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SOLVABILITY OF SINGULAR SECOND-ORDER INITIAL-VALUE
PROBLEMS

PETIO KELEVEDJIEV

Abstract. This article concerns the solvability of the initial-value problem

x′′ = f(t, x, x′), x(0) = A, x′(0) = B, where the scalar function f may be
unbounded as t → 0. Using barrier strip type arguments, we establish the

existence of monotone and/or positive solutions in C1[0, T ] ∩ C2(0, T ].

1. Introduction

In this article we study the solvability of the initial value problem (IVP)

x′′ = f(t, x, x′),

x(0) = A, x′(0) = B,
(1.1)

where the scalar function f(t, x, p) is defined for (t, x, p) ∈ Dt × Dx × Dp, and
Dt, Dx, Dp ⊆ R, but there may be sets X ⊆ Dx and P ⊆ Dp such that f is
unbounded as t→ 0 and (x, p) ∈ X × P .

The solvability of various nonsingular and singular second order IVPs has been
studied by Aslanov [3], Agarwal and O’Regan [1, 2], Bobisud and O’Regan [4],
Bobisud and Lee [5], Cabada et al. [6, 7, 8], Cid [9], Maagli and Masmoudi[13],
Rachu̇nková and Tomeček [14, 15, 16], Yang [17, 18] and Zhao [19]. Yang [17, 18],
for example, established the solvability in C1[0, 1] and C[0, 1]×C2(0, 1) in the case
A = B = 0. In these works the function f(t, x, p) ∈ C((0, 1), (0,∞)2) is allowed to
be singular at t = 0, t = 1, x = 0 or p = 0 and is such that

0 < f(t, x, p) ≤ k(t)F (x)G(p) for (t, x, p) ∈ (0, 1)× (0,∞)2,

where k, F and G are suitable functions.
Here we present sufficient conditions guaranteeing monotone and/or positive

solutions to (1.1) in C1[0, T ] × C2(0, T ]. They are established by adapting ideas
from Kelevedjiev and Popivanov [10] and Kelevedjiev et al. [11] (sse also Kelevedjiev
[12]), where (1.1) may be singular at x = A and/or p = B. The results in these
works rely on a combination of a barrier type condition with the assumption that
there is a constant k < 0 such that

f(t, x, p) ≤ k (1.2)
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on a suitable bounded subset of the domain of f . It turned out, however, that (1.2)
is not necessary when (1.1) is singular only at t = 0, that is why we pay a special
attention to this case.

In our considerations we use two results from [11] for the nonsingular problem

x′′ = f(t, x, x′),

x(a) = A, x′(a) = B,
(1.3)

where f : Dt ×Dx ×Dp → R, Dt, Dx, Dp ⊆ R. They are based on the assumption

(A1) There are constants T > a, m1,m1,M1,M1 and a sufficiently small τ > 0
such that

M1 − τ ≥M1 ≥ B ≥ m1 ≥ m1 + τ,

[a, T ] ⊆ Dt, [m0 − τ,M0 + τ ] ⊆ Dx, [m1,M1] ⊆ Dp,

where M0 = max{|m1|, |M1|}(T − a) + |A|, and m0 = −M0,

f(t, x, p) ∈ C
(
[a, T ]× [m0 − τ,M0 + τ ]× [m1 − τ,M1 + τ ]

)
,

f(t, x, p) ≤ 0 for (t, x, p) ∈ [a, T ]×Dx × [M1,M1],

f(t, x, p) ≥ 0 for (t, x, p) ∈ [a, T ]×DM0 × [m1,m1],

where DM0 = Dx ∩ (−∞,M0].
So, we need the following result.

Lemma 1.1 ([11]). Let (A1) hold and x ∈ C2[a, T ] be a solution to (1.3). Then

m0 ≤ x(t) ≤M0, m1 ≤ x′(t) ≤M1, m2 ≤ x′′(t) ≤M2 for t ∈ [a, T ],

where m2 = min f(t, x, p) and M2 = max f(t, x, p) for (t, x, p) ∈ [a, T ]× [m0,M0]×
[m1,M1].

This lemma was used in the proof of the following theorem.

Theorem 1.2 ([11]). Let (A1) hold. Then nonsingular IVP (1.3) has at least one
solution in C2[a, T ].

2. Existence results

Returning our attention to singular problem (1.1), we assume that
(A2) There are constants T > 0, m1,m1,M1,M1 and a sufficiently small τ > 0

such that

M1 − τ ≥M1 ≥ B ≥ m1 ≥ m1 + τ,

(0, T ] ⊆ Dt, [m̃0 − τ, M̃0 + τ ] ⊆ Dx, [m1,M1] ⊆ Dp,

where M̃0 = max{|m1|, |M1|}T + |A|, and m̃0 = −M̃0,

f(t, x, p) ∈ C
(
(0, T ]× [m̃0 − τ, M̃0 + τ ]× [m1 − τ,M1 + τ ]

)
, (2.1)

f(t, x, p) ≤ 0 for (t, x, p) ∈ (0, T ]×Dx × [M1,M1],

f(t, x, p) ≥ 0 for (t, x, p) ∈ (0, T ]×DM̃0
× [m1,m1],

where DM̃0
= Dx ∩ (−∞, M̃0].

We are now in a position to state our first existence theorem.
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Theorem 2.1. Let (A2) hold. Then (1.1) has at least one solution in C1[0, T ] ∩
C2(0, T ] such that

m1t+A ≤ x(t) ≤M1t+A for t ∈ [0, T ],

m1 ≤ x′(t) ≤M1 for t ∈ [0, T ].

Proof. We will do the proof in several steps considering the family of nonsingular
problems

x′′ = f(t, x, x′),

x(n−1) = A, x′(n−1) = B,
(2.2)

where n ∈ NT = {n ∈ N : n−1 < T}.
Step 1 Construction of a sequence {xn} of C2[n−1, T ]-solutions to (2.2). It is
not hard to check that each problem of (2.2) satisfies (A1) for a = n−1, M0 =
max{|m1|, |M1|}(T−n−1)+|A| < M̃0, andm0 = −M0. Thus, according to Theorem
1.2, (2.2) has a solution

xn ∈ C2[n−1, T ] for each n ∈ NT .

In addition, for each n ∈ NT Lemma 1.1 guarantees the bounds

m̃0 < m0 ≤ xn(t) ≤M0 < M̃0 for t ∈ [n−1, T ],

m1 ≤ x′n(t) ≤M1 for t ∈ [n−1, T ].

Step 2 Construction of a C2(0, T ]-solution to the differential equation. Now, we
introduce a numerical sequence {θi}, i ∈ N , having the properties

θi ∈ (0, T ), θi+1 < θi for i ∈ N and lim
t→∞

θi = 0,

and consider the sequence {xn} of C2[n−1, T ]-solutions of family (2.2) only for
n ∈ N1 = {n ∈ NT : n−1 < θ1}. Clearly, the bounds

m̃0 < xn(t) < M̃0 for t ∈ [θ1, T ], (2.3)

m1 ≤ x′n(t) ≤M1 for t ∈ [θ1, T ], (2.4)

independent of n ∈ N1. In view of (2.1), f(t, x, p) is continuous on the set [θ1, T ]×
[m̃0, M̃0]× [m1,M1] and so there is a constant M1,2, independent on n, such that

|x′′n(t)| ≤M1,2 for t ∈ [θ1, T ].

The obtained bounds for xn(t), x′n(t) and x′′n(t) on the interval [θ1, T ] allows us to
apply the Arzela-Ascoli theorem on the sequence {xn} to conclude that there are
a subsequence {x1,nk

}, k ∈ N, nk ∈ N1, and a function xθ1 ∈ C2[θ1, T ] such that

‖x1,nk
− xθ1‖1 → 0 on t ∈ [θ1, T ];

that is, the sequences {x1,nk
} and {x′1,nk

} converge uniformly on [θ1, T ] to xθ1 and
x′θ1 , respectively. Since (2.3) and (2.4) are valid in particular for the elements of
{x1,nk

} and {x′1,nk
}, letting k →∞, we obtain

m̃0 ≤ xθ1(t) ≤ M̃0 for t ∈ [θ1, T ], (2.5)

m1 ≤ x′θ1(t) ≤M1 for t ∈ [θ1, T ]. (2.6)
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On the other hand, on using that the functions x1,nk
(t), nk ∈ N1, are solutions of

the differential equation (2.2), we have

x′1,nk
(t) = x′1,nk

(θ1) +
∫ t

θ1

f(s, x1,nk
(s), x′1,nk

(s))ds, t ∈ (θ1, T ].

Next, we need to show that the sequence {f(s, x1,nk
(s), x′1,nk

(s))}, nk ∈ N1, con-
verges uniformly on the interval [θ1, T ]. To this aim we observe at first that since
f(t, x, p) is uniformly continuous on the compact set [θ1, T ]× [m̃0, M̃0]× [m1,M1],
for each ε > 0 there is a δ > 0 such that

|f(t0, x0, p0)− f(t1, x1, p1)| < ε (2.7)

if (t0, x0, p0), (t1, x1, p1) ∈ [θ1, T ]× [m̃0, M̃0]× [m1,M1] and√
(t0 − t1)2 + (x0 − x1)2 + (p0 − p1)2 < δ.

Now, from the uniform convergence of {x1,nk
} and {x′1,nk

} on [θ1, T ] it follows that
there is a Nδ(ε) with the properties

|x1,nk
− xθ1 | <

δ√
2

and |x′1,nk
− x′θ1 | <

δ√
2

for t ∈ [θ1, T ]

and each nk > Nδ(ε). As a result, for t ∈ [θ1, T ] we obtain√
(t− t)2 + (x1,nk

− xθ1)2 + (x′1,nk
− x′θ1)2 < δ. (2.8)

Finally, for t ∈ [θ1, T ] and nk > Nδ(ε) from (2.3)-(2.6) we obtain

(t, x1,nk
(t), x′1,nk

(t)), (t, xθ1(t), x′θ1(t)) ∈ [θ1, T ]× [m̃0, M̃0]× [m1,M1]. (2.9)

On combining (2.8) and (2.9) with (2.7), we establish that for an arbitrary ε > 0
there exists Nδ(ε) such that for nk > Nδ(ε) we have

|f(s, x1,nk
(s), x′1,nk

(s))− f(s, xθ1(s), x′θ1(s))| < ε for t ∈ [θ1, T ],

i.e. the sequence {f(s, x1,nk
(s), x′1,nk

(s))}, nk ∈ N1, converges uniformly on the
interval [θ1, T ] to f(s, xθ1(s), x′θ1(s)). Then, returning to the integral equation and
letting k →∞ yield

x′θ1(t) = x′θ1(t) +
∫ t

θ1

f(s, xθ1(s), x′θ1(s))ds, t ∈ (θ1, T ],

from where it follows that xθ1(t) is a C2[θ1, T ]-solution to the differential equation
x′′ = f(t, x, x′) on [θ1, T ].

Further, we consider the sequence {x1,nk
} on the new interval [θ2, T ] and for

nk ∈ N2 = {nk ∈ NT , k ∈ N : n−1
k < θ2}. Obviously, for nk ∈ N2 we have

m̃0 ≤ x1,nk
(t) ≤ M̃0 for t ∈ [θ2, T ],

m1 ≤ x′1,nk
(t) ≤M1 for t ∈ [θ2, T ].

Besides, there is a constant M2,2, independent on nk, such that

|x′′1,nk
(t)| ≤M2,2 for t ∈ [θ2, T ].

Having obtained bounds, we apply the Arzela-Ascoli theorem on the sequence
{x1,nk

} to conclude that there exist a subsequence {x2,nk
}, k ∈ N,nk ∈ N2, and a

function xθ2 ∈ C2[θ2, T ] such that

‖x2,nk
− xθ2‖1 → 0 on the new interval [θ2, T ].
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As above we establish also that xθ2(t) is a C2[θ2, T ]-solution to the differential
equation x′′ = f(t, x, x′) on [θ2, T ] and

m̃0 ≤ xθ2(t) ≤ M̃0 for t ∈ [θ2, T ],

m1 ≤ x′θ2(t) ≤M1 for t ∈ [θ2, T ].

In addition, since {x2,nk
} is a subsequence of {x1,nk

}, then {x2,nk
} converges uni-

formly to xθ1 on the interval [θ1, T ] which means

xθ2(t) ≡ xθ1(t) for t ∈ [θ1, T ].

Applying the same procedure repeatedly for θi → 0, we establish that for each
i ∈ N there exists a function xθi

(t) which is a C2[θi, T ]-solution to the equation
x′′ = f(t, x, x′) on the interval [θi, T ],

‖xi,nk
− xθi

‖1 → 0 on the interval [θi, T ] (2.10)

as k →∞ and nk ∈ Ni = {nk ∈ NT , k ∈ N : n−1
k < θi},

m̃0 ≤ xθi
(t) ≤ M̃0 for t ∈ [θi, T ],

m1 ≤ x′θi
(t) ≤M1 for t ∈ [θi, T ],

xθi+1(t) ≡ xθi(t) for t ∈ [θi, T ].

Thanks to the properties of the functions of {xθi
}, we conclude that there is some

function x0(t) which is a C2(0, T ]-solution to the equation x′′ = f(t, x, x′) on the
interval (0, T ],

m̃0 ≤ x0(t) ≤ M̃0 for t ∈ (0, T ],

m1 ≤ x′0(t) ≤M1 for t ∈ (0, T ], (2.11)

x0(t) ≡ xθi(t) for t ∈ [θi, T ]. (2.12)

Step 3 Construction of a C1[0, T ]∩C2(0, T ]-solution to (1.1). To define a C[0, T ]-
solution to (1.1) we need to show that

lim
t→0+

x0(t) = A. (2.13)

To this aim, we assume firstly on the contrary that for some ε > 0 there exists
δ > 0 such that (0, δ) ⊂ [0, T ] and

x0(t) /∈ (A− ε,A+ ε) for t ∈ (0, δ). (2.14)

Returning our attention to the sequence {xn}, from xn ∈ C[0, T ] and xn(n−1) = A
deduce that there is a number nδ such that for each n ≥ nδ, n ∈ N , there exists a
sufficiently small δn > n−1 with the properties (n−1, δn) ⊂ (0, δ) and

xn(t) ∈ (A− ε/2, A+ ε/2) for t ∈ (n−1, δn).

On the other hand, there exists a number n∗ such that for each n ≥ n∗, n ∈ N ,
there exists some i∗ ∈ N for which

[θi∗ , θi∗−1] ⊂ (n−1, δn) ⊂ (0, δ);

the assumption that the interval [θi∗ , θi∗−1] does not exist contradicts to the fact
that t = 0 is an accumulation point of the sequence {θi}. As a result, for each
n ≥ max{nδ, n∗} there exists i∗ ∈ N such that

A− ε/2 < xn(t) < A+ ε/2 for t ∈ [θi∗ , θi∗−1] ⊂ (0, δ). (2.15)
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It is easy to see, for every i∗ there is a number ni∗ such that (2.15) holds for each
nk ∈ Ni∗ , k ∈ N , with nk ≥ max{ni∗ , nδ, n∗}, that is,

A− ε/2 < xi∗,nk
(t) < A+ ε/2 for t ∈ [θi∗ , θi∗−1] ⊂ (0, δ). (2.16)

Further, from (2.10) and (2.12) for each i ∈ N we obtain

‖xi,nk
− x0‖1 → 0 on [θi, T ] when k →∞ and nk ∈ Ni, (2.17)

which means that for each i ∈ N there is a number ni such that for each nk ∈ Ni
with nk ≥ ni we have

−ε/2 < xi,nk
(t)− x0(t) < ε/2 for t ∈ [θi, T ]

or
xi,nk

(t)− ε/2 < x0(t) < xi,nk
(t) + ε/2 for t ∈ [θi, T ].

In particular, for each nk ∈ Ni∗ with nk ≥ max{ni∗ , ni∗ , nδ, n∗}, k ∈ N , we obtain

xi∗,nk
(t)− ε/2 < x0(t) < xi∗,nk

(t) + ε/2 for t ∈ [θ∗i , T ].

This combined with (2.16) yields

A− ε < x0(t) < A+ ε for t ∈ [θi∗ , θi∗−1] ⊂ (0, δ),

which contradicts to (2.15) and so (2.13) holds.
By exactly the same reasoning applied on the sequence {x′n} we establish

lim
t→0+

x′0(t) = B.

Moreover, now we use that for each i ∈ N and sufficiently large nk ∈ Ni, k ∈ N ,
(2.17) yields

−ε/2 < x′i,nk
(t)− x′0(t) < ε/2 for t ∈ [θi, T ].

Next, introduce the function

x(t) =

{
A for t = 0,
x0(t) for t ∈ (0, T ].

Clearly, x′(t) = x′0(t) for t ∈ (0, T ]. Besides,

x′(0) = lim
t→0+

x(t)− x(0)
t− 0

= lim
t→0+

x′(t) = lim
t→0+

x′0(t) = B.

Thus, x′ ∈ C[0, T ] and so x(t) is a C1[0, T ] ∩ C2(0, T ]-solution to (1.1).
The inequalities (2.11) give immediately

m1 ≤ x′(t) ≤M1 for t ∈ [0, T ],

from where by integration from 0 to t ∈ (0, T ] we obtain the bounds for x(t). �

As an elementary consequence of Theorem 2.1 we obtain results guaranteeing
important properties of the solutions.

Theorem 2.2. Let B ≥ 0 and let (A2) hold for m1 = 0. Then problem (1.1) has
at least one nondecreasing solution in C1[0, T ] ∩ C2(0, T ].

Theorem 2.3. Let B > 0 and let (A2) hold for m1 > 0. Then problem (1.1) has
at least one strictly increasing solution in C1[0, T ] ∩ C2(0, T ].

Theorem 2.4. Let A > 0 (A = 0), B ≥ 0 and let (A2) hold for m1 = 0.
Then problem (1.1) has at least one positive (nonnegative) nondecreasing solution
in C1[0, T ] ∩ C2(0, T ].
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Theorem 2.5. Let A ≥ 0, B > 0 and let (A2) hold for m1 > 0. Then problem (1.1)
has at least one strictly increasing solution in C1[0, T ] ∩ C2(0, T ] having positive
values for t ∈ (0, T ].

3. Example

Consider the IVP

x′′ = t−
m
n Pk(x′),

x(0) = A, x′(0) = B,

where A ≥ 0, B > 0, m,n ∈ N , and the polynomial Pk(p), k ≥ 2, has simple zeros
p1 and p2 such that P ′k(p1) < 0 and 0 < p1 < B < p2.

Let θ > 0 be so small that p1 − θ > 0, p1 + θ < B < p2 − θ and

Pk(p) 6= 0 for p ∈ [p1 − θ, p1) ∪ (p1, p1 + θ) ∪ [p2 − θ, p2) ∪ (p2, p2 + θ].

Then P ′k(p1) < 0 implies

Pk(p) > 0 for p ∈ [p1 − θ, p1) and Pk(p) < 0 for p ∈ (p1, p1 + θ].

Besides, we see easily that if

Pk(p) < 0 for p ∈ [p2 − θ, p2),

then (A2) holds for an arbitrary T > 0,

m1 = p1 − θ, m1 = p1,M1 = p2 − θ, M1 = p2, τ = θ/2,

moreover M̃0 = (p2 − θ)T +A, and if

Pk(p) < 0 for p ∈ (p2, p2 + θ],

it is satisfied for an arbitrary T > 0,

m1 = p1 − θ, m1 = p1, M1 = p2, M1 = p2 + θ, τ = θ/2,

moreover M̃0 = p2T + A. So, it follows from Theorem 2.5 that for each T > 0 the
considered problem has a strictly increasing solution in C1[0, T ]∩C2(0, T ] which is
positive on (0, T ].
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