x(tk), x′(tk))

+
∑

0<tk<t

B−1C(t− tk)Jk(x(tk), x′(tk)), t ∈ I.

(4.3)

Theorem 4.2. If assumptions (H1)–(H4),(H10)–(H14) hold, then system (2.1)-
(2.3) and (4.1) is controllable on I.

The of the above theorem is similar to Theorem 3.1 and hence, is omitted.
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5. Example

Consider the partial integrodifferential equation
∂

∂t

[
zt(t, y)− 1

2
cos z(t, y)

]
=

∂2

∂y2
z(t, y) + µ(t, y) + b1(s, y)

(
t,

1
2
e−t sin zt(t, y)),∫ t

0

sin zs(s, y)e−szs(sin s, y)ds
)∫ a

0

l(t, τ)zτ (t, y)dτ

+
∫ t

−∞
b2(s, y) sin zt(s, y)ds, y ∈ [0, π], t ∈ I,

(5.1)

z(t, 0) = z(t, π) = 0, t ∈ I, (5.2)

z(0, y) +
m∑
i=1

γiΦti(s, y) = z0(y) 0 < y < 1, t ∈ I; (5.3)

∆z|t=tk = Ik(z(y)) =
∫ π

0

γk(y, s) cos2 z(s, y)ds, z ∈ X, 1 ≤ k ≤ p, (5.4)

where µ(t, y) : I × [0, π]→ [0, π] is continuous on 0 ≤ y ≤ π, t ∈ I and the constant
γi are small. Let X = L2[0, π] be endowed with the usual norm ‖ · ‖L2 , and let
x(t) = z(t, y) be continuous,

f(t, x(t), x′(t)) =
1
2

cos z(t, y),

g(t, x(t), x′(t)) = b1(s, y)
(
t,

1
2
e−t sin zt(t, y)),

∫ t

0

sin zs(s, y)e−szs(sin s, y)ds
)
,∫ t

0

k(t, s, xs)ds =
∫ a

0

l(t, τ)zτ (t, y)dτ +
∫ t

−∞
b2(s, y) sin zt(s, y)ds,

n∑
i=1

p(xi) =
m∑
i=1

γiΦti(s, y),

Ii(z(x)) =
∫ π

0

γk(y, s) cos2 z(s, y)ds.

Define the operator A : D(A) ⊂ X → X and E : D(E) ⊂ X → X by

Az = −zxx, Ez = z − zxx,

where each domain D(A) and D(E) is given by

{z ∈ X : z, zx are absolutely continuous, zxx ∈ X, z(0) = z(π) = 0}.

Then A and E can be written, respectively, as

Az =
∞∑
n=1

n2〈z, zn〉zn, z ∈ D(A), Ez =
∞∑
n=1

(1 + n2)〈z, zn〉zn, z ∈ D(E),

where zn(x) =
√

2/π sin(nx), n = 1, 2, . . . , is the orthogonal set of vectors of A.
Furthermore for z ∈ X, we have

E−1z =
∞∑
n=1

1
1 + n2

〈z, zn〉zn, −AE−1z =
∞∑
n=1

−n2

1 + n2
〈z, zn〉zn,
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S(t)z =
∞∑
n=1

exp
( −n2t

1 + n2

)
〈z, zn〉zn.

Further, the linear operators W1, W2 : L 2(I, U)→ X defined by

W1u =
∫ b

0

B−1S(b− s)Gu(s)ds, W2u =
∫ b

0

B−1C(b− s)Gu(s)ds

has a bounded inverse operators and satisfies the condition (H2) and (H3).
We see that (5.1)–(5.4) can be formulated abstractly as (2.1)–(2.3). Hence all the

conditions stated in the Theorem 3.1 are satisfied and it is possible choose b1, b2, γi.
Hence by the Theorem 3.1, equation (5.1)–(5.4) is controllable on I.
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