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EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS
FOR SOME NONLINEAR INTEGRAL EQUATIONS ON AN

UNBOUNDED INTERVAL

BEKİR İLHAN, İSMET ÖZDEMİR

Abstract. The goal in this paper is to prove an existence theorem for the

solutions of a class of functional integral equations which contain a number

of classical nonlinear integral equations as special cases. Our investigations
will be carried out in the space of continuous and bounded functions on an

unbounded interval. The main tools are some techniques in analysis and the

Schauder fixed point theorem via measures of noncompactness. Our results ex-
tend and improve some known results in the recent literature. Three nontrivial

examples explain the generalizations and applications of our results.

1. Introduction

It is well known that the theory of nonlinear integral equations of various types
appears in many applications that arise in the fields of mathematical analysis,
nonlinear functional analysis, mathematical physics, and engineering (see [6, 7,
12]). There has been a significant development in ordinary and partial fractional
differential and integral equations in recent years.

Agarwal and O’Regan [1] gave the existence of solutions for the nonlinear integral
equation

x(t) =
∫ ∞

0

k(t, s)f(s, x(s))ds, t ∈ R+, (1.1)

in the space of bounded and continuous functions Cl[0,∞) which have limit at
infinity.

Meehan and O’Regan [13, 14] discussed the existence of solutions for the non-
linear integral equation

x(t) = h(t) + µ

∫ ∞

0

k(t, s)f(s, x(s))ds, t ∈ R+, (1.2)

in the space Cl[0,∞) and the existence of solutions for the nonlinear integral equa-
tion

x(t) = h(t) +
∫ ∞

0

k(t, s)[f(x(s)) + g(x(s))]ds, t ∈ R+, (1.3)
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in the space the space BC(R+,R) of bounded and continuous functions on R+.
Later in [15] they established the existence of at least one positive solution for the
nonlinear integral equation

x(t) = h(t) +
∫ ∞

0

k(t, s)f(s, x(s))ds, t ∈ R+, (1.4)

in the space Lp(R+), in 2001.
In 2004, Banaś and Poludniak [3] investigated the monotonic solutions for the

nonlinear integral equation

x(t) = f(t) +
∫ ∞

0

u(t, s, x(s))ds, t ∈ R+, (1.5)

in the space of Lebesque integrable functions on the halfaxis R+ by using the Darbo
fixed point theorem and the measure of noncompactness (both in strong and weak
sense).

Banaś and Martin [4] studied the existence and asymptotic stability of solutions
for the nonlinear integral equation

x(t) = g(t) + f(t, x(t))
∫ ∞

0

K(t, s)h(s, x(s))ds, t ∈ R+, (1.6)

in the Banach space BC(R+,R), in 2006.
In 2004, Cabellaro and others [8], in 2008, Banaś and Olszowy [5] and more

recently in 2013, Darwish and others [9] studied the existence of solutions for the
Urysohn integral equation defined on an unbounded interval

x(t) = a(t) + f(t, x(t))
∫ ∞

0

u(t, s, x(s))ds, t ∈ R+, (1.7)

in the space BC(R+,R).
In those papers, different conditions and various measures of noncompactness

were applied in proving existence theorems.
Olszowy [16, 17, 18] studied (1.7) in the Frèchet space of real functions being

defined and continuous on R+ and has given results about monotonocity of the
solutions of the integral equation (1.7).

In 2010, Karoui and others [10] studied (1.7) in the space Lp(R+) by means
of Schauder’s fixed point theorem. Recently, Khosravi and others [11] studied the
existence of solutions for nonlinear functional integral equations of convolution type

x(t) = f(t, x(t)) +
∫ ∞

0

k(t− s)(Qx)(s)ds, t ∈ R+, (1.8)

in the space Lp(R+), in 2015.
Motivated by recent researches in this field, we study the more general nonlinear

integral equation

x(t) = (T1x)(t) + (T2x)(t)
∫ ∞

0

u(t, s, x(s))ds, t ∈ R+, (1.9)

where the functions u(t, s, x) and the operators Tix, (i = 1, 2) appearing in (1.9)
are given, while x = x(t) is an unknown function. Using the technique of a suitable
measure of noncompactness, we prove an existence theorem for (1.9). We give three
nontrivial examples that explain the generalizations and applications of our results.
So our work improves directly results obtained in [3, 4, 8, 9, 10] and completes some
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results mentioned before. To the best of our knowledge, (1.9) is more general than
those investigated up to now and includes (1.2)-(1.8) as special cases.

2. Auxiliary facts and notation

In this section, we give a collection of auxiliary facts which will be needed further
on. Assume that (E, ‖ · ‖) is a real Banach space with zero element θ. Let B(x, r)
denote the closed ball centered at x and with radius r. The symbol Br stands for
the ball B(θ, r). If X is a subset of E, then X and convX denote the closure and
convex closure of X, respectively. With the symbols λX and X+Y , we denote the
standard algebraic operations on sets. Moreover, we denote by ME the family of all
nonempty and bounded subsets of E and NE its subfamily consisting of all relatively
compact subsets. The definition of the concept of a measure of noncompactness
presented below comes from [2].

Definition 2.1. A function µ : ME → R+ = [0,∞) is said to be a measure of
noncompactness in E if it satisfies following conditions:

(1) The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE .
(2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).
(3) µ(X) = µ(convX) = µ(X).
(4) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ), for λ ∈ [0, 1].
(5) If {Xn} is a sequence of nonempty, bounded, closed subsets of the set E

such that Xn+1 ⊂ Xn, (n = 1, 2, . . . ) and limn→∞ µ(Xn) = 0, then the set
X∞ = ∩∞n=1Xn is nonempty.

Notice that the intersection set X∞ from 5 belongs to kerµ. In fact, from the
inequality µ(X∞) ≤ µ(Xn) for any n = 1, 2, . . . we have that µ(X∞) = 0. This
property of the set X∞ will be crucial later.

In the sequel, we will work in the Banach space BC(R+,R) which is equipped
with the standard norm ‖x‖ = sup{|x(t)| : t ∈ R+}.

We will use a measure of noncompactness in the space BC(R+,R). To define this
measure let us fix a nonempty and bounded subset X of BC(R+,R). For x ∈ X,
ε ≥ 0 and L > 0, we denoted by the modulus of continuity for function x, as

wL(x, ε) = sup{|x(s)− x(t)| : t, s ∈ [0, L] and |t− s| ≤ ε}.

Further let us put

wL(X, ε) = sup{wL(x, ε) : x ∈ X},
wL

0 (X) = lim
ε→0

wL(X, ε),

w0(X) = lim
L→∞

wL
0 (X). (2.1)

Next we define

βL(x) = sup{|x(t)| : t ≥ L},
βL(X) = sup{βL(x) : x ∈ X},

β(X) = lim
L→∞

βL(X). (2.2)

Finally, let us define the function µ as

µ(X) = w0(X) + β(X).
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It is shown in [2] that the function µ is a measure of noncompactness in the space
BC(R+,R). Moreover, the kernel kerµ of this measure contains nonempty and
bounded sets X such that functions from X are locally equicontinuous on R+ and
tend to zero at infinity uniformly with respect to the set X; i.e., for each ε ≥ 0
there exists L > 0 with the property that

|x(t)| ≤ ε; for all x ∈ X and t with t ≥ L.

This property of kerµ will be important in our further study.

3. Main Result

We shall study the existence of solutions to (1.9) assuming that following condi-
tions are satisfied:

(i) The operators Ti : BC(R+,R) → BC(R+,R) are continuous and there
exist continuous nondecreasing functions di : R+ → R+ such that

|(Tix)(t)| ≤ di(‖x‖)

for all x ∈ BC(R+,R) and t ∈ R+, (i = 1, 2).
(ii) u : R+×R+×R→ R is a continuous function and there exist a continuous

function g : R+ × R+ → R+ and a continuous nondecreasing function
h : R+ → R+ such that

|u(t, s, x)| ≤ g(t, s)h(|x|)

for all t, s ∈ R+ and x ∈ R.
(iii) For every t ≥ 0 the function s→ g(t, s) is integrable on R+ and the function

t→
∫∞
0
g(t, s)ds is bounded on R+.

(iv) The inequality d1(r) + d2(r)h(r)G ≤ r has a positive solution r0, where
G = sup{

∫∞
0
g(t, s)ds : t ≥ 0} <∞.

(v) There exist the nonnegative constants ki and mi for r0 such that the in-
equalities

ω0(TiX) ≤ kiω0(X),

β(TiX) ≤ miβ(X)

hold for all nonempty and bounded subset X of the ball Br0 , (i = 1, 2),
where w0 and β are defined by (2.1) and (2.2).

(vi) max
{
k1 + k2Gh(r0),m1 +m2Gh(r0)

}
< 1.

(vii) limL→∞
{

sup{
∫∞

L
g(t, s)ds : t ∈ [0, L]}

}
= 0.

Now we can formulate an existence result concerning the functional integral equa-
tion (1.9).

Theorem 3.1. Under assumptions (i)–(vii), there exists at least one solution x =
x(t) of (1.9) in the space BC(R+,R) such that x(t)→ 0 as t→∞.

Proof. We define an operator F on BC(R+,R) as follows

(Fx)(t) = (T1x)(t) + (T2x)(t)
∫ ∞

0

u(t, s, x(s))ds.

Notice that in view of assumptions (i) and (ii) the function t → (Fx)(t) is well
defined on the interval R+. At first we show that the function Fx is continuous on
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R+. To do this fix arbitrarily L > 0 and ε ≥ 0. Take arbitrary numbers t, t0 ∈ [0, L]
with |t− t0| ≤ ε. Then in view of assumptions we obtain

|(Fx)(t)− (Fx)(t0)|

=
∣∣∣(T1x)(t) + (T2x)(t)

∫ ∞

0

u(t, s, x(s))ds− (T1x)(t0)

− (T2x)(t0)
∫ ∞

0

u(t0, s, x(s))ds
∣∣∣

≤ |(T1x)(t)− (T1x)(t0)|+ |(T2x)(t)− (T2x)(t0)|
∣∣∣ ∫ ∞

0

u(t, s, x(s))ds
∣∣∣

+ |(T2x)(t0)|
∣∣∣ ∫ ∞

0

[u(t, s, x(s))− u(t0, s, x(s))]ds
∣∣∣

≤ ωL(T1x, ε) + ωL(T2x, ε)
∫ ∞

0

|u(t, s, x(s))|ds

+ d2(‖x‖)
∫ ∞

0

|u(t, s, x(s))− u(t0, s, x(s))|ds

≤ ωL(T1x, ε) + ωL(T2x, ε)
∫ ∞

0

g(t, s)h(|x(s)|)ds

+ d2(‖x‖)
{∫ L

0

|u(t, s, x(s))− u(t0, s, x(s))|ds

+
∫ ∞

L

|u(t, s, x(s))− u(t0, s, x(s))|ds
}

≤ ωL(T1x, ε) + ωL(T2x, ε)Gh(‖x‖) + d2(‖x‖)LωL
‖x‖(u, ε)

+ 2d2(‖x‖)h(‖x‖) sup
{∫ ∞

L

g(t, s)ds : t ∈ [0, L]
}
,

(3.1)

where

ωL(Tix, ε) = sup{|(Tix)(s)− (Tix)(t)| : t, s ∈ [0, L] and |t− s| ≤ ε}

for i = 1, 2 and

ωL
‖x‖(u, ε) = sup

{
|u(t, s, y)− u(t0, s, y)| : t, t0, s ∈ [0, L],

y ∈ [−‖x‖, ‖x‖] and |t− t0| ≤ ε
}
.

By the uniform continuity of the functions Tix on the set [0, L] and u on the set
[0, L] × [0, L] × [−‖x‖, ‖x‖], we deduce that ωL(Tix, ε) → 0 and ωL

‖x‖(u, ε) → 0 as
ε→ 0. Further observe that by assumption (vii) we can choose a number L so big
that the last term of the estimate (3.1) is sufficiently small. Thus we infer that Fx
is continuous on the interval [0, L] for any L > 0 big enough. This implies that Fx
is continuous on the whole interval R+. Next we show that Fx is bounded on R+.
By our assumptions, for arbitrarily fixed t ∈ R+ we have:

|(Fx)(t)| =
∣∣∣(T1x)(t) + (T2x)(t)

∫ ∞

0

u(t, s, x(s))ds
∣∣∣

≤ |(T1x)(t)|+ |(T2x)(t)|
∫ ∞

0

|u(t, s, x(s))| ds.
(3.2)
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By the assumptions and from estimate (3.2) we obtain

|(Fx)(t)| ≤ d1(‖x‖) + d2(‖x‖)
∫ ∞

0

g(t, s)h(|x(s)|)ds

≤ d1(‖x‖) + d2(‖x‖)h(‖x‖)G.

Hence, we obtain
‖Fx‖ ≤ d1(‖x‖) + d2(‖x‖)h(‖x‖)G (3.3)

which implies that the function Fx is bounded on R+.
Linking this fact with the continuity of the function Fx on R+ we conclude that

the operator F maps the space BC(R+,R) into itself. Furthermore, by estimate
(3.3) and assumption (iv) we infer that F is a self mapping of the ball Br0 , where
r0 is mentioned in the assumption (iv).

Next we take a nonempty subset X of the ball Br0 . Fix ε ≥ 0 and L > 0 and
take an arbitrary function x ∈ X. Then, using estimate (3.1), it follows that

ωL(Fx, ε) ≤ ωL(T1x, ε) + ωL(T2x, ε)Gh(r0) + d2(r0)LωL
r0

(u, ε)

+ 2d2(r0)h(r0) sup
{∫ ∞

L

g(t, s)ds : t ∈ [0, L]
}
.

(3.4)

Hence by (3.4) we obtain

ωL(FX, ε) ≤ ωL(T1X, ε) + ωL(T2X, ε)Gh(r0) + d2(r0)LωL
r0

(u, ε)

+ 2d2(r0)h(r0) sup
{∫ ∞

L

g(t, s)ds : t ∈ [0, L]
}
.

(3.5)

Now taking into account the properties of the component involved in the estimate
(3.5), we have

ωL
0 (FX) ≤ ωL

0 (T1X) + ωL
0 (T2X)Gh(r0)

+ 2d2(r0)h(r0) sup
{∫ ∞

L

g(t, s)ds : t ∈ [0, L]
}
.

(3.6)

Combining (3.6) with assumption (vii), we derive the estimate

ω0(FX) ≤ [k1 + k2Gh(r0)]ω0(X). (3.7)

Further taking x ∈ X and choosing arbitrarily L > 0, in view of the estimate (3.2)
we obtain that

sup{|(Fx)(t)| : t ≥ L}
≤ sup{|(T1x)(t)| : t ≥ L}

+ sup{|(T2x)(t)| : t ≥ L}h(r0) sup
{∫ ∞

0

g(t, s)ds : t ≥ L
}
.

(3.8)

Hence by (3.8) we obtain

β(FX) ≤ β(T1X) + β(T2X)h(r0) sup
{∫ ∞

0

g(t, s)ds : t ≥ L
}

≤ m1β(X) +m2β(X)h(r0)G

≤ [m1 +m2h(r0)G]β(X).

(3.9)

Now, linking (3.7) and (3.9) we derive that

µ(FX) ≤ kµ(X), (3.10)
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where k = max{k1 + k2Gh(r0), m1 +m2Gh(r0)}.
Next, we consider the sequence of sets (Bn

r0
), where B1

r0
= convF (Br0), B2

r0
=

convF (B1
r0

) and so on. Observe that all sets of this sequence are nonempty,
bounded, closed and convex. Moreover, Bn+1

r0
⊂ Bn

r0
for n = 1, 2, . . . Further,

keeping in mind (3.10) we obtain

µ(Bn
r0

) ≤ knµ(Br0).

Obviously in view of assumption (vi) we have that k < 1. Hence, from condition 5
of Definition 2.1 we infer that the set Y = ∩∞n=1B

n
r0

is nonempty, bounded, closed
and convex. In fact, since µ(Y ) ≤ µ(Bn

r0
) for any n, we deduce that µ(Y ) = 0

and thus Y ∈ kerµ. It should be also noted that the operator F maps the set Y
into itself. Now we show that F is continuous on the set Y . To do this fix ε ≥ 0
and take functions x, y ∈ Y such that ‖x − y‖ ≤ ε. Taking into account the fact
that Y ∈ kerµ and the description of sets belonging to ker µ we can find a number
L > 0 such that for each z ∈ Y and t ≥ L the inequality |z(t)| ≤ ε is satisfied.
Since F : Y → Y , we have that Fx, Fy ∈ Y . Thus, for t ≥ L we obtain that

|(Fx)(t)− (Fy)(t)| ≤ |(Fx)(t)|+ |(Fy)(t)| ≤ 2ε.

On the other hand, for t ∈ [0, L] we obtain

|(Fx)(t)− (Fy)(t)|

=
∣∣∣(T1x)(t) + (T2x)(t)

∫ ∞

0

u(t, s, x(s))ds− (T1y)(t)

− (T2y)(t)
∫ ∞

0

u(t, s, y(s))ds
∣∣∣

≤ |(T1x)(t)− (T1y)(t)|+ |(T2x)(t)− (T2y)(t)|
∫ ∞

0

|u(t, s, x(s))|ds

+ |(T2y)(t)|
∫ ∞

0

|u(t, s, x(s))− u(t, s, y(s))| ds

≤ ε+ εGh(r0) + d2(r0)
{∫ L

0

|u(t, s, x(s))− u(t, s, y(s))| ds

+
∫ ∞

L

|u(t, s, x(s))− u(t, s, y(s))| ds
}

≤ ε+ εGh(r0) + d2(r0)Lω̄L
r0

(u, ε)

+ 2d2(r0)h(r0) sup
{∫ ∞

L

g(t, s)ds : t ∈ [0, L]
}
,

(3.11)

where

ω̄L
r0

(u, ε) = sup{|u(t, s, x)−u(t, s, y)| : t, s ∈ [0, L]; x, y ∈ [−r0, r0] and |x− y| ≤ ε}.

Observe that ω̄L
r0

(u, ε)→ 0 as ε→ 0. Moreover we can choose L in such a way that
the last term in estimate (3.11) is small enough. Taking into account the above
facts we conclude that the operator F is continuous on the set Y . Finally, linking
all above established properties of the set Y and the operator F : Y → Y and using
the Schauder fixed point principle we infer that the operator F has at least one
fixed point x in the set Y . Moreover, keeping in mind that Y ∈ kerµ we obtain
that x(t)→ 0 as t→∞. �
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4. Examples

Example 4.1. Let us consider the integral equation

x(t) =
t sinx(t)
3t+ 9

+
t2x2(t)
3t2 + 2

∫ ∞

0

t2 exp(−t− s)
√
|x(s)|

t2 + 1
ds, (4.1)

where t ∈ R+.
If we put (T1x)(t) = t sinx(t)/(3t+9), (T2x)(t) = t2x2(t)/(3t2+2) and u(t, s, x) =

t2 exp(−t− s)
√
|x|/(t2 + 1), then (4.1) is a special case of (1.9). It is easily verified

that the assumptions of Theorem 3.1 are satisfied. Indeed, T1 and T2 are continuous
operators on the space BC(R+,R). Further for all t ∈ R+ and x ∈ BC(R+,R), we
have

|(T1x)(t)| ≤ 1
3
,

|(T2x)(t)| ≤ x2(t)
3

.

Hence assumption (i) is satisfied with d1(x) = 1/3 and d2(x) = x2/3. Now note
that the function u is continuous on the set R+ × R+ × R. Moreover we obtain

|u(t, s, x)| =
∣∣∣ t2 exp(−t− s)

√
|x|

t2 + 1

∣∣∣ ≤ exp(−t− s)
√
|x|

and if we choose g(t, s) = exp(−t − s) and h(x) =
√
x, we see that assumption

(ii) is satisfied. To check that the assumption (iii) is satisfied let us observe that
s→ exp(−t− s) is integrable on R+ and t→

∫∞
0

exp(−t− s)ds is bounded on R+.
Thus it is easily seen that

G = sup
{∫ ∞

0

exp(−t− s)ds : t ∈ R+
}

= sup{exp(−t) : t ∈ R+} = 1.

Now notice that the inequality in assumption (iv) has the form

1
3

+
r2
√
r

3
≤ r. (4.2)

It can be easily verified that if 0.3590 ≤ r0 < 1. Then r0 is the solution of (4.2).
Also for ε ≥ 0, L > 0, ‖x‖ ≤ r0 and t, s ∈ [0, L] such that |t− s| ≤ ε, we have

|(T1x)(t)− (T1x)(s)| =
∣∣∣∣ t sinx(t)

3t+ 9
− s sinx(s)

3s+ 9

∣∣∣∣
≤ t(s+ 3)| sinx(t)− sinx(s)|+ 3| sinx(s)||t− s|

3(t+ 3)(s+ 3)

≤ t

3(t+ 3)
|x(t)− x(s)|+ ε| sinx(s)|

(t+ 3)(s+ 3)

≤ 1
3
|x(t)− x(s)|+ ε

9
.

(4.3)
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Further, it can be seen that

|(T2x)(t)− (T2x)(s)| =
∣∣∣ t2x2(t)
3t2 + 2

− s2x2(s)
3s2 + 2

∣∣∣
≤ 2r0t2(3s2 + 2)|x(t)− x(s)|+ 2r20(t+ s)|t− s|

(3t2 + 2)(3s2 + 2)

≤ 2r0t2

3t2 + 2
|x(t)− x(s)|+ 2r20ε(t+ s)

(3t2 + 2)(3s2 + 2)

≤ 2r0
3
|x(t)− x(s)|+ r20εL.

(4.4)

From estimates (4.3) and (4.4) in view of the (2.1) we have

ω0(T1X) ≤ 1
3
ω0(X),

ω0(T2X) ≤ 2r0
3
ω0(X),

respectively. This implies that assumption (v) is satisfied with k1 = 1/3 and k2 =
2r0/3. Finally we obtain

sup{|(T1x)(t)| : t ≥ L} = sup
{∣∣∣ t sinx(t)

3t+ 9

∣∣∣ : t ≥ L
}

=
1
3

sup{| sinx(t)| : t ≥ L}

≤ 1
3

sup{|x(t)| : t ≥ L}.

(4.5)

Thus from estimate (4.5) we have

β(T1X) ≤ 1
3
β(X).

Moreover, we derive that

sup{|(T2x)(t)| : t ≥ L} = sup
{∣∣∣ t2x2(t)

3t2 + 2

∣∣∣ : t ≥ L
}

=
1
3

sup{|x(t)|2 : t ≥ L}

≤ r0
3

sup{|x(t)| : t ≥ L}.

(4.6)

Thus from estimate (4.6) we have

β(T2X) ≤ r0
3
β(X).

Therefore m1 = 1/3 and m2 = r0/3.
Taking into account the above estimates we have

max{k1 + k2Gh(r0), m1 +m2Gh(r0)} = max
{1

3
+

2r0
3
√
r0,

1
3

+
r0
3
√
r0

}
< 1.

Hence assumption (vi) is satisfied. Finally, we have the following equality for the
function g(t, s) appearing in assumption (vii):

sup
{∫ ∞

L

exp(−t− s)ds : t ∈ [0, L]
}

= sup
{ 1

exp(t+ L)
: t ∈ [0, L]

}
=

1
exp(L)

.

Since 1/ exp(L)→ 0 as L→∞, assumption (vii) is satisfied.
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Thus we showed that all assumptions of Theorem 3.1 are fulfilled. This yields
that (4.1) has at least one solution x = x(t) in the space BC(R+,R) vanishing at
infinity.

Remark 4.2. Note that none of the existence theorems in [13, 14, 15, 3, 1, 4, 8, 5,
9, 16, 17, 18, 10] are applicable to (4.1), since the integral equation (4.1) can not
be derived from any of the integral equations handled in mentioned papers.

Example 4.3. Let us consider the following integral equation:

x(t) =
t

10t+ 1
+
x2(t)
t+ 1

∫ ∞

0

exp(−t)(e− 1)x(s)
(t+ 1)(s+ e)(s+ 1)

ds, (4.7)

where t ∈ R+. Observe that this equation has the form of (1.9) if we put (T1x)(t) =
t/(10t+1), (T2x)(t) = x2(t)/(t+1) and u(t, s, x) = exp(−t)(e−1)x/((t+1)(s+e)(s+
1)). It is clear that T1 and T2 are continuous operators on the space BC(R+,R).
Additionally for all t ∈ R+ and x ∈ BC(R+,R), we have

|(T1x)(t)| ≤
∣∣∣ t

10t+ 1

∣∣∣,
|(T2x)(t)| ≤

∣∣∣x2(t)
t+ 1

∣∣∣.
Hence assumption (i) is satisfied with d1(x) = 1/10 and d2(x) = x2, respectively.
The function u(t, s, x) is continuous on the set R+ × R+ × R. Further we obtain

|u(t, s, x)| =
∣∣∣ exp(−t)(e− 1)x
(t+ 1)(s+ e)(s+ 1)

∣∣∣ =
exp(−t)(e− 1)|x|

(t+ 1)(s+ e)(s+ 1)

for all t, s ∈ R+ and x ∈ R. Thus the functions appearing in assumption (ii) have
the form g(t, s) = exp(−t)(e − 1)/((t + 1)(s + e)(s + 1)) and h(x) = x. Obviously
s→ exp(−t)(e−1)/((t+1)(s+e)(s+1)) is integrable on R+ and t→

∫∞
0

exp(−t)(e−
1)ds/((t+ 1)(s+ e)(s+ 1)) is bounded on R+. Moreover, we have

G = sup
{∫ ∞

0

exp(−t)(e− 1)
(t+ 1)(s+ e)(s+ 1)

ds : t ∈ R+
}

= sup
{exp(−t)

t+ 1
: t ∈ R+

}
= 1.

Now note that the inequality in assumption (iv) has the form:

1
10

+ r3 ≤ r. (4.8)

It can be easily verified that if 0.1010 ≤ r0 < 1/
√

2, then r0 is the solution of (4.8).
Also for ε ≥ 0, L > 0, ‖x‖ ≤ r0 and t, s ∈ [0, L] such that |t− s| ≤ ε, we have that

|(T1x)(t)− (T1x)(s)| =
∣∣∣ t

10t+ 1
− s

10s+ 1

∣∣∣
=

|t− s|
(10t+ 1)(10s+ 1)

≤ ε

(10t+ 1)(10s+ 1)
≤ ε.

(4.9)
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Further, it can be seen that

|(T2x)(t)− (T2x)(s)| =
∣∣∣x2(t)
t+ 1

− x2(s)
s+ 1

∣∣∣
≤ (t+ 1)|x2(t)− x2(s)|+ |x2(t)||s− t|

(t+ 1)(s+ 1)

≤ 2r0|x(t)− x(s)|
s+ 1

+
r20ε

(t+ 1)(s+ 1)
≤ 2r0|x(t)− x(s)|+ r20ε.

(4.10)

From estimates (4.9) and (4.10) in view of (2.1), we have

ω0(T1X) = 0,

ω0(T2X) ≤ 2r0ω0(X).

This implies that assumption (v) is satisfied with k1 = 0 and k2 = 2r0. Further,
we have

sup{|(T1x)(t)| : t ≥ L} = sup
{∣∣∣ t

10t+ 1

∣∣∣ : t ≥ L
}

=
1
10
. (4.11)

Moreover, we obtain

sup{|(T2x)(t)| : t ≥ L} = sup
{∣∣∣x2(t)
t+ 1

∣∣∣ : t ≥ L
}

=
1

L+ 1
sup{|x(t)|2 : t ≥ L}

≤ r0
L+ 1

sup{|x(t)| : t ≥ L}.

(4.12)

Thus from estimates (4.11) and (4.12) in view of (2.2) we have that β(T1X) = 1/10
and β(T2X) = 0. Therefore we obtain m1 = 1/10 and m2 = 0. Keeping in mind
the above obtained constants k1, k2,m1,m2 we obtain

max
{

2r20,
1
10

}
< 1

and thus assumption (vi) is satisfied. Finally, we obtain

sup
{∫ ∞

L

exp(−t)(e− 1)
(t+ 1)(s+ e)(s+ 1)

ds : t ∈ [0, L]
}

= sup
{exp(−t)

(t+ 1)
ln
(L+ 1
L+ e

)
: t ∈ [0, L]

}
=

1
exp(L)(L+ 1)

ln
(L+ 1
L+ e

)
.

(4.13)

Hence, we infer that assumption (vii) is satisfied.
Finally we conclude that the assumptions of Theorem 3.1 are satisfied. This

implies that the considered integral equation has a solution x = x(t) belonging to
the set Y . Moreover, x(t)→ 0 as t→ 0.

Remark 4.4. Now we compare the result in Theorem 3.1 with the results in
[5, 18, 9].

Notice that in [5] it was assumed that limt→∞ a(t) = 0. Thus, the result given
in [5] is inapplicable to(4.7).

Now if we consider the assumption (iii) of [9, Theorem 8], we have f(t, x) =
x2/(t + 1) and it does not satisfy the Lipschitz condition with respect to second
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variable for all x ∈ R+ and t ∈ R+. Hence, the existence theorem given in [9] is
inapplicable to (4.7).

Further, in assumption (ii) of [18, Theorem 3.1] states that f(t, x) is non-
decreasing with respect to both nonnegative variables t and x. Since we have
t → f(t, x) = x2/(t + 1) is a decreasing function in t, [18, Theorem 3.1] is not
inapplicable to (4.7).

Example 4.5. Consider the integral equation

x(t) =
t

exp(t)
+

√
x2(t) + 1
t+ 1

∫ ∞

0

√
1 + |x(s)|

exp(t+ s+ 1)
ds, (4.14)

where t ∈ R+. This equation is a special case of (1.9) if we put (T1x)(t) = t/ exp(t),
(T2x)(t) =

√
x2(t) + 1/(t+ 1) and u(t, s, x) =

√
1 + |x|/ exp(t+ s+ 1). Obviously,

we have that T1 and T2 are continuous operators on the space BC(R+,R). More-
over, for all t ∈ R+ and x ∈ BC(R+,R), we obtain

|(T1x)(t)| ≤
∣∣∣ t

exp(t)

∣∣∣ ≤ 1
e
,

|(T2x)(t)| ≤
∣∣∣√x2(t) + 1

t+ 1

∣∣∣ ≤√‖x‖2 + 1.

Thus, we conclude that assumption (i) is satisfied with d1(x) = 1/e and d2(x) =√
x2 + 1. Observe that the function u(t, s, x) is continuous on the set R+×R+×R.

Further, we obtain

|u(t, s, x)| =
∣∣∣ √

1 + |x|
exp(t+ s+ 1)

∣∣∣ =

√
1 + |x|

exp(t+ s+ 1)

for all t, s ∈ R+ and x ∈ R. Thus the function u(t, s, x) satisfies assumption (ii)
with g(t, s) = 1/ exp(t+s+1) and h(x) =

√
1 + |x|. Obviously, s→ 1/ exp(t+s+1)

is integrable on R+ and t→
∫∞
0
ds/ exp(t+ s+ 1) is bounded on R+. Further, we

have that

G = sup
{∫ ∞

0

1
exp(t+ s+ 1)

ds : t ∈ R+
}

= sup
{ 1

exp(t+ 1)
: t ∈ R+

}
=

1
e
.

Next, observe that the inequality from assumption (iv) has the form

1
e

+
√
r20 + 1

√
1 + r0

1
e
≤ r0. (4.15)

It can be easily verified that if 1.2532 ≤ r0 ≤ 5.1357, then r0 is the solution of
(4.15). Also for ε ≥ 0, L > 0, ‖x‖ ≤ r0 and t, s ∈ [0, L] such that |t − s| ≤ ε, we
have that

|(T1x)(t)− (T1x)(s)| =
∣∣∣ t

exp(t)
− s

exp(s)

∣∣∣. (4.16)
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Further, without loss of generality we can assume that x(t) < x(s). Hence, we
obtain

|(T2x)(t)− (T2x)(s)| =
∣∣∣√x2(t) + 1

t+ 1
−
√
x2(s) + 1
s+ 1

∣∣∣
≤ 1
t+ 1

∣∣∣√x2(t) + 1−
√
x2(s) + 1

∣∣∣
+
√
x2(s) + 1

∣∣∣ 1
t+ 1

− 1
s+ 1

∣∣∣
≤ |x(t)− x(s)||2ξ|

2
√
ξ2 + 1

+

√
r20 + 1|s− t|

(t+ 1)(s+ 1)

≤ |x(t)− x(s)|+
√
r20 + 1ε,

(4.17)

where ξ ∈ (x(t), x(s)). In view of (2.1) and the uniform continuity of the function
t→ t exp(t) on the set [0, L], we have by (4.16) and (4.17) that

ω0(T1X) = 0,

ω0(T2X) ≤ ω0(X).

This implies that assumption (v) is satisfied with k1 = 0 and k2 = 1. Further, we
have

sup{|(T1x)(t)| : t ≥ L} = sup
{∣∣∣ t

exp(t)

∣∣∣ : t ≥ L
}

=

{
1/e, 0 < L ≤ 1
L/ exp(L), L > 1.

(4.18)

Moreover,

sup{|(T2x)(t)| : t ≥ L} = sup
{∣∣∣√x2(t) + 1

t+ 1

∣∣∣ : t ≥ L
}
≤
√
r20 + 1
L+ 1

. (4.19)

Thus from estimates (4.18) and (4.19) in view of (2.2) we have that β(T1X) =
β(T2X) = 0. Therefore we obtain m1 = m2 = 0. Keeping in mind the constants
k1, k2,m1,m2 above obtained we have

max
{√r0 + 1

e
, 0
}
< 1

and assumption (vi) is satisfied. Then, we obtain

sup
{∫ ∞

L

1
exp(t+ s+ 1)

ds : t ∈ [0, L]
}

= sup
{ 1

exp(t+ L+ 1)
: t ∈ [0, L]

}
=

1
exp(L+ 1)

.

Hence, we infer that assumption (vii) is satisfied.
Finally, we conclude that all of the assumptions of Theorem 3.1 are satisfied.

This implies that the integral equation (4.14) has a solution x = x(t) belonging to
the set Y . Moreover, x(t)→ 0 as t→ 0.
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Remark 4.6. Observe that if we put a(t) = t exp(−t), f(t, x) =
√
x2 + 1/(t + 1)

and u(t, s, x) =
√

1 + |x|/ exp(t + s + 1), then (4.14) is a special case of (1.7)
which is handled in [9]. It is easily seen that a ∈ BC(R+,R) and ‖a‖ = 1/e.
f(t, 0) ∈ BC(R+,R) and f satisfies the Lipschitz condition with respect to the
second variable for k = 1.

On the other hand we have g(t, s) = 1/ exp(t + s + 1) and h(r) = r which are
imposed in assumption (iv) of [9, Theorem 8] for the inequality

|u(t, s, x)− u(t, s, y)| ≤ g(t, s)h(|x− y|)
to be satisfied for all t, s ∈ R+ and x, y ∈ R.

Moreover we obtain f̄ = 1, ḡ = 1/e and ū = 1/e, where

f̄ = sup{|f(t, 0)| : t ∈ R+}, ḡ = sup
{∫ ∞

0

g(t, s)ds : t ∈ R+
}
,

ū = sup
{∫ ∞

0

|u(t, s, 0)|ds : t ∈ R+
}
.

Thus assumptions (i)–(vi) of [9, Theorem 8] are fulfilled.
Finally, let us note that the inequality of assumption (vii), given in [9]:

‖a‖+ kḡrh(r) + kūr + f̄ ḡh(r) + f̄ ū ≤ r
takes the form

r2 + 2r + 2
e

≤ r. (4.20)

It can be checked that (4.20) does not have a positive solution. Therefore, [9,
Theorem 8] is inapplicable to (4.14),

Acknowledgement. The authors are grateful to the editor and to the referees for
their valuable suggestions that helped us improve our manuscript.
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[2] J. Banaś, K. Goebel; Measures of noncompactness in Banach space, Lecture Notes in Pure
and Applied Mathematics. Vol. 60, New York: Dekker, (1980).
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