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SOLVABILITY OF SINGULAR SECOND-ORDER INITIAL-VALUE
PROBLEMS

PETIO KELEVEDJIEV

ABSTRACT. This article concerns the solvability of the initial-value problem
" = f(t,z,2'), ©(0) = A, 2/(0) = B, where the scalar function f may be
unbounded as ¢ — 0. Using barrier strip type arguments, we establish the
existence of monotone and/or positive solutions in C1[0,T] N C2(0, T].

1. INTRODUCTION
In this article we study the solvability of the initial value problem (IVP)
x/, = f(t7 x’ xl)?

z(0) = A, 2'(0) = B, (1.1)

where the scalar function f(¢,,p) is defined for (¢,z,p) € D, x D, x D,, and
Dy,D;,D, C R, but there may be sets X C D, and P C D, such that f is
unbounded as ¢ — 0 and (z,p) € X x P.

The solvability of various nonsingular and singular second order IVPs has been
studied by Aslanov [3], Agarwal and O’Regan [1l, 2], Bobisud and O’Regan [4],
Bobisud and Lee [5], Cabada et al. [0, [7, 8], Cid [9], Maagli and Masmoudi[I3],
Rachunkové and Tomecek [I4), [15], [16], Yang [17, 18] and Zhao [19]. Yang [17, [I8],
for example, established the solvability in C1[0, 1] and C[0, 1] x C?(0, 1) in the case
A = B = 0. In these works the function f(t,z,p) € C((0,1),(0,00)?) is allowed to
be singular at t =0, = 1,2 = 0 or p = 0 and is such that

0 < f(t,z,p) < k(t)F(z)G(p) for (t,z,p) € (0,1) x (0,00)?,

where k, F' and G are suitable functions.

Here we present sufficient conditions guaranteeing monotone and/or positive
solutions to in C10,T] x C?(0,T]. They are established by adapting ideas
from Kelevedjiev and Popivanov [10] and Kelevedjiev et al. [TT] (sse also Kelevedjiev
[12]), where may be singular at z = A and/or p = B. The results in these
works rely on a combination of a barrier type condition with the assumption that
there is a constant k < 0 such that

[t z,p) <k (1.2)
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on a suitable bounded subset of the domain of f. It turned out, however, that
is not necessary when is singular only at ¢ = 0, that is why we pay a special
attention to this case.

In our considerations we use two results from [I1] for the nonsingular problem

x/, = f(t7 x? xj)’
x(a) = A, 2'(a) = B,
where f: Dy x D, x D, — R, Dy, D;, D, C R. They are based on the assumption

(A1) There are constants T > a, my,my, My, M; and a sufficiently small 7 > 0
such that

(1.3)

Mi—7>M >B>m; >m +7,

[a,T] C Dy, [mo — 7, Mo + 7] C Dy, [m1,M1] C Dy,

where My = max{|m4|, |M;1|}T — a) + |A|, and mgq = — My,

flt,x,p) € C([mT] X [mo — 1, Mo + 7] X [mq — 7, My —|—T]),

f(t,z,p) <0 for (t,z,p) € [a,T] x Dy x [My, M1],
f(t,z,p) >0 for (t,x,p) € [a,T] x Dpg, X [1, m1],

where Dy, = D, N (—o0, My).

So, we need the following result.
Lemma 1.1 ([I1]). Let (Al) hold and x € C?[a,T] be a solution to (L.3)). Then
mo < z(t) < Mo, my <a'(t) < My, mo <2"(t)< My fortela,T],

where mg = min f(¢,x,p) and My = max f(t,x,p) for (t,z,p) € [a,T] x [mgo, My] X
[ml, Ml}.

This lemma was used in the proof of the following theorem.
Theorem 1.2 ([I1]). Let (A1) hold. Then nonsingular IVP (1.3)) has at least one
solution in C*[a,T].
2. EXISTENCE RESULTS

Returning our attention to singular problem (|1.1)), we assume that

(A2) There are constants 7' > 0, my, 1, My, M, and a sufficiently small 7 > 0
such that

My —7>M >B>m >+,
(0,T) C Dy, [fig — 7, Mo + 7] C Dy, [, M1] C D,
where My = max{|m1|, |M1|}T + |A|, and 7y = —Mo,
ft,z,p) € C((O,T] X [mo — T, M, + 7] X [my — 7, My +T]), (2.1)
f(t,z,p) <0 for (t,z,p) € (0,T] x D, x [My, M),
ft,z,p) >0 for (t,z,p) € (0,T] x Dy, % [, ma],
where Dy; = D, N (—oo, Mo).

We are now in a position to state our first existence theorem.
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Theorem 2.1. Let (A2) hold. Then (1.1]) has at least one solution in C1[0,T] N
C?(0,T) such that

mit+ A<z(t) < Mit+ A fortel0,T],
my <z'(t) < My forte[0,T].
Proof. We will do the proof in several steps considering the family of nonsingular

problems
$// = f<t7xa Z‘/),

z(n" ) =4, 2/(n') =B,
wheren € Np ={ne€ N:n"t <T}.
Step 1 Construction of a sequence {x,} of C?[n~!, T]-solutions to (2.2). It is
not hard to check that each problem of (2.2) satisfies (A1) for a = n=!, My =
max{|my|, | M|} (T—n"1)+|A| < My, and mg = —My. Thus, according to Theorem
(2.2) has a solution

x, € C*n~1,T] for each n € Ny.

In addition, for each n € Ny Lemma [I.1] guarantees the bounds

(2.2)

o < mo < zn(t) < My < My for t € [n1, 7],
my <l (t) < M, forte[n T

Step 2 Construction of a C?(0, T]-solution to the differential equation. Now, we
introduce a numerical sequence {6;},7 € N, having the properties

0; € (O,T)7 (9,‘_,_1 < 0; forie N and tlim 0; =0,
—00

and consider the sequence {z,} of C?[n~! T]-solutions of family (2.2 only for
n € Ny ={n & Nr:n~! <6;}. Clearly, the bounds

mo < xn(t) < Mo for t € [01,T], (23)
my <z (t) < My for t € [01,T], (2.4)

independent of n € Ny. In view of (2.1), f(¢,x, p) is continuous on the set [0y, T] x
[0, Mop] x [mq, M;] and so there is a constant M; 2, independent on n, such that

|z ()] < Myo for t € [64,T).

The obtained bounds for z,,(t),z, (t) and z!/(t) on the interval [f;,T] allows us to

rn

apply the Arzela-Ascoli theorem on the sequence {z,} to conclude that there are
a subsequence {x1,, }, kK € N, ny € N1, and a function zg, € C?[61,T] such that

||x1,nk- - IL’91||1 —0 onte [QlaT]v

that is, the sequences {z1,, } and {2}, } converge uniformly on [01,T] to x4, and
g , respectively. Since (2.3) and (2.4) are valid in particular for the elements of
{®1,n,} and {z7 ,, }, letting k — oo, we obtain
SMQ fortG[HI,T},
my < ap (t) <My forte[0;,T]
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On the other hand, on using that the functions x1 ,, (t),ng € N1, are solutions of
the differential equation (2.2)), we have

t

mllmk (t) = xll,nk (91) + ) f(svxl,nk (5)’$/1,nk (5))d87 te (917T]'

Next, we need to show that the sequence {f(s,1n,(s), 2 ,,(5))}, nr € N1, con-
verges uniformly on the interval [#1,T]. To this aim we observe at first that since
f(t,z,p) is uniformly continuous on the compact set [01,T] X [g, Mo] X [mq, Mi],
for each € > 0 there is a 6 > 0 such that

|f(t07$07p())_f(t17x17p1)| <e (27)

if (to, 20, p0), (t1,21,p1) € [01,T] X [1ho, Mo] x [m1, M;] and
\/(to —t1)2 4 (o — 21)2 + (po — p1)? < 0.

Now, from the uniform convergence of {1, } and {z7 ,, } on [0, T] it follows that
there is a Nj(.) with the properties

1) 1)
|21 0, — 20,| < —= and \J;’lnk —xp | < —= fortel[f,T]

V2 V2
and each ng > Nj(.). As a result, for ¢ € [01,T] we obtain
VE= 02+ (@1 —20,)2 + (2], — 7,)2 <0, (2:8)

Finally, for ¢ € [01,T] and ng > Nj(.) from ({2.3)-(2.6) we obtain

(tv T1,np, (t)’ xll,nk (t))’ (tv Lo, (t)v x{% (t)) € [917 T} X [m07 MO] X [mlv Ml]' (2'9)
On combining (2.8)) and (2.9) with (2.7]), we establish that for an arbitrary ¢ > 0
there exists Ny such that for ny > Ny we have

|f(5>$17nk (S)’mllmk (5)) - f(57x91 (5)730/91 (S))‘ <e forte [91,T],

i.e. the sequence {f(s,21n,(5), 2] ,,(s))},nx € Ny, converges uniformly on the
interval [01, T] to f(s, g, (s), 7y, (s)). Then, returning to the integral equation and
letting k — oo yield

t

${91 (t) = 33/91 (t) + ) f(S, Zo, (8)7‘T{91 (8))d$, te (91>T}>

from where it follows that zg, (¢) is a C?[6, T]-solution to the differential equation
2" = f(t,x,a') on [0y, T].
Further, we consider the sequence {z;,,} on the new interval [f2,T] and for
ng € Ny = {ny € Nr,k € N : n,?l < 63}. Obviously, for n; € Ny we have
’ﬁlo < T1,ny, (t) < MO for t € [HQ,T],
my < x’lynk (t) < M; fortel[f,T).
Besides, there is a constant Ms 5, independent on ny, such that

|1‘" (t)‘ < MQ,Q for t € [027T].

1,ng
Having obtained bounds, we apply the Arzela-Ascoli theorem on the sequence
{%1,n, } to conclude that there exist a subsequence {2, },k € N,n, € Na, and a
function xg, € C?[,, T| such that

|z2.n, — Zo,ll1 — 0 on the new interval [0z, 7).
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As above we establish also that xg,(t) is a C?[f,, T]-solution to the differential
equation =’/ = f(t,z,z’) on [02,T] and

mo < ,(t) < My for t € [0y, T),
my < ap,(t) < My fort € [02,T].

In addition, since {z3,, } is a subsequence of {1, }, then {z2 ., } converges uni-
formly to xg, on the interval [6;,T] which means

x9,(t) = g, (t) fort € [64,T].

Applying the same procedure repeatedly for §; — 0, we establish that for each
i € N there exists a function g, (t) which is a C?[6;, T]-solution to the equation
a” = f(t,x,a’) on the interval [6;, T],

| n, — x|t — 0 on the interval [6;,T] (2.10)
ask—>ooandnkENi:{nkENT,kEN:n,Zl<9i},
o < xg, (t) < My for t € [6;,T),
my < zgi(t) <M, fortel;,T],
xg,, (t) = g, (t) fort e [6;,T].

Thanks to the properties of the functions of {xg,}, we conclude that there is some
function xq(¢) which is a C?(0,T]-solution to the equation =’ = f(t,x,2’) on the
interval (0,71,

mo < 1’0(t) < M() fort € (O,T},
my < xp(t) < My for t € (0,7, (2.11)
xo(t) = Ty, (t) for t € [QZ,T] (2.12)

Step 3 Construction of a C1[0,7] N C?(0, T]-solution to (1.1]). To define a C[0,T]-
solution to (|1.1]) we need to show that

lim zo(t) = A. (2.13)

t—0+

To this aim, we assume firstly on the contrary that for some € > 0 there exists
d > 0 such that (0,d) C [0,7] and

zo(t) ¢ (A—e, A+¢e) forte (0,9). (2.14)
Returning our attention to the sequence {z,}, from x,, € C[0,T] and z,,(n"1) = A
deduce that there is a number ng such that for each n > ng,n € N, there exists a
sufficiently small §,, > n~! with the properties (n=!,d,) C (0,§) and

r,(t) € (A—¢/2,A+¢/2) forte (n™h6,).

On the other hand, there exists a number n* such that for each n > n*,n € N,
there exists some i* € N for which

[01-*,91-*_1] C (n_l,én) - (0,5);

the assumption that the interval [0;«,60;«_1] does not exist contradicts to the fact
that ¢ = 0 is an accumulation point of the sequence {6;}. As a result, for each
n > max{ng,n*} there exists i* € N such that

A—e/2<z,(t) < A+¢e/2 fort e [0-,0~_1] C (0,9). (2.15)
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It is easy to see, for every ¢* there is a number n;« such that (2.15) holds for each
ng € Ny, k € N, with ng > max{n;«,ns,n*}, that is,

A—e/2 <xppn,(t) <A+e/2 forte[f;-,0i+-1] C (0,9). (2.16)
Further, from (2.10) and (2.12)) for each i € N we obtain
|in, —xollt = 0 on [0;,T] when k — oo and ny € N, (2.17)

which means that for each i € N there is a number 72; such that for each ny € N;
with ng > m; we have
—€/2 < xip, (1) —x0(t) <e/2 forte[b;,T)
or
Tim, (1) —€/2 < xo(t) < Tip, (t)+¢e/2 fortel[h;,T).
In particular, for each ng € N;» with ng > max{n;,m;-,ns,n*}, k € N, we obtain
Tix (1) — €/2 < xo(t) < Tjr 1, () + /2 for t € [07,T).
This combined with yields
A—e<uzo(t) <A+e fortel[f,0~_1] C(0,6),
which contradicts to and so holds.
By exactly the same reasoning applied on the sequence {z/,} we establish
tlirél+ xy(t) = B.
Moreover, now we use that for each ¢ € N and sufficiently large ny € N;,k € N,

(2.17) yields
—e/2 <, (t)—xy(t) <e/2 forte[0;,T].

PN

Next, introduce the function

A for t =0,
x(t) =
xo(t) fort e (0,77
Clearly, 2/(t) = z((¢) for ¢t € (0,T]. Besides,
/ T x(t)—z(O)_ . / T / _
0=ty "G50 < )= g 0 0

Thus, 2’ € C[0,T] and so x(t) is a C1[0,T] N C?(0, T)-solution to (1.1)).

The inequalities (2.11)) give immediately

my <2’'(t) < My fortel0,T],

from where by integration from 0 to ¢ € (0,7] we obtain the bounds for z(t). O

As an elementary consequence of Theorem we obtain results guaranteeing
important properties of the solutions.

Theorem 2.2. Let B > 0 and let (A2) hold for m; = 0. Then problem (1.1)) has
at least one nondecreasing solution in C1[0,T] N C?(0,T).

Theorem 2.3. Let B > 0 and let (A2) hold for my > 0. Then problem (1.1 has
at least one strictly increasing solution in C*[0,T] N C?(0,T).

Theorem 2.4. Let A > 0 (A = 0), B > 0 and let (A2) hold for m; = 0.
Then problem (L.1) has at least one positive (nonnegative) nondecreasing solution
in C1[0,7) N C%(0,T).
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Theorem 2.5. Let A > 0, B > 0 and let (A2) hold for my > 0. Then problem (1.1))
has at least one strictly increasing solution in C*[0,T] N C%(0,T] having positive
values for t € (0,T).

3. EXAMPLE

Consider the IVP
a" =t Pp(z),
z(0) = A, 2/(0) = B,

where A >0, B > 0, m,n € N, and the polynomial Py(p), k > 2, has simple zeros
p1 and py such that P/(p1) <0 and 0 < p; < B < ps.

Let 6 > 0 be so small that p; — 6 >0, p1 +60 < B < py — 0 and

Py(p) #0 forp € [pr — 0,p1) U (p1,p1 +6) U [p2 — 6, p2) U (p2, p2 + 0].

Then P/ (p1) < 0 implies

P.(p) >0 forpe€pr—0,p1) and Py(p) <0 forpe (p1,p1+0)].

Besides, we see easily that if

Pi(p) <0 for p € [ps — 0, p2),
then (A2) holds for an arbitrary T > 0,
mi=p1—0, mi=p,Mi=ps—0, M =ps, 7=0/2,
moreover My = (pa — 0)T + A, and if
Py(p) <0 for p € (p2,p2 + 0],
it is satisfied for an arbitrary 7" > 0,
mi=p—0, mi=p, M =ps, M =py+0, 7=0/2,

moreover My = poT + A. So, it follows from Theorem that for each T' > 0 the
considered problem has a strictly increasing solution in C[0,77N C?(0, 7] which is
positive on (0, 7.
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