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HARNACK TYPE INEQUALITY FOR NON-NEGATIVE
SOLUTIONS OF SECOND-ORDER DEGENERATE PARABOLIC
EQUATIONS IN DIVERGENT FORM

SARVAN T. HUSEYNOV

ABSTRACT. We study a class of second-order degenerate parabolic equations
in divergent form. We prove two analogues of the Harnack inequality, one for
non-negative weak solutions, an another for non-negative solutions.

1. INTRODUCTION

Let R™ be a Euclidean space of the points = (x1,x2,...,2,) and D be a
bounded domain in R"*! with the parabolic boundary I'(D), (0,0) € D.
Consider the parabolic equation

ou 0 ou
Lu = E — 421 aiml(a’lj(mvt)aixj) =0, (Z‘,t) € D’ (11)

)=

and assume that {a;;(z,t)} is a real symmetric matrix with measurable elements
and for all (z,t) € D and £ € R™ the following condition is fulfilled:

i=1 ij=1 i=1
where v € (0,1] is a constant,
i@, t) = gi(p(x) + V/It),
n -1 2
p(z) = Zwi(|$i|)a 9i(2) = 7(% () , 1=1,2,...,n.

; 22
=1

We assume that the functions w;(¢) increase strictly monotonically, w;(0) = 0,

wi_l(t) is the function inverse to w;(t) and for i = 1,2,...,n,
w; (2t) < 2w;(t), (1.3)
-1
(1) 91 w; (1) i
(w ( )) / (L (Z))qdz <cit (1.4)
t 0 z
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with some constant ¢ > n and positive constant c¢; independent of ¢. A simple
example of function w; is w;(t) = t* where

—1+4++/1+4¢(g—1)
- 2(¢ - 1) '

The principal result of this article is the Harnack type inequality for non-negative
weak solutions of equation .

For uniformly second-order parabolic equations of divergent structure, with dis-
continuous coefficients the Harnack inequality was obtained in the well known paper
by Nash [5]. Moser [4] obtained another proof of this fact. For parabolic equations
of divergent structure with uniform degeneration we refer to [1} 2. When w;(t) are
power functions, the Harnack type inequality was obtained in [3].

Now we introduce some notation: let D be a cylindrical domain € x [Ty, T7,
where (2 is a bounded domain in R™ and —oco < T < T < 0.

By W;X(D) and W;i(D) we denote Banach spaces of functions u(zx,t) with
finite norms in D,

lullwzop) :< sup /U d$+z

te(To,T)
0 0 /
Hu”WZ}i(D) = (/ (u -l-Z)\ z, t &Z ((;Z) )d dt)l 2,

Let A(D) be the set of all infinitely differentiable functions u(z,t) on D, such
that suppu C (Q, x [To,T]), Q2 _r, = 0. By

WQII{(D) we denote the closure of A(D) in W;A(D) We set uy = %, Uy, = %,
i=1,2,....n

A function u(zx,t) € WQIX (D) is called the weak solution of (1.1 in D if for any
test function ¢ (z,t) € W;i(D) and t; € (Tp, T| we have

/Qu(x,tl)w(x,tl)dx—/D

where Dt1 =0 x (T(),tl).

Q;

012 dt) v

Z

uy do dt + / Z @i (7, 1)Uy, Yy, dzdt =0, (1.5)

t Dy 4 5=1

2. NORM ESTIMATES OF WEAK NON-NEGATIVE SOLUTIONS

Here |E| stands for n-dimensional (or (n + 1)-dimensional) Lebesque measure of
the measurable set E C R (or E C R"*!). We use the notation:

Mg ={z: |z <w;'(R), i=1,2,...,n},
S(p) ={z: |zl < pw'(R), i=1,2,...,n} x (= (1/3+P) ~(3/4—p)R?),
where p € (1/3,1/2]. We assume that S(p) C D. Denote
r, =0 "(1+0), v=0,1,2,...,

where o > 1 will be defined later (it is the exponent of the imbedding theorem
corresponding to the weights \;).
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Now we state a Sobolev-type embedding theorem with weights, whose proof can
be found in [3]. We set

1 1
fdr=—— fdx, f gdrdt = —— gdz dt.
]{'IR Mgl Jug, s 1S Jsp)

P

Theorem 2.1 (Sobolev theorem with weights). For any function ¢ € W;X(S(p))
with zero trace on the lateral boundary of S(p), and any R < Ry it holds

1/o
(7[ l|?7 da dt) < c( sup ][ 0% dx
Sp te(—(3+p)R2,—(3—p)R?) JII(R)

+R2]/ Z)\ T, t)p2, dxdt)

le

(2.1)

for o > 1, where the constant ¢ does not depend on ¢, R and p.

Theorem 2.2. Let u(x,t) be a non-negative weak solution of (1.1]) with coefficients
that satisfy (1.2)—(1.4). For anyr >0 and 1/3 < p’ < p <1/2 it holds

—1/r
sup u < c(p —p/)7¢ (f u” dx dt) , (2.2)
S(0") S(p)

where positive constants ¢ and & depend only on q, c1, n, r and 7.

Proof. First, we prove the statement of this theorem for r = 2. The case r > 2
follows then by the Holder inequality. To treat the case r € (0,2), we use an
additional iteration.

Take a function 7 such that n(x,t) = 1 in S(p'), n(z,t) = 0 outside of S(p),
0 < n(z,t) <1, and there exists a constant ¢(n) such that
c ) c

Ma € —————, i=12....n ;]S —— 75 (2.3)
(p = p")w; ' (R) " (- )R
In (T.5) choose a test function ¥ = u®n?, where 3 > 0. We obtain
1
sup / ﬂ+1 2 de + 3 uﬂ_1n2aijuwiu$j dx dt
a3+ Rz~ (3 —p) i) P+ 1 () S(e)

2 / B+1 8
=— u Ty de dt — 2 u’na;; Uy, My, dx dt.
B+1 s S(p)

Let v = u(#+1/2, Using (1.2)) and the Young inequality, we arrive at

sup / vin? dx + 7/ n? % (z,t) dx dt
te(~(3+0) B2, ~(3—p)R2) JT1(p) B+1 s
< C/ V|| dedt + C(B+1)37! / v*n2 Ni(z, t) dz dt
S(p) S(p)

The above integral is taken over the set S(p) \ S(p’), since 1., = 0 in S(p). But in
this set ) )
(w; (R))
p(z) <cR, +I|t| <R, \(z,t)< Ty
therefore,

2\ c(B+1)? 2
n Ni(z, )2 dmdtgi vidx dt.
/5(;)) ; ( B2p—p')PR? Js(p)
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On the other hand, we have

1
sup / v2n? de < C’ﬁi(p - p’)*zsz/ v? da dt.
te(~(3+p) B2 ~(3=p)B2) JT,n p S(r)

For B > 1 these estimates take the form

sup f n*v?dr < c(p—p') 72 ][ v dx dt, (2.4)
te(—(5+p)R?,—(3—p)R2) /IR S(p)
][ Z Ai(z, )2 n*dedt < c(p—p/) PR3 ][ v? dx dt. (2.5)
S(p) =1 S(p)

Further more we assume that 5 > 1.

Applying (2.4),(2.5) and the embedding theorem (2.1]) we obtain

(]{9(,)/) v% dx dt) Ve

< C(fs(p) V2% dx dt) e

n (2.6)
< c( sup ][ n*v? dr + R? 7[ Z Ai(z,t)(vn)2 dx dt)
te(—(5+p)R?,—(§—p)R?) /T,r 5(p) i=1
<clp—p)? ]/ v? dx dt.
S(p)
We define the sequences
RN e o op=r
P =P+ 5oy P =0 o
Bm =20™ -1, v, = u

Then from ([2.6) we deduce

1
m+1 2omT1
][ u?’ dx dt)
s

(Pm+1)

(
:<][ vfnﬂ dz dt)%y++1
S(pm+1)
(
(

1
][ 02 da dt) 2o
S(Pin)

It easily follows that

Gm1 < Clp— )7/ =gy, m=>0.
Thus,

m Pr 1/2
lim sup (][ u??" dx dt) U< Cp—p)/ 0 (f u? dx dt)
m—00 M S(pm) S(

o)
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The statement of the theorem for r = 2 easily follows, in view of the well-known
property

1/
esssup{u;A}:limsup(/uqdmdt> !
A

q—00
The statement of the theorem for r > 2 follows by a direct application of the
Holder inequality

(]{;(p) u? dx dt)% < (]é(p) u” dx dt)_l/r, r> 2.

Now, we treat the case r € (0,2). Here we need an additional iteration. In the
integral identity we choose the test function ¥ = u’n?, where 3 = —1+r, and
the cut-off function 1 has the same meaning as in . We arrive at the estimate
(2.6) with the constant ¢, which depends on r. Iterating this relation as above, by
a finite number of steps we obtain

—1/r
][ w?drdt <c(p—p)~% (][ u” dx dt) ,
S(p") S(p)

where positive constants ¢ and &y depend only on g, ¢, n, r and . Combining this
inequality with the estimate (2.2]) obtained earlier for r > 2, and using that p’ can
be taken arbitrarily, we arrive at the desired statement. ([l

Now let
Q(p) =TI,k x (—p*R%,0);  p € (0,1).
The following statement is proved as in the previous theorem. The only difference
is that the value of 3 in the proof is taken to be less than —1.

Lemma 2.3. Let r > 0 and u(z,t) be a weak non-negative solution of (1.1). Then
the following estimate holds

—1/r
inf u>c(p—p)¢ ][ u” " dx dt
a1 =<l =7 ( Q(p) )
where 1/3 < p' < p<1/2.

The next Lemma is a variant of Theorem [2.2] with a slightly different choice of
the outer and inner cylinders.

Lemma 2.4. Let the conditions of the previous lemma be fulfilled. Then the fol-
lowing estimate is valid

1/2
sup u < c(]l u?dx dt) .
Q(1/3) Q(1/2)

3. HARNACK TYPE INEQUALITY
The technique of this section is based on ideas from [4].

Theorem 3.1. Let u(x,t) be a non-negative weak solution of equation (1.1)). Then
there exist the constants a1 (A, n) and as(A,n) such that for any s > 0,
R?|I1
H{(z,t) € Dy, Inu(z,t) > s+ a1} < c%,

R2|TI
{(z,t) € Dy, Inu(z,t) < —s+a1}| < c%,



6 S. T. HUSEYNOV EJDE-2016/278

where

Proof. Assume v(z,t) = —Inwu(z,t) and let n(x,t) = {(x)w(t), where w(t) = 1 for
t < —mR? wit) =0fort > -2 R? 0 < w( ) <1, |wt| < 1CRZ; and &(z) =1
for 2 € Ilgs, &(x) :Oforx§éﬂ%,0§§( <1, |¢& m;z: 1,2,...,n

moreover for 0 < 71 < 1, and the function &(z) such that for an arbitrary C the set
{z : &(z) > C} is convex. From Theorem [2.2| we have (if only 71 < 75 < 1)

—72R? ol -7 R? n
/ v€? dx —|—f/ dt/ 'S Z)\i(a:,t)vii dx < ¢(ro—m71)|Ig|. (3.1)
H% IIsRr i=1

7Rz 2 — 1o R2

6

Indeed, since n; = 0 for t € (—m2R?, —71 R?), according to Theorem [2.2] the left-
hand side of (3.1)) is estimated by

77’1R
J:m/ dt/ Ai(z, )& d.
—T2R? Hp\IR/> ;
(since £, = 0 in IIg/). Note that, for x € Ig\Ilg/2, wi(|zs|]) < cR. Thus,
-1
p(z) +/It] < cR, ie. Ai(x,t) < c%ﬂ. Hence we deduce that

S o R 1 e
2N S iy~

(2

So,
J < %(TQ —1)R*=c(ro — 1)
and is proved. [
Now consider the functions
Ju,, vi@, )€ (x) da
J, (@) dz

By the Poincare inequality [3], we have

fHR (v(z,t V(t)) dz
f () dz '

V(t) = D(t) =

n

£ (z) dx)2 < cRMg| | (@)Y Nile, t)0?, dr,

g g i=1

D(t)(

that together with (3.1]) gives

—11 R?
V(=11 R*) = V(-7 'R2)+L dt/ (v—=V)dx < c(ra — 7).

R2|HR| —T1oR? Mrys
When let 75 to 7 and assume t = —7 R?. Then it follows from the above inequality
that

RQd—V + (v—V)2de < c. (3.2)
gl Juy,,

Now consider the functions

_ c R?

w(z,t) =v(z,t) + ﬁ(_7 —t),
c R?
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Then from (3.2]) we deduce
R2 dW c
Al
From (3.3]) it follows that the function W (t) does not increase with respect to ¢,
therefore for all t € (—R2, —%2), we have

(w—W)?dx <0. (3.3)
Ig/2

R? R?
Wt > W) = v,
By the same reason, for ¢ € (—%2, R?), we have
R? R?
Wt < W) = v,

Assume that s; < V(- ) and let
El( y={z:x € g, w(z,t) < s1}.

2

Then for t € (—R?, —%), we have
dW c

0>R2—+ (w—W)*dx
|HR| Eq(t)
d
R2 W |HC (W —s1)°dx
rl JE (1)
aw 2101
2OV )2
=R dt + (W( ) 81) |HR| .

Hence we deduce that
2

R2
B dwW c B
2 < — B ()| dt
R /_Rz W) = |HR|/R2 ()]

= {(z,t) € Dy;w(x,t) < s1}|

|H |
= 7@7711(81).
Thus,
R? -z c
- < .
W) o1 l-re = [l ™)
From this inequality we get that for all s > 0,
2 R2|I
meas {(z,t) € Dy : w(z,t) < —s+ V(*R?)} < CM’
s
and
R? R? R?|II
meas {(z,t) € Dy : Inu(z,t) > s — V(——) + i(—— —-t)} < x| (3.4)

Now it suffices to tauke2 into account that t € (—R?, — RQ ), and from it follows
that for a; = —V(—%) + 3,
meas {(z,t) € Dy : Inu(z,t) > s+ay}
R? R?

< meas {(z,t) € Dy : Inu(z,t) >s— V(f?) Jrc(f7 -1}
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2|11
<R g|
s
and the right side of the statement of the lemma is proved. Its second part is proved

in the same way. Indeed, it suffices to obtain sy > V(f%z) and
ma(s2) = [{(x,t) € Dy : w(z,t) > sa}|.
Then

i.e. for any s > 0 and

we have

R2|TI
[{(z,t) € Dy : Inu(x,t) < —s+as}| < c%_

The proof is complete.
It is easy to see that
a1 —ag = C.
Now consider the functions wq(z,t) = u(x,t)e™* and wy(x,t) = (u(z,t)) te?2,
where u(z,t) is a non-negative weak solution of equation . Let % <p<p< %,
r, =0 (1 +o)" v=012...; 51(p) = S(p), s2(p) = Qp). In fact, from
Theorem [B.1] it follows that

sup w* < clp— )" (f

1/2
w?- d:v) ,
s;(p")

R?|g|
S b

()
{(z,t) € sj(%),lnwj > s} <c
where j =1, 2.

Lemma 3.2. If the conditions of the previous theorem are fulfilled, then the fol-
lowing estimates hold:

sup w; <¢, j=12

55(3)
Proof. 1t is obvious that it suffices to prove the lemma for j = 1. Consider the
function ¢(p) = sup,(,) Inwi(x,t), and let k = max{c,1}. Then ¢(p) does not
decrease with respect to p. If ¢(1/3) < 3k, then the lemma is proved with ¢ = 3%,

Now let ¢(1/3) > 3k. Then for p € [1/3,1/2],

¢(p) > 3k
We show that for p’ and p satisfying

} < <p< 1
3= P P> 9’
the it holds 5
p(p') < 19P) +clp— pl) B (3.5)

Let s(p) = s'(p) + s%(p), where

() = {(21) € 5() - 30(p) <M (a) < 0(p)},
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2(0) = (1) € 5(0) : 50(p) > Inn(z,1).
We have

1
2r 2r 2r
W2 dz dt = 7(][ W2 ”dxdt—i—][ w2 "da;dt)
]{(m R, | M) 52(p)
1 211
< e (Al ot 1 oot
R ‘Hp‘ 5%0(P)
< e2rve(p) + erve(p)
o(p)

Since = < 1/3, then for any p € [+, 4] there exists 7, such that

R e2rve(p) < grve(o)

¢(p)
and we can choose the non-negative integer v so large that

1
r, =0 "(1+0) < —IHM

Telp) K

and furthermore for any p € [1, 3]

1
r,0 = 7 > In go(p)7

o’(l+0) " ¢lp) &

since 0 > 1 and Kk > 1, @ > 3; therefore,

S

=

>
—_
w

In 2£2
peP) 1 =57 n

o))k moED T3

We have taken into account that for x > 3 the function thX decreases. Thus, we
obtain

2r,

1
@(p') = sup Inwy (2,t) = ———Insupw
s(p’) QT'V(JO(p) s(p") !

1 —2(n ©(p)
< 5t (elp—p) Y + 5

Then we have

o) < 500 (2 I (elp — o) 20HD) 4 1),

o
In £

K
From the above estimate it follows (3.5)). Indeed, if the first term of the right-hand
side is no greater than 1/2, then ¢(p') < 3¢(p). But if

_ o 72<n+1>) 1
IHMIH(C(p P) >2a

then
©(p) n—2(n+1) N —2(n+1)
ln—}{ <2c1n(c(p—p') ) <4In(c(p—p') ).
Hence it follows that
0(p') < @lp) < clp—p/) "5,
and (3.5)) is proved.
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Now consider the sequence

1 1
— -~ j=0,1,2,....
i a1y !

and using (3.5)) we obtain

1 3 c
90(5) = ¢(po) < 1%0(01) + (o1 = po ¥+

3 . 5 »
= (7)2“0(””6((“ = po) ¥ 4 2oy — p1) +1))

4 4
3im 3 j —8(n+1)
<< (P Melpm) + e Z(Z> (pj+1 = pj)
j=0
3 . m—1 3 . '
= (" plpm) +e D2 (3 (oG + D@ +1)).
§=0

From the continuity of the function wy it follows ¢(3) < oo, thus

oo

P(3) < 1H+eD (Y (o + 1)@ +7)) < e < o0,
7=0

and the proof is complete. O
Theorem 3.3. Let u(z,t) be a non-negative weak solution of (1.1)) whose coeffi-

cients satisfy conditions (1.2)-(1.4). Then there exists a constant ¢ = ¢(y,n,q,c1)
such that

sup u <c inf wu.
5(1/3) Q(1/3)

Proof. From Lemma we have

sup wy(x,t) sup wy(z,t) =e %2 sup u(z,t) sup (u(z,t))™ ' <ec

5(1/3) Q(1/3) 5(1/3) Q(1/3)
Thus,
sup u(x,t) <c inf wu(x,t),
5(1/%) (1) Q(1/3) (1)
and the proof is complete. O
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