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EXISTENCE OF POSITIVE ENTIRE RADIAL SOLUTIONS TO A
(k1, k2)-HESSIAN SYSTEMS WITH CONVECTION TERMS

DRAGOS-PATRU COVEI

Abstract. In this article, we prove two new results on the existence of positive
entire large and bounded radial solutions for nonlinear system with gradient

terms

Sk1 (λ(D2u1)) + b1(|x|)|∇u1|k1 = p1(|x|)f1(u1, u2) for x ∈ RN ,

Sk2 (λ(D2u2)) + b2(|x|)|∇u2|k2 = p2(|x|)f2(u1, u2) for x ∈ RN ,

where Ski
(λ(D2ui)) is the ki-Hessian operator, b1, p1, f1, b2, p2 and f2 are

continuous functions satisfying certain properties. Our results expand those
by Zhang and Zhou [23]. The main difficulty in dealing with our system is the

presence of the convection term.

1. Introduction

The purpose of this article is to present new results concerning the nonlinear
Hessian system with convection terms

Sk1(λ(D2u1)) + b1(|x|)|∇u1|k1 = p1(|x|)f1(u1, u2), x ∈ RN ,

Sk2(λ(D2u2)) + b2(|x|)|∇u2|k2 = p2(|x|)f2(u1, u2), x ∈ RN ,
(1.1)

where N ≥ 3, b1, p1, f1, b2, p2, f2 are continuous functions satisfying certain
properties, k1, k2 ∈ {1, 2, . . . , N} and

Ski(λ) =
∑

1≤i1<···<iki
≤N

λi1 . . . λiki
, λ = (λ1, . . . , λN ) ∈ RN , i = 1, 2,

denotes the ki-th elementary symmetric function. In the literature Ski
(λ(D2ui)) it

is called the ki-Hessian operator. For instance, the following well known operators
are included in this class: S1(λ(D2ui)) =

∑N
i=1 λi = ∆ui the Laplacian operator

and SN (λ(D2ui)) =
∏N
i=1 λi = det(D2ui) the Monge-Ampère.

In recent years equations of the type (1.1) have been the subject of rather deep
investigations since appears from many branches of mathematics and applied math-
ematics. For more surveys on these questions we refer the paper to: Alves and
Holanda [1], Bao-Ji and Li [3], Bandle and Giarrusso [2], Clément-Manásevich and
Mitidieri [4], De Figueiredo and Jianfu [6], Galaktionov and Vázquez [7], Jiang and
Lv [9], Salani [20], Ji and Bao [12], Jian [11], Peterson and Wood [16], Pripoae
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[17], Quittner [18], Li and Yang [13], Li-Zhang and Zhang [14], Viaclovsky [21, 22],
Zhang and Zhou [23] and not the last Zhang [24].

The motivation for studying (1.1) comes from the work of Jiang and Lv [9] where
they study the system

∆u1 + |∇u1| = p1(|x|)f1(u1, u2) for x ∈ RN (N ≥ 3),

∆u2 + |∇u2| = p2(|x|)f2(u1, u2) for x ∈ RN (N ≥ 3),

and from the recently work of Zhang and Zhou [23] where the authors considered
the system

Sk(λ(D2u1)) = p1(|x|)f1(u2) for x ∈ RN (N ≥ 3),

Sk(λ(D2u2)) = p2(|x|)f2(u1) for x ∈ RN (N ≥ 3).

Our purpose is to expand and improve the results in [23] for the more general
system (1.1). By analogy with the work of Zhang and Zhou [23] we introduce the
following notations

C0 = (N − 1)!/[k1!(N − k1)!], C00 = (N − 1)!/[k2!(N − k2)!],

B−1 (ξ) =
ξk1−N

C0
exp

(
−
∫ ξ

0

1
C0
tk1−1b1(t)dt

)
,

B+
1 (ξ) = ξN−1 exp

( ∫ ξ

0

1
C0
tk1−1b1(t)dt

)
p1(ξ),

B−2 (ξ) =
ξk2−N

C00
exp

(
−
∫ ξ

0

1
C00

tk2−1b2(t)dt
)
,

B+
2 (ξ) = ξN−1 exp

(∫ ξ

0

1
C00

tk2−1b2(t)dt
)
p2(ξ),

P1(r) =
∫ r

0

(
B−1 (r)

∫ r

0

B+
1 (t)dt

)1/k1
dr,

P2(r) =
∫ r

0

(
B−2 (r)

∫ r

0

B+
2 (t)dt

)1/k2
dr,

F1,2(r) =
∫ r

a1+a2

1

f
1/k1
1 (t, t) + f

1/k2
2 (t, t)

dt

for r ≥ a1 + a2 > 0, a1 ≥ 0, a1 ≥ 0,

P1(∞) = lim
r→∞

P1(r), P2(∞) = lim
r→∞

P2(r), F1,2(∞) = lim
s→∞

F1,2(s).

We will always assume that the variable weights functions b1, b2, p1, p2 and the
nonlinearities f1, f2 satisfy:

(A1) b1, b2 : [0,∞) → [0,∞) and p1, p2 : [0,∞) → [0,∞) are spherically sym-
metric continuous functions (i.e., pi(x) = pi(|x|) and bi(x) = bi(|x|) for
i = 1, 2);

(A2) f1, f2 : [0,∞)× [0,∞)→ [0,∞) are continuous and increasing.
Here is a first result.

Theorem 1.1. We assume that F1,2(∞) = ∞ and (A1), hold. Furthermore, if
f1 and f2 satisfy (A2), then system (1.1) has at least one positive radial solution
(u1, u2) ∈ C2([0,∞)) × C2([0,∞)) with central value in (a1, a2). Moreover, the
following hold:
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(1) If P1(∞) + P2(∞) <∞, then limr→∞ u1(r) <∞ and limr→∞ u2(r) <∞.
(2) If P1(∞) =∞ and P2(∞) =∞, then

lim
r→∞

u1(r) =∞ and lim
r→∞

u2(r) =∞.

In the same spirit we also have, our next result.

Theorem 1.2. Assume that the hypotheses (A1) and (A2) are satisfied. If P1(∞)+
P2(∞) < F1,2(∞) <∞, then system (1.1) has one positive bounded radial solution
(u1, u2) ∈ C2([0,∞))× C2([0,∞)), with central value in (a1, a2), such that

a1 + f
1/k1
1 (a1, a2)P1(r) ≤ u1(r) ≤ F−1

1,2 (P1(r) + P2(r)),

a2 + f
1/k2
2 (a1, a2)P2(r) ≤ u2(r) ≤ F−1

1,2 (P1(r) + P2(r)).

2. Proofs of main results

In this section we give the proof of Theorems 1.1 and 1.2. For the readers’
convenience, we recall the radial form of the k-Hessian operator.

Remark 2.1 (see [12, 20]). Assume ϕ ∈ C2[0, R) is radially symmetric with ϕ′(0) =
0. Then, for k ∈ {1, 2, . . . , N} and u(x) = ϕ(r) where r = |x| < R, we have that
u ∈ C2(BR), and

λ(D2u(r)) =

{
(ϕ′′(r), ϕ

′(r)
r , . . . , ϕ

′(r)
r ) for r ∈ (0, R),

(ϕ′′(0), ϕ′′(0), . . . , ϕ′′(0)) for r = 0 ;

Sk(λ(D2u(r))) =

{
Ck−1
N−1ϕ

′′(r)
(ϕ′(r)

r

)k−1 + Ck−1
N−1

N−k
k

(ϕ′(r)
r

)k
, r ∈ (0, R),

CkN (ϕ′′(0))k for r = 0,

where the prime denotes differentiation with respect to r = |x| and Ck−1
N−1 = (N −

1)!/[(k − 1)!(N − k)!].

Proof of the Theorems 1.1 and 1.2. We start by showing that system (1.1)
has positive radial solutions. For this purpose, we show that the system of ordinary
differential equations

Ck1−1
N−1

rN−1
[
rN−k1

k1
e

R r
0

1
C0
tk1−1b1(t)dt(u′1)k1 ]′

= e
R r
0

1
C0
tk1−1b1(t)dtp1(r)f1(u1, u2), r > 0,

Ck2−1
N−1

rN−1
[
rN−k2

k2
e

R r
0

1
C00

tk2−1b2(t)dt(u′2)k2 ]′

= e
R r
0

1
C00

tk2−1b2(t)dtp2(r)f2(u1, u2), r > 0,

u′1(r) ≥ 0 and u′2(r) ≥ 0 for r ∈ [0,∞),

u1(0) = a1 and u2(0) = a2,

(2.1)

has a solution. Therefore, at least one solution of (2.1) can be obtained using
successive approximation by defining the sequences {um1 }m≥0 and {um2 }m≥0 on
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[0,∞) in the following way

u0
1 = a1, u0

2 = a2 for r ≥ 0

um1 (s) = a1 +
∫ r

0

[
B−1 (t)

∫ t

0

B+
1 (s)f1(um−1

1 (s), um−1
2 (s))ds

]1/k1
dt,

um2 (s) = a2 +
∫ r

0

[
B−2 (t)

∫ t

0

B+
2 (s)f2(um−1

1 (s), um−1
2 (s))ds

]1/k2
dt.

(2.2)

It is easy to see that {um1 }m≥0 and {um2 }m≥0 are non-decreasing on [0,∞). Indeed,
we consider

u1
1(r) = a1 +

∫ r

0

[
B−1 (t)

∫ t

0

B+
1 (s)f1(u0

1(s), u0
2(s))ds

]1/k1
dt

= a1 +
∫ r

0

[
B−1 (t)

∫ t

0

B+
1 (s)f1(a1, a2)ds

]1/k1
dt

≤ a1 +
∫ r

0

[
B−1 (t)

∫ t

0

B+
1 (s)f1(u1

1(s), u1
2(s))ds

]1/k1
dt = u2

1(r).

This implies that u1
1(r) ≤ u2

1(r) which further produces u2
1(r) ≤ u3

1(r). Continuing,
an induction argument applied to (2.2) show that for any r ≥ 0 we have

um1 (r) ≤ um+1
1 (r) and um2 (r) ≤ um+1

2 (r) for any m ∈ N

i.e., {um1 }m≥0 and {um2 }m≥0 are non-decreasing on [0,∞). By their monotonicity,
we have the inequalities

Ck1−1
N−1 {

rN−k1

k1
e

R r
0

1
C0
tk1−1b1(t)dt[(um1 )′]k1}′ ≤ B+

1 (r)f1(um1 , u
m
2 ), (2.3)

Ck2−1
N−1 {

rN−k2

k2
e

R r
0

1
C00

tk2−1b2(t)dt[(u
m

2 )′]k2}′ ≤ B+
2 (r)f2(um1 , u

m
2 ). (2.4)

After integration from 0 to r, an easy calculation yields

(um1 (r))′

≤
(
B−1 (r)

∫ r

0

B+
1 (t)f1(um1 (t), um2 (t))dt

)1/k1

≤
(
B−1 (r)

∫ r

0

B+
1 (t)f1(um1 (t) + um2 (t), um1 (t) + um2 (t))dt

)1/k1

≤ (f1/k1
1 + f

1/k2
2 )(um1 (r) + um2 (r), um1 (r) + um2 (r))(B−1 (r)

∫ r

0

B+
1 (t)dt)1/k1 .

(2.5)

As before, exactly the same type of conclusion holds for (um2 (r))′:

(um2 (r))′ ≤
(
B−2 (r)

∫ r

0

B+
2 (z)f2(um1 (z), um2 (z))dz

)1/k2

≤ (f1/k1
1 + f

1/k2
2 )(um1 + um2 , u

m
1 + um2 )

(
B−2 (r)

∫ r

0

B+
2 (t)dt

)1/k2
.

(2.6)

Summing the inequalities (2.5) and (2.6), we obtain

(um1 (r) + um2 (r))′

(f1/k1
1 + f

1/k2
2 )(um1 (r) + um2 (r), um1 (r) + um2 (r))

≤ P ′1(r) + P ′2(r). (2.7)
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Integrating from 0 to r, we obtain∫ um
1 (r)+um

2 (r)

a1+a2

1

f
1/k1
1 (t, t) + f

1/k2
2 (t, t)

dt ≤ P1(r) + P2(r).

We now have
F1,2(um1 (r) + um2 (r)) ≤ P1(r) + P2(r), (2.8)

which will play a basic role in the proof of our main results. The inequalities (2.8)
can be reformulated as

um1 (r) + um2 (r) ≤ F−1
1,2 (P1(r) + P2(r)). (2.9)

This can be easily seen from the fact that F1,2 is a bijection with the inverse function
F−1

1,2 strictly increasing on [0,∞). So, we have found upper bounds for {um1 }m≥0

and {um2 }m≥0 which are dependent of r. We are now ready to give a complete proof
of the Theorems 1.1 and 1.2.

Proof of Theorem 1.1 completed. When F1,2(∞) =∞ it follows that the sequences
{um1 }m≥0 and {um2 }m≥0 are bounded and equicontinuous on [0, c0] for arbitrary
c0 > 0. By the Arzela-Ascoli theorem, {(um1 , um2 )}m≥0 has a subsequence con-
verging uniformly to (u1, u2) on [0, c0] × [0, c0]. Since {um1 }m≥0 and {um2 }m≥0 are
non-decreasing on [0,∞) we see that {(um1 , um2 )}m≥0 itself converges uniformly to
(u1, u2) on [0, c0]× [0, c0]. At the end of this process, we conclude by the arbitrari-
ness of c0 > 0, that (u1, u2) is positive entire solution of system (2.1). The solution
constructed in this way will be radially symmetric. Since the radial solutions of the
ordinary differential equations system (2.1) are solutions (1.1) it follows that the
radial solutions of (1.1) with u1(0) = a1, u2(0) = a2 satisfy

u1(r) = a1 +
∫ r

0

(
B−1 (y)

∫ y

0

B+
1 (t)f1(u1(t), u2(t))dt

)1/k1
dy, (2.10)

u2(r) = a2 +
∫ r

0

(
B−2 (y)

∫ y

0

B+
2 (t)f2(u1(t), u2(t))dt

)1/k2
dy, (2.11)

for all r ≥ 0. Next, it is easy to verify that the Cases 1. and 2. occur.

Case 1. When P1(∞) + P2(∞) <∞, it is not difficult to deduce from (2.10) and
(2.11) that

u1(r) + u2(r) ≤ F−1
1,2 (P1(∞) + P2(∞)) <∞ for all r ≥ 0,

and so (u1, u2) is bounded. We next consider:

Case 2. When P1(∞) = P2(∞) =∞, we observe that

u1(r) = a1 +
∫ r

0

(
B−1 (t)

∫ t

0

B+
1 (s)f1(u1(s), u2(s))ds

)1/k1
dt

≥ a1 + f
1/k1
1 (a1, a2)

∫ r

0

(
B−1 (t)

∫ t

0

B+
1 (s)ds

)1/k1
dt

= a1 + f
1/k1
1 (a1, a2)P1(r).

(2.12)

The same computations as in (2.12) yields

u2(r) ≥ a2 + f
1/k2
2 (a1, a2)P2(r).
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and passing to the limit as r →∞ in (2.12) and in the above inequality we conclude
that

lim
r→∞

u1(r) = lim
r→∞

u2(r) =∞,

which yields the result. �

Proof of Theorem 1.2 completed. In view of the above analysis, the proof can be
easily deduced from

F1,2(um1 (r) + um2 (r)) ≤ P1(∞) + P2(∞) < F1,2(∞) <∞,
Indeed, since F−1

1,2 is strictly increasing on [0,∞), we find that

um1 (r) + um2 (r) ≤ F−1
1,2 (P1(∞) + P2(∞)) <∞,

and then the non-decreasing sequences {um1 }m≥0 and {um2 }m≥0 are bounded above
for all r ≥ 0 and all m. The final step, is to conclude that

(um1 (r), um2 (r))→ (u1(r), u2(r)) as m→∞
and the limit functions u1 and u2 are positive entire bounded radial solutions of
system (1.1). �

Remark 2.2. Make the same assumptions as in Theorem 1.1 or Theorem 1.2 on
b1, p1, f1, b2, p2, f2. If, in addition,

p1(|x|) ≥
(
Ck1−1
N−1

N − k1

k1|x|N
− b1(|x|)
|x|N−k1

)∫ |x|
0

sN−1

C0
p1(s)ds, x ∈ RN , (2.13)

p2(|x|) ≥
(
Ck2−1
N−1

N − k2

k2|x|N
− b2(|x|)
|x|N−k2

)∫ |x|
0

sN−1

C00
p2(s)ds, x ∈ RN , (2.14)

then the solution (u1, u2) is convex.

Proof. It is clear that

Ck1−1
N−1

rN−1

[rN−k1
k1

e
R r
0

1
C0
tk1−1b1(t)dt(u′1)k1

]′
= e

R r
0

1
C0
tk1−1b1(t)dtp1(r)f1(u1, u2), (2.15)

and integrating from 0 to r yields

rN−k1e
R r
0

1
C0
tk1−1b1(t)dt(u′1(r))k1

=
∫ r

0

sN−1

C0
e

R s
0

1
C0
tk1−1b1(t)dtp1(s)f1(u1(s), u2(s))ds

≤ f1(u1(r), u2(r))
∫ r

0

sN−1

C0
e

R s
0

1
C0
tk1−1b1(t)dtp1(s)ds,

which yields

(
u′1(r)
r

)k1 ≤ f1(u1(r), u2(r))

rNe
R r
0

1
C0
tk1−1b1(t)dt

∫ r

0

sN−1

C0
e

R s
0

1
C0
tk1−1b1(t)dtp1(s)ds

≤ f1(u1(r), u2(r))
rN

∫ r

0

sN−1

C0
p1(s)ds.

(2.16)

On the other hand inequality (2.15) can be written in the form

Ck1−1
N−1 u

′′
1(r)(

u′1
r

)k1−1 + Ck1−1
N−1

N − k1

k1
(
u′1
r

)k1 + b1(r)(u′1)k1

= p1(r)f1(u1, u2).
(2.17)
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Using inequality (2.16) in (2.17) we obtain

p1(r)f1(u1, u2) ≤ Ck1−1
N−1 u

′′
1(
u′1
r

)k1−1 + Ck1−1
N−1

N − k1

rNk1
f1(u1, u2)

∫ r

0

sN−1

C0
p1(s)ds

+
b1(r)f1(u1, u2)

rN−k1

∫ r

0

sN−1

C0
p1(s)ds,

from which we have

f1(u1, u2)[p1(r)− (Ck1−1
N−1

N − k1

k1rN
− b1(r)
rN−k1

)
∫ r

0

sN−1

C0
p1(s)ds]

≤ Ck1−1
N−1 u

′′
1(
u′1
r

)k1−1,

which completes the proof of u′′1(r) ≥ 0. A similar argument produces u′′2(r) ≥ 0.
We also remark that, in the simple case b1 = b2 = 0, sN−1p1(s) and sN−1p2(s) are
increasing then (2.13) and (2.14) hold. �
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