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MEROMORPHIC SOLUTIONS TO DIFFERENCE PAINLEVÉ
EQUATIONS I AND II

ZHI-TAO WEN

Abstract. In this article, we study the solutions of difference Painlevé equa-
tions I and II. to do this, we first give some properties of solutions to difference

Riccati equations. We show that there are no rational solutions for the differ-
ence Painlevé equation I. We also study rational solutions for the difference

Painlevé equation II. Later, we present a new way to seek solutions of the

difference Painlevé equation II by using the difference Riccati equation. At
last, we construct new solutions of the difference Painlevé equation II through

a known solution.

1. Introduction

An ordinary differential equation is said to possess the Painlevé property if all
of its solutions are single-values about all movable singularities, see [7]. Over a
century ago Painlevé [21, 22], Fuchs [4] and Gambier [5] completed a substantial
classification work, which comprised of sieving through a large class of second-
order differential equations by making use of a criterion proposed by Picard [23],
now known as the Painlevé property. Painlevé and his colleagues discovered six new
equations, later named as Painlevé equations, which were not solvable in terms of
known functions.

Painlevé equations are the most complicated systems that one can solve (in
a nontrivial way). Anything simpler becomes trivially integrable, anything more
complicated becomes hopelessly non-integrable. Therefore, Painlevé equations are
the borderline between trivial integrability and non-integrable, a fact that bestows
upon them a lot of of interesting properties.

There are several candidates for the discrete analogue of the Painlevé property.
The singularity confinement test by Grammaticos, Ramani and Papageorgiou [6]
has been very successful in finding new discrete equations of Painlevé type [25].
Hietarinta and Viallet suggested to amend singularity confinement by demanding
additionally that the algebraic complexity of the solutions remains relatively low
as the iteration progresses [14]. The first approach using a low growth criterion of
iterates as a sign of integrability is due to Veselov [28] who showed that generic
exponential growth rate of the degree of iterates corresponds to the non-existence
of certain types of first integrals. A method due to Roberts and Vivaldi relies on
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orbit dynamics over finite fields [27], while Halburd’s Diophantine integrability [8]
makes use of polynomial growth of heights of iterates over number fields.

The analogues of Painlevé property for difference equations in the complex plane
have been discussed, for example, in [1], Ablowitz et.al. consider the solutions of
difference Painlevé equations by Nevanlinna theory, which is a landmark in the
application of Nevanlinna theory in the study of difference equations. They have
observed that all of the relevant difference equations have obvious analytic ver-
sions, and hence can be studied by using the methods of complex analysis, and in
particular Nevanlinna theory.

Halburd and Korhonen [12] showed that if the difference equation

w + w = R(z, w), (1.1)

where R(r, w) is rational in w with meromorphic coefficients, has an admissible
meromorphic solution of finite order, then the class (1.1) can be reduced into a
short list of equations, where the difference Painlevé equation I and the difference
Painlevé equation II are included.

Halburd and Korhonen [13] showed that if the difference equation

ww =
c2(w − c+)(w − c−)
(w − a+)(w − a−)

(1.2)

has an admissible finite order meromorphic solution such that the order of its poles
is bounded, then the equation (1.1) can be transformed by Möbius tranformation
in w to a short list of equations, where the difference Painlevé III is included,
unless w is the solution of difference Riccati equation. Ronkainen [26] removed
the assumption on the boundedness of the order of the poles, difference painlevé
equation III can be obtained from equation (1.2) when the coefficients are special
solutions of equations. Similarly, difference Painlevé equation V is also considered
by Ronkainen [26].

The aim of this article is to discuss the solutions of difference Painlevé equations
I and II. The remainder of this paper is organized as follows. Difference version of
Nevanlinna theory for studying the difference Painlevé equations is shown in Section
2. We give some properties of the solutions of the difference Riccati equation
in Section 3. In section 4, we show the relations of the solutions between the
difference Riccati equation and difference Painlevé equations I and II, respectively.
We conclude that there are no rational solutions of the difference Painlevé equation
I. We also discuss the rational solutions of the difference Painlevé equation II in
four cases according to the coefficients of the equations. At the end of section 4,
we give a way to seek a new solution of the difference Painlevé equation II.

2. Nevalinna theory and difference equations

Difference analogue lemma on the logarithmic derivative of meromorphic func-
tions of finite order was found by Halburd and Korhonen [10, 11], and by Chiang
and Feng [3], independently. This result was recently extended to meromorphic
functions of hype order strictly less than one in [9], where it was also shown that
this growth condition cannot be essentially relaxed further. Let us state latest
version of difference analogue lemma on the logarithmic derivative of meromorphic
functions of finite order as follows.
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Lemma 2.1 ([9, Theorem 5.1]). Let w be a non-constant meromorphic function
and c ∈ C. If w is of finite order, then

m
(
r,
w(z + c)
w(z)

)
=
( log r

r
T (r, w)

)
for all r outside of a set E satisfying

lim sup
r→∞

∫
E∩[1,r)

dt/t

log r
= 0,

i.e., outside of a set E of zero logarithmic density. If ρ2(w) = ρ2 < 1 and ε > 0,
then

m
(
r,
w(z + c)
w(z)

)
= o
( T (r, w)
r1−ρ2−ε

)
for all r outside of a set of finite logarithmic measure.

The following Lemma is improved version of [10, Lemma 2.2].

Lemma 2.2 ([9, Lemma 8.3]). Let T : [0,∞)→ [0,∞) be a non-decreasing contin-
uous function and let s ∈ (0,∞). If the hyper order of T is strictly less than one,
i.e.,

lim sup
r→∞

log log T (r)
log r

= ρ2 < 1,

and δ ∈ (0, 1− ρ2), then

T (r + s) = T (r) + o
(T (r)
rδ

)
,

where r runs to infinity outside of a set of finite logarithmic measure.

The difference version of a result due to A. Mohon’ko and V. Mohon’ko [20],
is found by Halburd and Korhonen [11], and Laine and Yang [18, Theorem 2.4],
independently. Let us state this result as follows.

Lemma 2.3 ([11, Corollary 3.4]). Let w(z) be a nonconstant finite order mero-
morphic solution of P (z, w) = 0, where P (z, w) is a difference polynomial in w(z).
If P (z, a) 6≡ 0 for a small meromorphic function related to w, then

m
( 1
w − a

)
= S(r, w)

for all r outside of a possible exceptional set with finite logarithmic measure.

The difference analogue of Clunie lemma, due to Laine and Yang, is the gener-
alization of the result in [11, Theorem 3.1], which is stated as follows.

Lemma 2.4 ([18, Theorem 2.3]). Let w be a transcendental meromorphic solution
of finite order ρ of a difference equations of the form

H(z, w)P (z, w) = Q(z, w)

where H(z, f), P (z, w), Q(z, f) are difference polynomials such that total degree n
in w(z) and its shifts, and the total degree of Q(z, w) is ≤ n. Then, for each ε > 0,

m(r, P (z, w)) = O(rρ−1+ε) + S(r, w),

possibly outside of an exceptional set of finite logarithmic measure.
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3. Difference Riccati equations

About a century ago Malmquist [19] proved that if the differential equation

w′ = R(z, w(z)), (3.1)

where R(z, w(z)) is rational in its both arguments, has a non-rational meromorphic
solution, then (3.1) reduces into a Riccati equation

w′ = a(z)w2 + b(z)w + c(z)

with rational coefficients. Similarly, if the difference equation

w(z + 1) = R(z, w(z)), (3.2)

where again R(z, w(z)) is rational in z and w(z), admits at least one non-rational
meromorphic solution of finite order (or of hyper-order strictly less than one), then
(3.2) must in fact be a difference Riccati equation

w(z + 1) =
c(z)w(z) + d(z)
a(z)w(z) + b(z)

with rational coefficients. This is a known difference analogue of Malmquist’s the-
orem, which follows by a more general result due to Yanagihara [29].

In what follows, the difference Riccati equations we mentioned have the coef-
ficients of small functions related to w. If a(z) ≡ 0, then the difference Riccati
equations are reduced to the linear difference equations. Thus, let us consider the
case a(z) 6≡ 0. In this section, we discuss some basic properties of the solutions
of the difference Riccati equations, which will be used for investigating difference
Painlevé equations I and II in the next section.

Lemma 3.1. If w is the solution of

w(z + 1) =
c(z)w(z) + d(z)
a(z)w(z) + b(z)

, (3.3)

then w also satisfies

w(z − 1) =
d(z − 1)− b(z − 1)w(z)
a(z − 1)w(z)− c(z − 1)

. (3.4)

Proof. If w is the solution of (3.3), then we have

w(z) =
c(z − 1)w(z − 1) + d(z − 1)
a(z − 1)w(z − 1) + b(z − 1)

.

Thus, by a simple calculation it yields that

w(z − 1) =
d(z − 1)− b(z − 1)w(z)
a(z − 1)w(z)− c(z − 1)

,

which is our assertion. �

Let us consider the rational solutions of the difference Riccati equations. In
this case, all the coefficients of the difference Riccati equations are reduced to the
constants.

Lemma 3.2. Let w be a non-constant rational solution of the difference Riccati
equations (3.3), which is written as w(z) = P (z)/Q(z), where P (z) and Q(z) are
polynomials, then degP ≤ degQ. Moreover, if d 6= 0, then degP = degQ.
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Proof. Suppose that w is a rational function, let us write w as

w(z) =
P (z)
Q(z)

,

where P (z) and Q(z) are polynomials. If w is a solution of (3.3), then it yields that
by substituting it to (3.3)

P (z + 1)
Q(z + 1)

=
cP (z) + dQ(z)
aP (z) + bQ(z)

.

From the equation above, we have the following equality

aP (z + 1)P (z) + bP (z + 1)Q(z) = cP (z)Q(z + 1) + dQ(z)Q(z + 1). (3.5)

Let us denote p = degP and q = degQ. If p > q, then the degree of polynomials
of both side of the equation (3.5) are 2p and p + q (or 2q if c=0), respectively. It
implies that p = q, which is a contradiction. Thus, we have degP ≤ degQ.

In particular, if d 6= 0, let us denote

P∗(z, w) = w(aw + b)− (cw + d).

Since w = 0 is not the solution of P∗(z, w) = 0, it follows by Lemma 2.3 that

N
(
r,

1
w

)
= q log r +O(1) = T (r, w) +O(1). (3.6)

Now let us rewrite difference Riccati equations (3.3) as follows

aww = cw − bw + d.

Since a, b, c and d are small functions of w, it yields by H(z, w) = aw and Q(z, w) =
cw − bw + d that

N(r, w) = p log r +O(1) = T (r, w) +O(1). (3.7)

according to Lemma 2.4. Therefore, we conclude from (3.6) and (3.7) that degP =
degQ, which is our assertion. �

Now we will find a linear transformation, by which every difference Riccati equa-
tion (3.3) can be reduced into a simple form

w =
w +D

w + 1
, (3.8)

where D related to a, b, c, d is a small function of w. Thus, we can only consider
the solutions of difference Riccati equations (3.8).

Lemma 3.3. Any difference Riccati equation (3.3) can be transformed by a linear
mapping to the form (3.8).

Proof. Since w satisfies (3.3), by the linear transformation w = Af +B it yields

Af +B =
cAf + cB + d

aAf + aB + b
,

where A,B are the small functions of f . By Nevanlinna First Main theory, it follows
that A and B are also the small functions of w. Thus, f satisfies

Af =
(c− aB)

(
f + cB+d−aBB−bB

cA−aAB

)
a
(
f + aB+b

aA

)
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Let us set

aA = c− aB
aA = b+ aB

then, we have our assertion if A and B satisfy

A =
1
2
( c
a

+
b

a

)
B =

1
2
( c
a
− b

a

)
Moveover, we can express D by a, b, c and d. �

Remark 3.4. It follows that there are two linearly independent meromorphic so-
lutions of difference Riccati equations by Lemma 3.3 and discussion in [15] and [24].
We can construct other meromorphic solutions of difference Riccati equations by
these two linearly independent solutions. Moveover, we could use it for investigat-
ing the solutions of difference Painleve equation II. Let us discuss it in the next
section.

4. Difference Painlevé equations

Halburd and Korhonen proved that if the equation

w + w = R(z, w), (4.1)

where R(z, w) is rational in w and meromorphic in z, has an admissible meromor-
phic solution of finite order, then either w satisfies a difference Riccati equation

w =
pw + q

w + p
,

where p, q are small functions related to w, or equations (4.1) can be transformed
by a linear change in w to one of the following equations:

2w + w + w =
π1z + π2

w
+ k1 (4.2)

w − w + w =
π1z + π2

w
+ (−1)zk1 (4.3)

w + w =
π1z + π3

w
+ π2 (4.4)

w + w =
π1z + k1

w
+
π2

w2
(4.5)

w + w =
(π1z + k1)w + π2

(−1)−z − w2
(4.6)

w + w =
(π1z + k1)w + π2

1− w2
(4.7)

ww + ww = p (4.8)

w + w = pw + q (4.9)

where πk, kk are finite order small functions related to w of period k.
Historically, Equation (4.2) is known as the difference Painlevé equation I, The

choice of name stems from the fact that a continuous limit, such as w = −1/2 +
ε2u, k1 = −3, π1z + π2 = −(3 + 2ε4t)/4, ε → 0, may be used to map (4.2) to
the Painlevé equation I u′′ = 6u2 + t. Equations (4.4) and (4.5) are still known



EJDE-2016/262 PAINLEVÉ EQUATIONS I AND II 7

as difference Painlevé equation I, while equation (4.7) is often referred to as the
difference Painlevé II. In this section, we consider the solutions of difference Painleve
equations I and II.

Theorem 4.1. Let w be a non-constant solution of the difference Riccati equation
(3.3) with rational coefficients. Then w is not the solution of the difference Painlevé
equation I

w + w =
π1z + π3

w
+ π2,

where πi(i = 1, 2, 3) are the small functions related to w with period of i respectively,
if π2 6≡ 0.

Proof. Suppose that w is the solution of

w =
cw + d

aw + b
,

where a, b, c and d are the small functions of w. By Lemma 3.1, it follows that w
satisfies

w =
d− bw
aw − c

.

According to discussion above, it yields that w satisfies that

w + w =
cw + d

aw + b
+
d− bw
aw − c

=
(ca− ab)w2 + (ad− cc+ ad− bb)w + bd− dc

aaw2 + (ba− ac)w − bc
.

(4.10)

Now, if w is the solution of the difference Painlevé equation I (4.4), then we have

(ca− ab)w2 + (ad− cc+ ad− bb)w + bd− dc
aaw2 + (ba− ac)w − bc

=
π1z + π3

w
+ π2.

By a simple calculation, it yields

(ca− ab)w3 + (ad− cc+ ad− bb)w2 + (bd− dc)w
= π2aaw

3 + π2(ba− ac)w2 + πaaw2 + π(ba− ac)w − bck1w − bcπ,
where π = π1z + π3. Therefore, by comparing the coefficients related to w in both
side of equations, we have

bc(π1z + π3) ≡ 0.
It is well-known that π1z + π3 6≡ 0, then b ≡ 0 or c ≡ 0. Let us suppose that b ≡ 0
at first, thus it follows that

π2 =
c

a
ad+ ad = πaa

−dc = −acπ
by comparing the coefficients of equations related to w. Since π2 6≡ 0, we have
c 6≡ 0. Then it shows that π = d/a. By submitting it to the Riccati difference
equation, it yields that

w =
π1z + π3

w
+ π2

which implies that w ≡ 0. It is impossible. Similarly, we have it is impossible if
c ≡ 0. It is a contradiction with w is a solution of difference Painlevé equation I
(4.4). �
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By the same way as the proof of Theorem 4.1, we have the following result.

Theorem 4.2. Let w be a non-constant solution of the difference Riccati equation
(3.3) with rational coefficients. Then w is not the solution of the difference Painlevé
equation I

w + w + w =
π1z + π2

w
+ k1,

where πi and kj(i = 1, 2; j = 1) are the small functions related to w with period of
i and j, respectively.

Let us discuss the case when the difference Painlevé equation I has a rational
solution. It is well-known that the only small functions related to the rational
functions are constants. If w is a rational solution of

w + w + w =
π1z + π2

w
+ k1, (4.11)

where πi and kj(i = 1, 2; j = 1) are the small functions related to w with period
of i and j respectively, then π1, π2 and k1 are reduced to constants. If π1 ≡ 0 and
π2 ≡ 0, then (4.11) is reduced to a linear difference equation, which is trivial. Thus,
we only need to consider the case that either π1 6≡ 0 or π2 6≡ 0.

Theorem 4.3. Let w be a non-constant solution of the difference Painlevé equation
I defined as in (4.11), then w is transcendental.

Proof. Suppose that w is a rational solution of (4.11). Let us write w as

w(z) =
P (z)
Q(z)

=
amz

m + am−1z
m−1 + · · ·+ a1z + a0

bnzn + bn−1zn−1 + · · ·+ b1z + b0
.

If we substitute w into the difference Painlevé equation I (4.11), then we have

P (z + 1)
Q(z + 1)

+
P (z)
Q(z)

+
P (z − 1)
Q(z − 1)

=
(π1z + π2)Q(z)

P (z)
+ k1.

According to the equation above, it follows that

P (z + 1)P (z)Q(z)Q(z − 1) + P (z)Q(z + 1)Q(z − 1)P (z)

+ P (z − 1)P (z)Q(z)Q(z + 1)

= (π1z + π2)Q(z)Q(z + 1)Q(z)Q(z − 1)

+ k1Q(z + 1)Q(z)Q(z − 1)P (z).

(4.12)

There are three terms related to P (z) and Q(z) on the left-hand side of (4.12) with
the same degree. Moreover, their coefficients of maximum degree are not different,
so it is easy to see that the degree of the polynomial on the left-hand side of (4.12)
is 2m+ 2n.

Suppose that π1 6= 0. If n > m − 1, then the degree of the right-hand side of
(4.12) is 4n + 1. It implies that 2m = 2n + 1, which is impossible. If n < m − 1,
then the degree of the right-hand side of (4.12) is 3n + m. It implies that m = n,
which is impossible. If m = n+1, then the degree of the right-hand side of (4.12) is
not larger than 3n+m or 4n+ 1. It implies that 2m− 1 ≤ 2n, which is impossible.
Therefore, we have π1 = 0.

If π1 = 0 and π2 6= 0, then the equation we considered is

w + w + w =
π2

w
+ k1, (4.13)
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where k1 and π2 are reduced to constants if w is a rational solution of (4.13). Now
let us denote

P1(z, w) = w(w + w + w)− π2 − k1w.

Since w = 0 is not the solution of P1(z, w), it follows from Lemma 2.3 that

N
(
r,

1
w

)
= m log r +O(1) = T (r, w) +O(1). (4.14)

Since π2 and k1 are the small function of w, it yields by Lemma 2.4 that

N(r, w) = n log r +O(1) = T (r, w) +O(1). (4.15)

Therefore, we have m = n from (4.14) and (4.15).
Let A = {zi ∈ C; i ∈ N} be the set of all zeros of w(z) = 0, and its cardinality of

the set A∩{z ∈ C : |z| ≤ r} is denoted by nA
(
r, 1
w

)
according to its multiplicity, its

counting functions is denoted by NA
(
r, 1
w

)
. Suppose that z0 ∈ A, then from (4.13)

z0 is a pole of w(z + 1) or w(z − 1). If z0 is the pole of w(z + 1) or w(z − 1), then
z0 + 2 or z0 − 2 is also the pole of w(z) by (4.13).

Let B be the subset of A of all points such that

w(z0 − 1) =∞ and w(z0 + 1) =∞
hold. We denote by NB

(
r, 1
w

)
the corresponding counting function, and

NA\B
(
r,

1
w

)
= NA

(
r,

1
w

)
−NB

(
r,

1
w

)
the counting function for those points z0 ∈ A \ B. Therefore, for each points in
B ∈ {z ∈ C : |z| ≤ r} there are at least two poles in the disc {z ∈ C : |z| ≤ r + 1},
which implies that

NB
(
r,

1
w

)
≤ 1

2
NB
(
r + 1, w

)
. (4.16)

Similarly, one point in A \B ∩ {z ∈ C; |z| ≤ r} there exists exactly one pole in the
disc {z ∈ C : |z| ≤ r + 1}. Therefore, we have

NA\B
(
r,

1
w

)
≤ NA\B(r + 1, w). (4.17)

We proceed to prove that the points in the set A are “almost all” in the set A \B.
Suppose that

NA\B(r + 1, w) = αT (r, w) + S(r, w),
where 0 ≤ α ≤ 1. From (4.14) to (4.17), we have

T (r, w) = N
(
r,

1
w

)
+ S(r, w) = NA

(
r,

1
w

)
+ S(r, w)

= NB
(
r,

1
w

)
+NA\B

(
r,

1
w

)
+ S(r, w)

≤ 1
2
NB(r + 1, w) +NA\B(r + 1, w)

=
1
2
NA(r + 1, w) +

1
2
NA\B(r + 1, w)

≤ (
1
2

+
α

2
)T (r + 1, w) + S(r, w).

(4.18)

It yields that α = 1 by Lemma 2.2, since w is a meromorphic function of finite
order. Therefore, we have

NB(r + 1, w) = S(r, w).
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It reveals that for “almost all” z0 ∈ A, then w(z0 + 1) = ∞ and w(z0 − 1) = ∞
can not hold at the same time. If w is a rational function, then there is no point
z0 ∈ A such that w(z0 + 1) =∞ and w(z0 − 1) =∞ hold at the same time.

Suppose that z0 is the zero of w, then z0 is the pole of w(z+ 1) or w(z− 1). Let
us suppose w(z0 + 1) =∞. Then w(z0 + 2) =∞ and w(z0 + 1) + w(z0 + 2) = k1.
Since w can be written as the quotient of P (z) and Q(z), then all the zeros of P (z)
are the zeros of Q(z + 1) and Q(z + 2). Keeping in mind that degP = degQ, it
shows that

P (z) = αQ(z + 1) = βQ(z + 2),
where α and β are constants. According to [30, Lemma 2.4], it follows that P (z)
and Q(z) are constants, which is impossible. Thus, w is not a rational solution of
(4.13). Now we have our assertion. �

Chen and Shen investigate the rational solutions of the difference Painlevé equa-
tion I (4.4) in [2]. They show that if π1 = 0 and w = P (z)/Q(z) is the solution
of (4.4), where P (z) and Q(z) are polynomials, then degP ≤ degQ. By using the
same way as Theorem 4.3, we conclude that there is no rational solution of (4.4),
which improves the result of Chen and Shon.

In what follows, we consider the difference Painlevé equation II as follows,

w + w =
(π1z + k1)w + π2

1− w2
, (4.19)

where πi and kj(i = 1, 2; j = 1) are the small functions related to w with period
of i and j respectively. If π1 = 0, π2 = 0 and k1 = 0, then the difference Painlevé
equation II (4.19) can be reduced into a linear difference equation. So we are
interested in the case when not all of the coefficients of (4.19) are zeros.

We proceed to consider the rational solutions of the difference Painlevé equation
II as follows. Now let us consider the case π2 = 0 at first.

Theorem 4.4. Let w be a non-constant meromorphic solution of finite order of
the difference Painlevé equation II (4.19), if π1 6= 0 and π2 = 0, then w is tran-
scendental.

Proof. If π2 = 0, then the difference Painlevé equation we considered as

w + w =
(π1z + k1)w

1− w2
, (4.20)

where π1 and k1 are the small functions related to w with period of 1. The equation
(4.20) can be read as follows by w(z) = P (z)/Q(z), where P (z) and Q(z) are
polynomials, if w is a rational solution of (4.20)

(PQ+ PQ)(Q2 − P 2) = (π1z + k1)PQQQ.

We conclude that degQ = degP . In fact, if degP > degQ, then the degree of the
polynomial of the left-hand side is 3 degP+degQ, and the degree of the polynomial
of the right-hand side is degP+3 degQ+1, which implies that 2 degQ+1 = 2 degP .
It is impossible. If degP < degQ, then the degree of the polynomial of the left-
hand side is 3 degQ+degP , and the degree of the polynomial of the right-hand side
is also degP + 3 degQ+ 1, which is impossible. Therefore, we have degQ = degP .

Now, dividing by w on the both side of (4.20) implies that

w

w
+
w

w
=

(π1z + k1)
1− w2

.
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Since w is a rational function, Lemma 2.1 tells us that

m
(
r,

(π1z + k1)w
1− w2

)
= m

(w
w

+
w

w

)
= O(1). (4.21)

From (4.21), it yields that by w(z) = P (z)/Q(z)

m
(
r,

(π1z + k1)PQ
Q2 − P 2

)
= O(1),

which implies that degP + degQ+ 1 ≤ max{2 degP, 2 degQ}. It is a contradiction
with degQ = degP . The proof is complte. �

In the following, we consider another case of the difference Painlevé equation II
that π1 = 0 and π2 = 0. We state our result as follows.

Theorem 4.5. Let w be a non-constant rational solution of the difference Painlevé
equation II (4.19), if π1 = 0 and π2 = 0, then w = 1

z+α , where α ∈ C, and k1 = 2.
Moreover, −w is also a rational solution of the difference Painlevé equation II.

Proof. If π1 = 0 and π2 = 0, then the difference Painlevé equation II we considered
is

w + w =
k1w

1− w2
, (4.22)

where k1 is a small function related to w with period of 1. If w is a rational solution
of (4.22), then k1 is reduced to a constant.

Let A = {zi ∈ C; i ∈ N} be the set of all zeros of

w(z)− 1 = 0 and w(z) + 1 = 0,

and its cardinality of the set A∩{z ∈ C : |z| ≤ r} is denoted by nA(r, 1
w±1 ) according

to its multiplicity, its counting functions is denoted by NA(r, 1
w±1 ). Suppose that

z0 ∈ A, then from (4.22) z0 is the pole of w(z + 1) or w(z − 1). If z0 is the pole of
w(z + 1) or w(z − 1), then z0 + 2 ∈ A or z0 − 2 ∈ A.

Let B be the subset of A of all points such that

w(z0 − 1) =∞ and w(z0 + 1) =∞

hold. We denote by NB
(
r, 1
w±1

)
the corresponding counting function, and

NA\B

(
r,

1
w ± 1

)
= NA

(
r,

1
w ± 1

)
−NB

(
r,

1
w ± 1

)
counting function for those points z0 ∈ A \ B. Therefore, for each points in B ∈
{z ∈ C : |z| ≤ r} there is exactly one pole in the disc {z ∈ C : |z| ≤ r + 1}, which
implies that

NB(r − 1, w) ≤ NB
(
r,

1
w ± 1

)
≤ NB(r + 1, w). (4.23)

Similarly, two points in A \ B ∩ {z ∈ C; |z| ≤ r} there exists one pole in the disc
{z ∈ C : |z| ≤ r + 1}. Therefore, we have

NA\B

(
r,

1
w ± 1

)
≤ 2NA\B(r + 1, w). (4.24)

Since w is the finite order meromorphic solution of (4.22), let

H(z, w) = (w + w)(1− w2)− k1w.
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It is easy to check that w = ±1 is not the solutions of H(z, w) = 0. It follows from
Lemma 2.3 that

NA

(
r,

1
w ± 1

)
= N

(
r,

1
w ± 1

)
= 2T (r, w) + S(r, w) (4.25)

In the following, we proceed to prove that the points in the set A are “almost all”
in the set A \B. Suppose that

NA\B(r + 1, w) = αT (r, w) + S(r, w),

where 0 ≤ α ≤ 1. From (4.23) to (4.25), we have

2T (r, w) = N
(
r,

1
w ± 1

)
+ S(r, w) = NA

(
r,

1
w ± 1

)
+ S(r, w)

= NB

(
r,

1
w ± 1

)
+NA\B

(
r,

1
w ± 1

)
+ S(r, w)

≤ NB(r + 1, w) + 2NA\B(r + 1, w)

= NA(r + 1, w) +NA\B(r + 1, w)

≤ (1 + α)T (r + 1, w) + S(r, w).

(4.26)

It yields that α = 1 by Lemma 2.2, since w is a meromorphic function of finite
order. Therefore, we have

NB(r + 1, w) = S(r, w).

It reveals that for “almost all” z0 ∈ A, then w(z0 + 1) =∞ and w(z0− 1) =∞ can
not hold at the same time. If w is a rational function, then there is no point z0 ∈ A
such that w(z0 + 1) =∞ and w(z0 − 1) =∞ hold at the same time. Now, set

w(z) = P (z)/Q(z)

where P (z) and Q(z) are polynomials, we can rewrite (4.22) as follows

P (z − 1)Q(z + 1) + P (z + 1)Q(z − 1)
Q(z + 1)Q(z − 1)

=
k1P (z)Q(z)
Q2(z)− P 2(z)

. (4.27)

Then the numerator and the denominator on the left-hand side are relatively prime.
In fact, if it is not true, then there is a point such that Q(z0+1) = 0 and Q(z0−1) =
0 hold, which is a contradiction with there is no point z0 such that w(z0 + 1) =∞
and w(z0 − 1) =∞ hold, if w is a rational function. Moreover, the numerator and
the denominator on the right-hand side are also relatively prime. Indeed, if this
is not true, there is a point such that P (z1) = 0 and Q(z1) = 0 hold, which is
impossible. Therefore, we have

Q(z + 1)Q(z − 1) = Q2(z)− P 2(z) (4.28)

holds, and at the same time the equality

P (z − 1)Q(z + 1) + P (z + 1)Q(z − 1) = k1P (z)Q(z) (4.29)

holds. Comparing the degree of both side of (4.28), we conclude that degQ > degP .
Let n = degQ and m = degP , it is clear that n > m and n ≥ 1. Suppose that

P (z) = amz
m + am−1z

m−1 + . . .+ a1z + a0,

Q(z) = bnz
n + bn−1z

n−1 + . . .+ b1z + b0,
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where ai(0 ≤ i ≤ n) and bj(0 ≤ j ≤ m) are constants, and an 6= 0 and bm 6= 0.
If we substitute P (z) and Q(z) into (4.28), and compare the coefficients of degree
2n− 2 of both side of (4.28), then we have

a2
m = nb2n, (4.30)

which implies that m = n− 1. Now, let us compare the coefficients of degree n of
both side of (4.29), then it shows that k1 = 2.

Suppose that n > 2, then we proceed to compare the coefficients of degree 2n−3
of both side of (4.29), it yields that

(n− 1)(n− 2)an−1bn = 0,

which is impossible. Thus, it shows that n ≤ 2. Suppose that n = 2, then we can
write

P (z) = a1z + a0 and Q(z) = b2z
2 + b1z + b0.

If we substitute P (z) with degree 1 and Q(z) with degree 2 into (4.28) and (4.29),
and compare the coefficients of both side of two equations, then we have

a2
1 = 2b22 (4.31)

a0a1 = b1b2 (4.32)

a1b1 = a0b2 (4.33)

b22 + 2b0b2 = b21 − a2
0. (4.34)

From (4.32) and (4.33), we conclude that a2
1 = b22, which is a contradiction with

(4.31). From the discussion above, it is known that n = 1. Therefore, it follows
that by (4.30)

w =
1

z + α
,

where α ∈ C. Moreover, −w is also a solution of difference Painlevé equations II
(4.22). Therefore, we have our assertion. �

From Theorem 4.5, we know that if the difference Painlevé equation II (4.19)
with π1 = 0 and π2 = 0 solves a rational solution, then k1 = 2, Thus, we have the
following corollary.

Corollary 4.6. There is no rational solutions of the difference Painlevé equation
II

w + w =
k1w

1− w2
,

if k1 6= 2, where k1 is a small function related to w with period 1.

The next example shows that there exists a rational solution of the difference
Painlevé equation II (4.19), if π1 = 0 and π2 = 0.

Example 4.7. Let w = 1/z. Then w is a rational solution of the difference Painlevé
equation II

w + w =
2w

1− w2
.

Also −w is a rational solution of this equation.
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In fact, we can obtain (4.28) the same way if π2 6= 0 and π1 = 0. Thus, for the
difference Painlevé equation II becomes

w + w =
k1w + π2

1− w2
, (4.35)

where π2 and k1 are non-zero small functions related to w, which are of period 2
and 1 respectively. If w is a rational solution of (4.35), then k1 and π2 are reduced
to the non-zero constants. If we write w(z) = P (z)/Q(z), where P (z) and Q(z) are
polynomials, then (4.28) holds. It shows that degP < degQ. Let

H1(z, w) = (w + w)(1− w2)− (k1w + π2).

It yields that w = 0 is not a solution of H1(z, w) = 0 according to π2 6= 0. Thus, it
follows from Lemma 2.3 that

m
(
r,

1
w

)
= S(r, w),

which implies that deg p ≥ degQ. It is a contradiction. Therefore, w is not a
rational solution of (4.35).

Theorem 4.8. Let w be a non-constant meromorphic solution of finite order of
the difference Painlevé equation II (4.19). If π1 = 0 and π2 6= 0, then w is tran-
scendental.

The next theorem is a partial result on the rational solutions of the difference
Painlevé equation II with π1 6= 0 and π2 6= 0.

Theorem 4.9. Suppose that w(z) = P (z)/Q(z) is a non-constant rational function.
Let P (z) and Q(z) be the polynomials

P (z) = amz
m + . . .+ a1z + a0,

Q(z) = bnz
n + . . .+ b1z + b0,

where ai(0 ≤ i ≤ m) and bj(0 ≤ j ≤ n) are constants. If w is a rational solution
of the difference Painlevé equation II (4.19) such that π1 6= 0 and π2 6= 0, then
n = m+ 1 and (π2/π1)2 = n ∈ N.

Proof. Suppose that w is a rational solution of (4.19), then we have

Q(z + 1)Q(z − 1)((π1z + k1)P (z)Q(z) + π2Q
2(z))

= (Q2(z)− P 2(z))(P (z + 1)Q(z − 1) + P (z − 1)Q(z + 1)).
(4.36)

Let us compare the degree of both sides of (4.36), then we have n = m+ 1 and

π1an−1 + π2bn = 0. (4.37)

By the similar way as (4.30) in Theorem 4.5, it follows that a2
n−1 = nb2n. This and

(4.37), yield
π2

2

π2
1

= n.

Therefore, we have our assertion. �

From Theorem 4.9, we know that if the difference Painlevé equation II (4.19)
with π1 6= 0 and π2 6= 0 solves a rational solution, then π2

2/π
2
1 is an integer, Thus,

we have the following corollary.
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Corollary 4.10. There is no rational solutions of the difference Painlevé equation
II

w + w =
(π1z + k1)w + π2

1− w2
,

if π2
2/π

2
1 is not an integer, where πi and kj(i = 1, 2; j = 1) are the small functions

related to w with period of i and j, respectively.

The next example shows that there exists a rational solution of the difference
Painlevé equation II (4.19), if π1 6= 0 and π2 6= 0.

Example 4.11. Let w = 1
z+β and β = k1−2

π1
, then w is a rational solution of the

difference Painlevé equation II

w + w =
(π1z + k1)w + π2

1− w2
,

if π2 + π1 = 0.

Next we proceed to seek new solutions from a known solution of the difference
Painlevé equation II (4.19). To seek a new solution, let us reveal the relation
between the solutions of the difference Riccati equation and the solutions of the
difference Painlevé equation II in the following theorem.

Theorem 4.12. If w is a solution of the difference Riccati equation

w =
w +

(
1 + π2

2 −
π1z+k1

2

)
1 + w

,

where πi and kj (i = 1, 2; j = 1) are the small functions related to w with period of
i and j, respectively, then w is the solution of the difference Painlevé equation II
(4.19).

Proof. Since w is a solution of difference Riccati equation, then by Lemma 3.1, w
satisfies

w =
w −

(
1− π2

2 −
π1z+k1

2

)
1− w

.

Therefore,

w + w =
w + (1 + π2

2 −
π1z+k1

2 )
1 + w

+
w − (1− π2

2 −
π1z+k1

2 )
1− w

=
(π1z + k1)w + π2

1− w2
.

�

In what follows, we try to construct the meromorphic solutions of the difference
Painlevé equation II . If we find a meromorphic solution w of the difference Riccati
equations, then w solves the difference Painlevé equation II according to Theorem
4.12. The main idea is from [15].

Suppose that w is a meromorphic solution of the difference Ricciti equation

w =
w −

(
1− π2

2 −
π1z+k1

2

)
1− w

, (4.38)
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where πi and kj(i = 1, 2; j = 1) are the small functions related to w with period of
i and j, respectively. By denoting

w =
f(z + 1)− f(z)

f(z)
, (4.39)

we have the meromorphic function f(z) satisfies the following equality

f(z + 2)− f(z + 1)
f(z + 1)

=
f(z+1)−f(z)

f(z) + π

1 + f(z+1)−f(z)
f(z)

,

where π = 1 − π2
2 −

π1z+k1
2 , which implies that f(z) is a solution of the following

second order linear homogeneous difference equation

f(z + 2)− 2f(z + 1) + (1− π)f(z) = 0. (4.40)

In what follows, let us consider the simplest case that π is a constant. Thus,

f(z) = (1 +
√
π)zQ1(z) + (1−

√
π)zQ2(z)

is a solution of (4.40), where Q1 and Q2 are functions with period 1. Therefore,

w =
√
π(1 +

√
π)zQ1(z)−

√
π(1−

√
π)zQ2(z)

(1 +
√
π)zQ1(z) + (1−

√
π)zQ2(z)

is a solutions of the difference Riccati equation (4.38) by (4.39). We conclude that
w is a solution of the difference Painlevé equation II by Theorem 4.12.

Now we seek a new meromorphic solution by a known solution of the difference
Painlevé equations II. For example, w1 = 1/z is also the solution of the difference
Riccati equation

w =
w

1 + w
. (4.41)

It follows from theorem 4.12 that w1 is a solution of the difference Painlevé equation
II

w + w =
2

1− w2
. (4.42)

If f1(z) is the solution of (4.39), then let us set

f1(z + 1) =
z + 1
z

f1(z), (4.43)

then according to (4.40), we have f1(z) is a solution of the linear difference equation

f(z + 2)− 2f(z + 1) + f(z) = 0.

To seek a new solution from w1 = 1/z, we need the following lemma. We state it as
complex analysis version in [15]. It also works for the real line case, see [16, p.48]
and [17, pp.115-116].

Lemma 4.13. Let R(z) be a rational function. We write R(z) in the form

R(z) = ρ
Πn
k=1(z − αk)

Πm
j=1(z − βj)

,

where ρ 6= 0, αk, k = 1, . . . , n and j = 1, . . . ,m are complex numbers. The first
order linear homogeneous equations

y(z + 1) = R(z)y(z)
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can be solved as

y(z) = Q(z)ρz
Πn
k=1Γ(z − αk)

Πm
j=1Γ(z − βj)

.

Since f1(z) is a solution of the first order difference equation (4.43), by Lemma
4.13 we have

f1(z) = Q1(z)
Γ(z + 1)

Γ(z)
= zQ1(z),

where Q1(z) is a function with period 1. It is known that f2(z) = Q2(z) is another
solution of (4.43), where Q2(z) is a function with period 1. By [24], we know that
(4.43) has two linearly independent meromorphic solutions Q1(z) and Q2(z). Thus,
every meromorphic solution of (4.43) can be formed by

f(z) = zQ1(z) +Q2(z).

Therefore, by using the transformation (4.39), we have another new meromorphic
solution of (4.41), which can be written as

w(z) =
Q1(z)

zQ1(z) +Q2(z)
. (4.44)

Now we have found a new meormorphic solution (4.44) of difference Painlevé equa-
tion II (4.42) from a known solution w1 = 1/z. In particular,

w =
1

z + α

solves the difference Painlevé equation II (4.42), where α is any complex constant.
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Painlevé equations. J. Math. Anal. Appl. 364 (2010), no. 2, 556-566.

[3] Y.-M. Chiang, S.-J. Feng; On the Nevanlinna characteristic of f(z+ η) and difference equa-
tions in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129.
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différentielles du premier ordre, Acta Math. 36 (1913), 297–343.
[20] A. A. Mohon’ko, V. D. Mohon’ko; Estimates of the Nevanlinna characteristics of certain

classes of meromorphic functions, and their applications to differential equations, Sibirsk.

Mat. Zh. 15 (1974), 1305-1322, 1431, (Russian).
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l’intégrale générale est uniforme, Acta Math. 25 (1902), 1–85.
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