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MULTIPLE SOLUTIONS FOR SCHRÖDINGER-POISSON
SYSTEMS WITH SIGN-CHANGING POTENTIAL AND

CRITICAL NONLINEARITY

LIUYANG SHAO, HAIBO CHEN

Abstract. In this article, we study the Schrödinger-Poisson system

−∆u+ V (x)u+ k(x)φ(x)u = h1(x)|u|4u+ µh2(x)u+ h3(x), in R3,

−∆φ(x) = k(x)u2, in R3,

where h1(x), h2(x), h3(x) and V (x) are allowed to be sign-changing and µ > 0
is a parameter. Under some appropriate assumptions on V (x), we obtain

the existence of two different solutions for the above system via variational

methods.

1. Introduction and statement of main results

In this article we consider the Schrödinger-Poisson system

−∆u+ V (x)u+ k(x)φ(x)u = h1(x)|u|4u+ µh2(x)u+ h3(x), in R3,

−∆φ(x) = k(x)u2, in R3,
(1.1)

where h1(x), h2(x), h3(x) and V (x) are allowed to be sign-changing and µ > 0
is a parameter. Moreover, h3(x) is a perturbed term. System (1.1) is a modified
version of the classical Schrödinger-Poisson system (also called Schrödinger-Maxwell
equation), which has a strong physical backgrounds because of its appearances in
quantum mechanical models and in semiconductor theory. For more details, we
refer the readers to [3, 4, 12] and the references therein.

In recent years, with the aid of variational methods, there have been many results
on existence, nonexistence and multiplicity of solutions for such system depending
on the assumptions of the potential V (x). According to the conditions imposed
on the potential V (x), these results can be roughly classified into four cases. Case
1: Many articles deal with the case when V (x) is a positive constant or radially
symmetric function, see for example [1, 2, 5, 7, 15, 19, 25] and the references therein.
Case 2: There are also a great number of articles devoted to the case when V (x)
is nonradial, see for instance [8, 9, 14, 20]. Case 3: Many articles deal with the
case when V (x) possesses some kind of periodicity see [10, 16, 17, 18, 21, 22, 23].
Case 4: We know that [11, 22] treat the case when V (x) is sign-changing. Here

2010 Mathematics Subject Classification. 35B38, 35G99.
Key words and phrases. Schrödinger-Poisson system; variational methods;

mountain pass theorem; Ekeland’s variational principle.
c©2016 Texas State University.

Submitted March 12, 2016. Published October 17, 2016.

1



2 L. SHAO, H. CHEN EJDE-2016/276

we emphasize problem (1.1) not only has sign-changing potential V (x) but also
possesses critical nonlinearity.

Motivated by the above facts, the goal of this paper is to consider the multi-
plicity of nontrivial solutions for (1.1) when V (x) is sign-changing. Under some
natural assumptions, by using Mountain Pass Theorem in combination with Eke-
land’s variational principle, the existence results of at least two nontrivial solutions
are obtained. Actually, one positive solution and one negative solution.

Before stating our main results, we give the following assumptions on V (x).
(A1) V ∈ C(R3,R) and infx∈R3 V (x) > −∞. Moreover, there exists a constant

d0 such that

lim
|y|→+∞

meas{x ∈ R3 : |x− y| ≤ d0, V (x) ≤M} = 0, ∀M > 0.

where meas(·) denotes the Lebesgue measure in R3.

Inspired by Zhang and Xu [27], we can find a constant V0 > 0 such that Ṽ (x) :=
V (x) + V0 ≥ a, where a > 0 is a constant, and let µ̃h̃2(x) = V0 + µh2(x), for all
x ∈ R3.

Throughout this paper, instead of (A1) we make the following assumptions:

(A2) Ṽ ∈ C(R3,R) and infx∈R3 Ṽ (x) ≥ a > 0, where a > 0 is a constant, and
there exists a constant d0 > 0 such that

lim
|y|→+∞

meas{x ∈ R3 : |x− y| ≤ d0, Ṽ (x) ≤M} = 0, ∀M > 0.

Then it is easy to verify the following lemma.

Lemma 1.1. System (1.1) is equivalent to the problem

−∆u+ Ṽ (x)u+ k(x)φ(x)u = h1(x)|u|4u+ µ̃h̃2(x)u+ h3(x), in R3,

−∆φ(x) = k(x)u2, in R3.
(1.2)

We also assume that
(A3) k ∈ L∞(R3,R), and k(x) ≥ 0 for any x ∈ R3.
(A4) h1, h3 ∈ L2 ∩ C∞0 (R3,R) and h̃2 ∈ L6 ∩ C∞0 (R3,R).

(A5) 0 < µ̃ < µ0, where µ0 is defined by

µ0 := inf
u∈H1(R3)\{0}

{∫
R3

(|∇u|2 + Ṽ (x)u2)dx :
∫

R3
h̃2(x)|u|2dx = 1

}
. (1.3)

Proposition 1.2 ([6, Lemma 2.5]). Assume that (A3) and (A4) hold. Then the
infimum µ0 is achieved.

Now we state our main results.

Theorem 1.3. Suppose that (A2)–(A5) hold. Then there exists m0 > 0 such that
(1.2) admits at least two nontrivial weak solutions when ‖h3‖2 ≤ m0. Actually, one
solution is positive and one is negative.

Remark 1.4. It is not difficult to find the functions V (x) satisfying the above
conditions. For example, let V (x) be a zig-zag function with respect to |x| defined
as

V (x) =

{
2n|x| − 2n(n− 1) + a0, n− 1 ≤ |x| ≤ (2n−1)

2 ,

−2n|x|+ 2n2 + a0,
(2n−1)

2 ≤ |x| ≤ n,
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where n ∈ N and a0 ∈ R. Set V0 := supx∈R |V (x)|, it is not difficult to verify that
V (x) satisfies the conditions (A1) and (A2).

Remark 1.5. The nonlinear growth of |u|4u reaches the Sobolev critical exponent
since the critical exponent 2∗ = 6 in three spatial dimensions, which is why we call
it critical nonlinearity in the title.

The remainder of this paper is organized as follows. In Section 2, some prelimi-
nary results are presented. In Section 3, we give the proofs of our main results.

Hereafter, we use the following notation.
•H1(R3) denotes the usual sobolev space endowed with the standard scalar product
and norm

(u, v) =
∫

R3
(∇u∇v + uv)dx, ‖u‖2 =

∫
R3

(|∇u|2 + u2)dx.

• D1,2(R3) is the completion of C∞0 (R3) with respect to the norm ‖u‖D1,2 :=
(
∫

R3 |∇u|2dx)1/2.
• Denote the space E = {u ∈ H1(R3) :

∫
R3(|∇u|2 + Ṽ (x)|u|2)dx < ∞}, with the

norm

‖u‖2E =
∫

R3
(|∇u|2 + Ṽ (x)|u|2)dx.

• E∗ denotes the dual space of E.
• For any ρ > 0 and for any z ∈ R3, Bρ(z) denotes the ball of radius ρ centered at
z. |Bρ(z)| denotes its lebesgue measure of the ball.

2. Variational setting and preliminaries

In this section, we recall some basic notation and preliminaries. From [3], we
know that under the assumption (A2), the embedding E ↪→ Ls(R3) is compact for
s ∈ [2, 6).

It is easy to show that system (1.2) can be reduced to a single equation with a
nonlocal term. For u ∈ E, we define a linear functional Lu in D1,2(R3) as follows:

Lu : v →
∫

R3
k(x)u2vdx.

One can check that the functional Lu is continuous in D1,2(R3). Indeed, by using
the Hölder’s inequality and Sobolev inequality, we obtain∣∣ ∫

R3
k(x)u2vdx

∣∣ ≤ ‖k‖∞‖u2‖ 6
5
‖v‖6 = ‖k‖∞‖u‖212

5
‖v‖6 ≤ C‖u‖2E‖v‖D1,2 . (2.1)

Given u ∈ E, by the Lax-Milgram Theorem, there exists a unique solution φu ∈
D1,2(R3) of the equation

−∆φ(x) = k(x)u2.

Moreover, φu has the integral expression

φu(x) =
1

4π

∫
R3
k(y)

u2(y)
|x− y|

dy ≥ 0,

combining this with (2.1), we obtain

‖φ‖2D1,2 < C‖u‖2E‖φu‖D1,2 ;
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that is, ‖φu‖D1,2 ≤ c‖u‖2E . And then we have

1
4π

∫
R3

∫
R3
k(y)

u2(x)u2(y)
|x− y|

dxdy =
∫

R3
u2φu(x)dx

≤ C‖u‖4E .
(2.2)

Now we define a functional I on E by

I(u) =
1
2

∫
R3

(|∇u|2 + Ṽ (x)u2)dx+
1
4

∫
R3
k(x)φuu2dx

− 1
6

∫
R3
h1(x)u6dx− 1

2

∫
R3
µ̃h̃2(x)u2dx−

∫
R3
h3(x)udx.

It is easy to verify that the functional I is of class C1(E,R). Moreover,

〈I ′(u), v〉 =
∫

R3
(|∇u|∇v + Ṽ (x)uv)dx+

∫
R3
k(x)φuuvdx

−
∫

R3
h1(x)u5vdx−

∫
R3
µ̃h̃2(x)uvdx−

∫
R3
h3(x)vdx.

Hence, if u ∈ E is a critical point of I, then the pair (u, φu) is a solution of (1.2).

Theorem 2.1 ([26, Mountain Pass Theorem]). Let X be a real Banach space,
suppose that I ∈ C1(X,R) satisfies the (PS) condition with I(0) = 0. In addition,
suppose that

(i) there are ρ, α > 0 such that I(u) ≥ α when ‖u‖X = ρ;
(ii) there is e ∈ X, ‖e‖X > ρ, such that I(e) < 0.

Define
Γ = {γ ∈ C1([0, 1], X)|γ(0) = 0, γ(1) = e}.

Then c := infγ∈Γ maxt∈[0,1] I(γ(t)) is a critical value of I.

3. Proof of Theorem 1.3

Lemma 3.1. Assume that (A2)–(A5) hold. Then I satisfies the (PS) condition.

Proof. We first prove that {un} is bounded in E. Then

C + 1 + ‖un‖E ≥ I(un)− 1
6
〈I ′(un), un〉

=
1
3
‖un‖2E +

1
12

∫
R3
k(x)Φu2dx

− 1
3
µ̃

∫
R3
h̃2(x)u2dx− (1− 1

6
)
∫

R3
h3(x)undx

≥ 1
3
‖un‖2E +

1
12

∫
R3
k(x)Φu2

ndx− µ̃

3µ0
‖un‖2E

− 5
6

(∫
R3
h2

3(x)dx
)1/2(∫

R3
u2
ndx

)1/2

≥ 1
3

(1− µ̃

µ0
)‖un‖2E − C‖un‖E ,

(3.1)

which implies that {un} is bounded.
Next we show that {un} possesses a strong convergent subsequence in E. In

fact, in view of the boundedness of {un}, without loss of generality, we assume that
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there exists u0 ∈ E such that un ⇀ u0 as n → ∞. Since E ↪→ Ls(R3) is compact
for s ∈ [2, 6), un → u0 in Ls(R3) for any s ∈ [2, 6). We obtain

‖un − u‖2E = 2〈I ′(un)− I ′(u), un − u〉 −
∫

R3
(φun

un − φuu)(un − u)dx

+
∫

R3
h1(|un|4u− |u|4u)(un − u)dx+ µ̃

∫
R3
h̃2(x)(un − u)2dx

+
∫

R3
h3(x)(un − u)dx.

(3.2)

It is clear that
〈I ′(un)− I ′(u), un − u〉 → 0.

By using the Hölder’s inequality and Sobolev inequality, we obtain∣∣ ∫
R3
φun

un(un − u)dx
∣∣ ≤ ‖φun

un‖2‖un − u‖2

≤ ‖φun‖6‖un‖3‖un − u‖2
≤ C‖φun

‖D1,2‖un‖3‖un − u‖3
≤ C‖un‖ 12

5
‖un‖3‖un − u‖2 → 0.

(3.3)

Similarly, we obtain that
∫

R3 φuu(un − u)dx→ 0 as n→∞.
From the Brézis-Lieb Lemma [26], we have∣∣ ∫

R3
h1(x)(|un|5 − |u|5)(un − u)dx

∣∣
≤ ‖h1‖∞

∣∣ ∫
R3

(|un|5 − |u5|)(un − u)dx
∣∣

≤ ‖h1‖∞
∫

R3
|un − u|6dx+ o(1)

≤ C‖h1‖∞‖un − u‖6E + o(1)→ 0.

(3.4)

By using the Hölder’s inequality, we obtain∫
R3
h3(x)(un − u)dx ≤ ‖h3‖2‖un − u‖2 → 0, (3.5)∫

R3
h̃2(x)(un − u)2dx ≤ ‖h̃2‖6‖un − u‖212/5 → 0. (3.6)

We obtain ‖un − u‖2E → 0, which completes the proof. �

Lemma 3.2. Assume that (A2)–(A5) are satisfied. Then there exists m0 > 0 such
that (1.2) has a positive solution when ‖h3‖2 ≤ m0.

Proof. It follows from Lemma 1.1 and the Sobolev inequality that

I(u) =
1
2

∫
R3
|∇u|2dx+

1
2

∫
R3
Ṽ (x)u2dx+

1
4

∫
R3
k(x)φuu2dx− 1

6

∫
R3
h1(x)u6dx

− 1
2

∫
R3
µ̃h̃2(x)u2dx−

∫
R3
h3(x)udx

=
1
2
‖u‖2E +

1
4

∫
R3
k(x)φuu2dx− 1

6

∫
R3
h1(x)u6dx

− 1
2
µ̃

∫
R3
h̃2(x)u2dx−

∫
R3
h3(x)udx
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≥ 1
2
‖u‖2E −

C

6
‖h1‖∞‖u‖6E −

1
2
µ̃

∫
R3
|h̃2(x)|u2dx− ‖h3‖2‖u‖2

≥ 1
2

(1− µ̃

µ0
)‖u‖2E −

C

6
‖h1‖∞‖u‖6E − C1‖h3‖2‖u‖E

= ‖u‖E
(1

2
(1− µ̃

µ0
)‖u‖E −

C

6
‖u‖5E − C1‖h3‖2

)
.

Taking ‖u‖E = t, and letting

g(t) =
1
2

(1− µ̃

µ0
)t− C

6
t5,

we have g′(t0) = 0 when

t0 =
(3(1− µ̃

µ0
)

5C

)1/4

.

Hence, there exists

m0 = ‖h3‖2 <
2

5C1
(1− µ̃

µ0
)
(3(1− µ̃

µ0
)

5C

)1/4

,

such that
2
5

(1− µ̃

µ0
)
(3(1− µ̃

µ0
)

5C

)1/4

− C1‖h3‖2 > 0.

Let ρ = ‖u‖E small enough, there exists α > 0, such that I(u) ≥ α. Thus, (i) in
Theorem 2.1 is true.

Choose ψ0 ∈ C∞0 (R3), ψ0 ≥ 0 and ψ0 6≡ 0 in R3. Then

I(tψ0) =
1
2
t2‖ψ0‖2 +

1
4
t4
∫

R3
k(x)φψ0ψ

2
0dx− 1

6
t6
∫

R3
h1(x)ψ6

0dx

− 1
2
t2µ̃

∫
R3
h2(x)ψ2

0dx− t
∫

R3
h3(x)ψ0dx,

(3.7)

so I(tψ0) → −∞ as t → +∞. Therefore, there exists t0 large enough, such that
I(t0ψ0) < 0. Taking e = t0ψ0 such that ‖t0ψ0‖ > ρ and I(e) < 0, and (ii) in
Theorem 2.1 is true. It is obvious that I(0) = 0, by Theorem 2.1, problem (1.2)
has a positive solution. �

Lemma 3.3. Assume that (A2)–(A4) hold. Then (1.2) has a negative solution.

Proof. Since h3 ∈ L2(R3) \ {0} and h+
3 6≡ 0, we can choose a function φ1 ∈ E such

that ∫
R3
h3(x)φ1dx > 0.

For t > 0 small enough, we have

I(tφ1) =
t2

2
‖φ1‖2E +

t2

4
k(x)

∫
R3
φuφ

2
1dx− t6

6

∫
R3
h1(x)φ6

1dx

− µ̃t2

2

∫
R3
h̃2(x)φ1dx− t

∫
R3
h3φ1dx

≤ t2

2
‖φ1‖2E +

t4

4
c‖φ1‖4E −

t6

6

∫
R3
h3(x)φ6

1dx− µ̃t2

2

∫
R3
h̃2(x)φ1dx

− t
∫

R3
h3(x)φ1dx < 0.
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Hence θ0 := inf{I(u) : u ∈ B̄ρ} < 0. By the Ekeland’s variational principle, there
exists a minimizing sequence {un} ⊂ B̄ρ, such that I(un) → 0 and I ′(un) → 0 as
n→∞. Because the functional I satisfies the (PS) condition, there exists u0 ∈ E
such that I ′(u0) = 0 and I(u0) = c1 < 0. The proof is complete. �

Proof of Theorem 1.3. From Lemmas 3.2 and 3.3, we obtain the existence of at
least two nontrivial weak solutions for the problem (1.2). Actually, one solution is
positive and the other negative. �
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