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HARNACK TYPE INEQUALITY FOR NON-NEGATIVE
SOLUTIONS OF SECOND-ORDER DEGENERATE PARABOLIC

EQUATIONS IN DIVERGENT FORM

SARVAN T. HUSEYNOV

Abstract. We study a class of second-order degenerate parabolic equations
in divergent form. We prove two analogues of the Harnack inequality, one for

non-negative weak solutions, an another for non-negative solutions.

1. Introduction

Let Rn be a Euclidean space of the points x = (x1, x2, . . . , xn) and D be a
bounded domain in Rn+1 with the parabolic boundary Γ(D), (0, 0) ∈ D.

Consider the parabolic equation

Lu =
∂u

∂t
−

n∑
i,j=1

∂

∂xi

(
aij(x, t)

∂u

∂xj

)
= 0, (x, t) ∈ D, (1.1)

and assume that {aij(x, t)} is a real symmetric matrix with measurable elements
and for all (x, t) ∈ D and ξ ∈ Rn the following condition is fulfilled:

γ

n∑
i=1

λi(x, t)ξ2
i ≤

n∑
i,j=1

aij(x, t)ξiξj ≤ γ−1
n∑
i=1

λi(x, t)ξ2
i , (1.2)

where γ ∈ (0, 1] is a constant,

λi(x, t) = gi
(
ρ(x) +

√
|t|
)
,

ρ(x) =
n∑
i=1

wi(|xi|), gi(z) =
(w−1

i (z))2

z2
, i = 1, 2, . . . , n.

We assume that the functions wi(t) increase strictly monotonically, wi(0) = 0,
w−1
i (t) is the function inverse to wi(t) and for i = 1, 2, . . . , n,

wi(2t) ≤ 2wi(t), (1.3)(wi(t)
t

)q−1
∫ w−1

i (t)

0

(
wi(z)
z

)qdz ≤ c1t (1.4)
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with some constant q > n and positive constant c1 independent of t. A simple
example of function wi is wi(t) = tαi where

αi ≥
−1 +

√
1 + 4q(q − 1)

2(q − 1)
.

The principal result of this article is the Harnack type inequality for non-negative
weak solutions of equation (1.1).

For uniformly second-order parabolic equations of divergent structure, with dis-
continuous coefficients the Harnack inequality was obtained in the well known paper
by Nash [5]. Moser [4] obtained another proof of this fact. For parabolic equations
of divergent structure with uniform degeneration we refer to [1, 2]. When wi(t) are
power functions, the Harnack type inequality was obtained in [3].

Now we introduce some notation: let D be a cylindrical domain Ω × [T0, T ],
where Ω is a bounded domain in Rn and −∞ < T0 < T <∞.

By W 1,0
2,Λ(D) and W 1,1

2,Λ(D) we denote Banach spaces of functions u(x, t) with
finite norms in D,

‖u‖W 1,0
2,Λ(D) =

(
sup

t∈[T0,T ]

∫
Ω

u2 dx+
n∑
i=1

∫
Ω

λi(x, t)(
∂u

∂xi
)2 dx dt

)1/2

,

‖u‖W 1,1
2,Λ(D) =

(∫
D

(
u2 +

n∑
i=1

λi(x, t)
( ∂u
∂xi

)2 +
(∂u
∂t

)2)
dx dt

)1/2

.

Let A(D) be the set of all infinitely differentiable functions u(x, t) on D, such
that suppu ⊂ (Ωu × [T0, T ]),Ωu is a bounded subdomain of Ω, u

∣∣
t=T0

= 0. By

W̊ 1,1
2,Λ(D) we denote the closure of A(D) in W 1,1

2,Λ(D). We set ut = ∂u
∂t , uxi = ∂u

∂xi
,

i = 1, 2, . . . , n.
A function u(x, t) ∈W 1,0

2,Λ(D) is called the weak solution of (1.1) in D if for any
test function ψ(x, t) ∈ W̊ 1,1

2,Λ(D) and t1 ∈ (T0, T ] we have∫
Ω

u(x, t1)ψ(x, t1) dx−
∫
Dt1

uψt dx dt+
∫
Dt1

n∑
i,j=1

aij(x, t)uxiψxj dx dt = 0, (1.5)

where Dt1 = Ω× (T0, t1).

2. Norm estimates of weak non-negative solutions

Here |E| stands for n-dimensional (or (n+ 1)-dimensional) Lebesque measure of
the measurable set E ⊂ Rn (or E ⊂ Rn+1). We use the notation:

ΠR = {x : |xi| < ω−1
i (R), i = 1, 2, . . . , n},

S(ρ) = {x : |xi| < ρω−1
i (R), i = 1, 2, . . . , n} × (−(1/3 + ρ)R2,−(3/4− ρ)R2),

where ρ ∈ (1/3, 1/2]. We assume that S(ρ) ⊂ D. Denote

rν = σ−ν(1 + σ)−1, ν = 0, 1, 2, . . . ,

where σ > 1 will be defined later (it is the exponent of the imbedding theorem
corresponding to the weights λi).



EJDE-2016/278 HARNACK TYPE INEQUALITY 3

Now we state a Sobolev-type embedding theorem with weights, whose proof can
be found in [3]. We set

−
∫

ΠR

f dx =
1
|ΠR|

∫
ΠR

f dx, −
∫
Sρ

g dx dt =
1

|S(ρ)|

∫
S(ρ)

g dx dt.

Theorem 2.1 (Sobolev theorem with weights). For any function ϕ ∈W 1,0
2,Λ(S(ρ))

with zero trace on the lateral boundary of S(ρ), and any R ≤ R0 it holds(
−
∫
Sρ

|ϕ|2σ dx dt
)1/σ

≤ c
(

sup
t∈(−( 1

3 +ρ)R2,−( 3
4−ρ)R2)

−
∫

Π(R)

ϕ2 dx

+R2 −
∫
Sρ

n∑
i=1

λi(x, t)ϕ2
xi dx dt

)
,

(2.1)

for σ > 1, where the constant c does not depend on ϕ, R and ρ.

Theorem 2.2. Let u(x, t) be a non-negative weak solution of (1.1) with coefficients
that satisfy (1.2)–(1.4). For any r > 0 and 1/3 ≤ ρ′ < ρ ≤ 1/2 it holds

sup
S(ρ′)

u ≤ c(ρ− ρ′)−ξ
(
−
∫
S(ρ)

ur dx dt
)−1/r

, (2.2)

where positive constants c and ξ depend only on q, c1, n, r and γ.

Proof. First, we prove the statement of this theorem for r = 2. The case r > 2
follows then by the Hölder inequality. To treat the case r ∈ (0, 2), we use an
additional iteration.

Take a function η such that η(x, t) = 1 in S(ρ′), η(x, t) = 0 outside of S(ρ),
0 ≤ η(x, t) ≤ 1, and there exists a constant c(n) such that

|ηxi | ≤
c

(ρ− ρ′)w−1
i (R)

, i = 1, 2, . . . , n; |ηt| ≤
c

(ρ− ρ′)R2
. (2.3)

In (1.5) choose a test function ψ = uβη2, where β > 0. We obtain

sup
t∈(−( 1

3 +ρ)R2,−( 3
4−ρ)R2)

1
β + 1

∫
Π(ρ)

uβ+1η2 dx+ β

∫
S(ρ)

uβ−1η2aijuxiuxj dx dt

=
2

β + 1

∫
S(ρ)

uβ+1ηηt dx dt− 2
∫
S(ρ)

uβηaijuxiηxi dx dt.

Let v = u(β+1)/2. Using (1.2) and the Young inequality, we arrive at

sup
t∈(−( 1

3 +ρ)R2,−( 3
4−ρ)R2)

∫
Π(ρ)

v2η2 dx+
4β
β + 1

∫
S(ρ)

η2v2
xiλi(x, t) dx dt

≤ C
∫
S(ρ)

v2η|ηt| dx dt+ C(β + 1)β−1

∫
S(ρ)

v2η2
xiλi(x, t) dx dt

The above integral is taken over the set S(ρ) \S(ρ′), since ηxi = 0 in S(ρ′). But in
this set

ρ(x) ≤ cR,
√
|t| ≤ R, λi(x, t) ≤ c

(w−1
i (R))2

R2
;

therefore, ∫
S(ρ)

η2
n∑
i=1

λi(x, t)v2
xidx dt ≤

c(β + 1)2

β2(ρ− ρ′)2R2

∫
S(ρ)

v2dx dt.
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On the other hand, we have

sup
t∈(−( 1

3 +ρ)R2,−( 3
4−ρ)R2)

∫
ΠρR

v2η2 dx ≤ Cβ + 1
β

(ρ− ρ′)−2R−2

∫
S(ρ)

v2 dx dt.

For β ≥ 1 these estimates take the form

sup
t∈(−( 1

3 +ρ)R2,−( 3
4−ρ)R2)

−
∫

ΠρR

η2v2 dx ≤ c(ρ− ρ′)−2 −
∫
S(ρ)

v2 dx dt, (2.4)

−
∫
S(ρ)

n∑
i=1

λi(x, t)v2
xiη

2 dx dt ≤ c(ρ− ρ′)−2R−2 −
∫
S(ρ)

v2 dx dt. (2.5)

Further more we assume that β ≥ 1.
Applying (2.4),(2.5) and the embedding theorem (2.1) we obtain(
−
∫
S(ρ′)

v2σ dx dt
)1/σ

≤ c
(
−
∫
S(ρ)

v2ση2σ dx dt
)1/σ

≤ c
(

sup
t∈(−( 1

3 +ρ)R2,−( 3
4−ρ)R2)

−
∫

ΠρR

η2v2 dx+R2 −
∫
S(ρ)

n∑
i=1

λi(x, t)(vη)2
xi dx dt

)
≤ c(ρ− ρ′)2 −

∫
S(ρ)

v2 dx dt.

(2.6)

We define the sequences

ρ′m = ρ′ +
ρ− ρ′

2m+1
, ρm = ρ′ +

ρ− ρ′

2m
,

βm = 2σm − 1, vm = u
βm+1

2 .

Then from (2.6) we deduce

φm+1 :=
(
−
∫
S(ρm+1)

u2σm+1
dx dt

) 1
2σm+1

=
(
−
∫
S(ρm+1)

v2
m+1 dx dt

) 1
2σm+1

=
(
−
∫
S(ρ′m)

v2σ
m dx dt

) 1
2σm+1

≤
(
c(ρm − ρ′m)−2 −

∫
S(ρm)

v2
m dx dt

) 1
2σm

≤(c2m(ρ− ρ′)−2)
1

2σm φm.

It easily follows that

φm+1 ≤ C(ρ− ρ′)σ/(1−σ)φ0, m ≥ 0.

Thus,

lim sup
m→∞

(
−
∫
S(ρm)

u2σm dx dt
) 1

2σm ≤ C(ρ− ρ′)σ/(1−σ)
(
−
∫
S(ρ0)

u2 dx dt
)1/2
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The statement of the theorem for r = 2 easily follows, in view of the well-known
property

ess sup{u;A} = lim sup
q→∞

( ∫
A

uq dx dt
)1/q

.

The statement of the theorem for r > 2 follows by a direct application of the
Hölder inequality(

−
∫
S(ρ)

u2 dx dt
) 1

2 ≤
(
−
∫
S(ρ)

ur dx dt
)−1/r

, r > 2.

Now, we treat the case r ∈ (0, 2). Here we need an additional iteration. In the
integral identity (1.5) we choose the test function ψ = uβη2, where β = −1+r, and
the cut-off function η has the same meaning as in (2.3). We arrive at the estimate
(2.6) with the constant c, which depends on r. Iterating this relation as above, by
a finite number of steps we obtain

−
∫
S(ρ′)

u2 dx dt ≤ c(ρ− ρ′)−ξ0
(
−
∫
S(ρ)

ur dx dt
)−1/r

,

where positive constants c and ξ0 depend only on q, c1, n, r and γ. Combining this
inequality with the estimate (2.2) obtained earlier for r ≥ 2, and using that ρ′ can
be taken arbitrarily, we arrive at the desired statement. �

Now let
Q(ρ) = ΠρR × (−ρ2R2, 0); ρ ∈ (0, 1).

The following statement is proved as in the previous theorem. The only difference
is that the value of β in the proof is taken to be less than −1.

Lemma 2.3. Let r > 0 and u(x, t) be a weak non-negative solution of (1.1). Then
the following estimate holds

inf
Q(ρ′)

u ≥ c(ρ− ρ′)−ξ
(
−
∫
Q(ρ)

u−r dx dt
)−1/r

where 1/3 ≤ ρ′ < ρ ≤ 1/2.

The next Lemma is a variant of Theorem 2.2 with a slightly different choice of
the outer and inner cylinders.

Lemma 2.4. Let the conditions of the previous lemma be fulfilled. Then the fol-
lowing estimate is valid

sup
Q(1/3)

u ≤ c
(
−
∫
Q(1/2)

u2 dx dt
)1/2

.

3. Harnack type inequality

The technique of this section is based on ideas from [4].

Theorem 3.1. Let u(x, t) be a non-negative weak solution of equation (1.1). Then
there exist the constants a1(Λ, n) and a2(Λ, n) such that for any s > 0,

|{(x, t) ∈ D1, lnu(x, t) > s+ a1}| ≤ c
R2|ΠR|

s
,

|{(x, t) ∈ D2, lnu(x, t) < −s+ a1}| ≤ c
R2|ΠR|

s
,
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where

D1 = ΠR/2 × (−R2,−R
2

2
), D2 = ΠR/2 × (−R

2

2
, 0).

Proof. Assume υ(x, t) = − lnu(x, t) and let η(x, t) = ξ(x)w(t), where w(t) = 1 for
t ≤ −τ1R2, w(t) = 0 for t ≥ − τ12 R

2, 0 ≤ w(t) ≤ 1, |wt| ≤ c
τ1R2 ; and ξ(x) = 1

for x ∈ ΠR/2, ξ(x) = 0 for x /∈ Π 5R
2

, 0 ≤ ξ(x) ≤ 1, |ξxi | ≤ c
w−1
i (R)

; i = 1, 2, . . . , n

moreover for 0 < τ1 < 1, and the function ξ(x) such that for an arbitrary C the set
{x : ξ(x) ≥ C} is convex. From Theorem 2.2 we have (if only τ1 < τ2 ≤ 1)∫

Π 5R
6

vξ2 dx
∣∣∣−τ2R2

−τ1R2
+
γ

2

∫ −τ1R2

−τ2R2
dt

∫
Π 5R

6

ξ2
n∑
i=1

λi(x, t)v2
xi dx ≤ c(τ2−τ1)|ΠR|. (3.1)

Indeed, since ηt = 0 for t ∈ (−τ2R2,−τ1R2), according to Theorem 2.2, the left-
hand side of (3.1) is estimated by

J = c(γ)
∫ −τ1R2

−τ2R2
dt

∫
ΠR\ΠR/2

n∑
i=1

λi(x, t)ξ2
xi dx.

(since ξxi ≡ 0 in ΠR/2). Note that, for x ∈ ΠR\ΠR/2, wi(|xi|) ≤ cR. Thus,

ρ(x) +
√
|t| ≤ cR, i.e. λi(x, t) ≤ c

(w−1
i (R))2

R2 . Hence we deduce that
n∑
i=1

λi(x, t)ξ2
xi ≤ c

(w−1
i (R))2

R2

1
(w−1

i (R))2
=

c

R2
.

So,
J ≤ c

R2
(τ2 − τ1)R2 = c(τ2 − τ1)

and (3.1) is proved. �

Now consider the functions

V (t) =

∫
ΠR

v(x, t)ξ2(x) dx∫
ΠR

ξ2(x) dx
, D(t) =

∫
ΠR

(
v(x, t)− V (t)

)2
ξ2(x) dx∫

ΠR
ξ2(x) dx

.

By the Poincare inequality [3], we have

D(t)
(∫

ΠR

ξ2(x) dx
)2

≤ cR2|ΠR|
∫

ΠR

ξ2(x)
n∑
i=1

λi(x, t)v2
xi dx,

that together with (3.1) gives

V (−τ1 ·R2)− V (−τ2 ·R2) +
c

R2|ΠR|

∫ −τ1R2

−τ2R2
dt

∫
ΠR/2

(v − V )2 dx ≤ c(τ2 − τ1).

When let τ2 to τ1 and assume t = −τ1R2. Then it follows from the above inequality
that

R2 dV

dt
+

c

|ΠR|

∫
ΠR/2

(v − V )2 dx ≤ c. (3.2)

Now consider the functions

ω(x, t) = v(x, t) +
c

R2
(−R

2

2
− t),

W (t) = V (t) +
c

R2
(−R

2

2
− t).
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Then from (3.2) we deduce

R2 dW

dt
+

c

|ΠR|

∫
ΠR/2

(ω −W )2 dx ≤ 0 . (3.3)

From (3.3) it follows that the function W (t) does not increase with respect to t,
therefore for all t ∈ (−R2,−R

2

2 ), we have

W (t) ≥W (−R
2

2
) = V (−R

2

2
).

By the same reason, for t ∈ (−R
2

2 , R
2), we have

W (t) ≤W (−R
2

2
) = V (−R

2

2
).

Assume that s1 < V (−R
2

2 ), and let

E1(t) = {x : x ∈ ΠR
2
, ω(x, t) < s1}.

Then for t ∈ (−R2,−R
2

2 ), we have

0 ≥ R2 dW

dt
+

c

|ΠR|

∫
E1(t)

(w −W )2 dx

≥ R2 dW

dt
+

c

|ΠR|

∫
E1(t)

(W − s1)2 dx

= R2 dW

dt
+ c(W (t)− s1)2 |E1(t)|

|ΠR|
.

Hence we deduce that

R2

∫ −R2
2

−R2

dW

(W − s1)2
≤ − c

|ΠR|

∫ −R2
2

−R2
|E1(t)| dt

= − c

|ΠR|
|{(x, t) ∈ D1;ω(x, t) < s1}|

= − c

|ΠR|
m1(s1).

Thus,

− R2

W (t)− s1

∣∣∣−R2
2

−R2
≤ − c

|ΠR|
m1(s1).

From this inequality we get that for all s > 0,

meas
{

(x, t) ∈ D1 : ω(x, t) < −s+ V (−R
2

2
)
}
≤ cR

2|ΠR|
s

,

and

meas
{

(x, t) ∈ D1 : lnu(x, t) > s− V (−R
2

2
) +

c

R2
(−R

2

2
− t)

}
≤ cR

2|ΠR|
s

. (3.4)

Now it suffices to take into account that t ∈ (−R2,−R
2

2 ), and from (3.4) it follows
that for a1 = −V (−R

2

2 ) + c
2 ,

meas
{

(x, t) ∈ D1 : lnu(x, t) > s+ a1

}
≤ meas

{
(x, t) ∈ D1 : lnu(x, t) > s− V (−R

2

2
) + c(−R

2

2
− t)

}
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≤ cR
2|ΠR|
s

and the right side of the statement of the lemma is proved. Its second part is proved
in the same way. Indeed, it suffices to obtain s2 > V (−R

2

2 ) and

m2(s2) = |{(x, t) ∈ D2 : ω(x, t) > s2}|.

Then

m2(s2) ≤ c R2|ΠR|
(s2 − V (−R2

2 ))
,

i.e. for any s > 0 and

a2 = −V (−R
2

2
)− c

2
we have

|{(x, t) ∈ D2 : lnu(x, t) < −s+ a2}| ≤ c
R2|ΠR|

s
.

The proof is complete.
It is easy to see that

a1 − a2 = c.

Now consider the functions ω1(x, t) = u(x, t)e−a1 and ω2(x, t) = (u(x, t))−1ea2 ,
where u(x, t) is a non-negative weak solution of equation (1.1). Let 1

3 ≤ ρ
′ < ρ ≤ 1

2 ,
rν = σ−ν(1 + σ)−1, ν = 0, 1, 2, . . . ; s1(ρ) = S(ρ), s2(ρ) = Q(ρ). In fact, from
Theorem 3.1 it follows that

sup
sj(ρ′)

ωrνj ≤ c(ρ− ρ
′)−(n+1)

(
−
∫
sj(ρ)

ω2
j dx

)1/2

,

∣∣{(x, t) ∈ sj(
1
2

), lnωj > s
}∣∣ ≤ cR2|ΠR|

s
,

where j = 1, 2.

Lemma 3.2. If the conditions of the previous theorem are fulfilled, then the fol-
lowing estimates hold:

sup
sj(

1
3 )

ωj ≤ c, j = 1, 2.

Proof. It is obvious that it suffices to prove the lemma for j = 1. Consider the
function ϕ(ρ) = sups(ρ) lnω1(x, t), and let κ = max{c, 1}. Then ϕ(ρ) does not
decrease with respect to ρ. If ϕ(1/3) ≤ 3κ, then the lemma is proved with c = e3κ.

Now let ϕ(1/3) > 3κ. Then for ρ ∈ [1/3, 1/2],

ϕ(ρ) > 3κ

We show that for ρ′ and ρ satisfying
1
3
≤ ρ′ < ρ ≤ 1

2
,

the it holds
ϕ(ρ′) <

3
4
ϕ(ρ) + c(ρ− ρ′)−8(n+1). (3.5)

Let s(ρ) = s1(ρ) + s2(ρ), where

s1(ρ) = {(x, t) ∈ s(ρ) :
1
2
ϕ(ρ) < lnω1(x, t) ≤ ϕ(ρ)},
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s2(ρ) = {(x, t) ∈ s(ρ) :
1
2
ϕ(ρ) ≥ lnω1(x, t)}.

We have

−
∫
s(ρ)

ω2rν
1 dx dt =

1
R2|Πρ|

(
−
∫
s1(ρ)

ω2rν
1 dx dt+−

∫
s2(ρ)

ω2rν
1 dx dt

)
≤ 1
R2|Πρ|

(
c
R2|ΠR|
1
2ϕ(ρ)

e2rνϕ(ρ) +R2|Πρ|erνϕ(ρ)
)

≤ κ

ϕ(ρ)
e2rνϕ(ρ) + erνϕ(ρ).

Since κ
ϕ(ρ) < 1/3, then for any ρ ∈ [ 1

3 ,
1
2 ] there exists rν such that

κ

ϕ(ρ)
e2rνϕ(ρ) ≤ erνϕ(ρ)

and we can choose the non-negative integer ν so large that

rν = σ−ν(1 + σ)−1 ≤ 1
ϕ(ρ)

ln
ϕ(ρ)
κ

,

and furthermore for any ρ ∈ [ 1
3 ,

1
2 ]

rνσ =
σ

σν(1 + σ)
>

1
ϕ(ρ)

ln
ϕ(ρ)
κ

,

since σ > 1 and κ ≥ 1, ϕ(ρ)
κ > 3; therefore,

1
ϕ(ρ)

ln
ϕ(ρ)
κ

=
1
κ
·

ln ϕ(ρ)
κ

ϕ(ρ)
κ

≤ ln 3
3

<
1
2
.

We have taken into account that for x ≥ 3 the function lnχ
χ decreases. Thus, we

obtain

ϕ(ρ′) = sup
s(ρ′)

lnω1(x, t) =
1

2rνϕ(ρ)
ln sup
s(ρ′)

ω2rν
1

≤ 1
2rν

ln
(
c(ρ− ρ′)−2(n+1)

)
+
ϕ(ρ)

2
.

Then we have

ϕ(ρ′) ≤ 1
2
ϕ(ρ)

( σ

ln ϕ(ρ)
κ

ln (c(ρ− ρ′)−2(n+1)) + 1
)
.

From the above estimate it follows (3.5). Indeed, if the first term of the right-hand
side is no greater than 1/2, then ϕ(ρ′) ≤ 3

4ϕ(ρ). But if

σ

ln ϕ(ρ)
κ

ln
(
c(ρ− ρ′)−2(n+1)

)
>

1
2
,

then

ln
ϕ(ρ)
κ

< 2σ ln
(
c(ρ− ρ′)−2(n+1)

)
≤ 4 ln

(
c(ρ− ρ′)−2(n+1)

)
.

Hence it follows that

ϕ(ρ′) ≤ ϕ(ρ) ≤ c(ρ− ρ′)−8(n+1),

and (3.5) is proved.
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Now consider the sequence

ρj =
1
2
− 1
σ(1 + j)

, j = 0, 1, 2, . . . .

and using (3.5) we obtain

ϕ(
1
3

) = ϕ(ρ0) <
3
4
ϕ(ρ1) +

c

(ρ1 − ρ0)8(n+1)

< (
3
4

)2ϕ(ρ2) + c
(

(ρ1 − ρ0)−8(n+1) +
3
4

(ρ2 − ρ1)−8(n+1)
)

< · · · < (
3
4

)mϕ(ρm) + c

m−1∑
j=0

(
3
4

)j(ρj+1 − ρj)−8(n+1)

= (
3
4

)mϕ(ρm) + c
m−1∑
j=0

(
3
4

)j
(
σ(j + 1)(2 + j)

)
.

From the continuity of the function ω1 it follows ϕ( 1
2 ) <∞, thus

ϕ(
1
3

) ≤ 1 + c

∞∑
j=0

(
3
4

)j (σ(j + 1)(2 + j)) ≤ c <∞,

and the proof is complete. �

Theorem 3.3. Let u(x, t) be a non-negative weak solution of (1.1) whose coeffi-
cients satisfy conditions (1.2)-(1.4). Then there exists a constant c = c(γ, n, q, c1)
such that

sup
S(1/3)

u ≤ c inf
Q(1/3)

u.

Proof. From Lemma 3.2, we have

sup
S(1/3)

ω1(x, t) sup
Q(1/3)

ω2(x, t) = e−a1+a2 sup
S(1/3)

u(x, t) sup
Q(1/3)

(u(x, t))−1 ≤ c.

Thus,
sup
S(1/3)

u(x, t) ≤ c inf
Q(1/3)

u(x, t),

and the proof is complete. �
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