Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 278, pp. 1-11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

HARNACK TYPE INEQUALITY FOR NON-NEGATIVE SOLUTIONS OF SECOND-ORDER DEGENERATE PARABOLIC EQUATIONS IN DIVERGENT FORM

SARVAN T. HUSEYNOV

Abstract

We study a class of second-order degenerate parabolic equations in divergent form. We prove two analogues of the Harnack inequality, one for non-negative weak solutions, an another for non-negative solutions.

1. Introduction

Let \mathbb{R}^{n} be a Euclidean space of the points $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and D be a bounded domain in \mathbb{R}^{n+1} with the parabolic boundary $\Gamma(D),(0,0) \in D$.

Consider the parabolic equation

$$
\begin{equation*}
L u=\frac{\partial u}{\partial t}-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x, t) \frac{\partial u}{\partial x_{j}}\right)=0, \quad(x, t) \in D \tag{1.1}
\end{equation*}
$$

and assume that $\left\{a_{i j}(x, t)\right\}$ is a real symmetric matrix with measurable elements and for all $(x, t) \in D$ and $\xi \in \mathbb{R}^{n}$ the following condition is fulfilled:

$$
\begin{equation*}
\gamma \sum_{i=1}^{n} \lambda_{i}(x, t) \xi_{i}^{2} \leq \sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \leq \gamma^{-1} \sum_{i=1}^{n} \lambda_{i}(x, t) \xi_{i}^{2} \tag{1.2}
\end{equation*}
$$

where $\gamma \in(0,1]$ is a constant,

$$
\begin{gathered}
\lambda_{i}(x, t)=g_{i}(\rho(x)+\sqrt{|t|}) \\
\rho(x)=\sum_{i=1}^{n} w_{i}\left(\left|x_{i}\right|\right), \quad g_{i}(z)=\frac{\left(w_{i}^{-1}(z)\right)^{2}}{z^{2}}, \quad i=1,2, \ldots, n
\end{gathered}
$$

We assume that the functions $w_{i}(t)$ increase strictly monotonically, $w_{i}(0)=0$, $w_{i}^{-1}(t)$ is the function inverse to $w_{i}(t)$ and for $i=1,2, \ldots, n$,

$$
\begin{gather*}
w_{i}(2 t) \leq 2 w_{i}(t) \tag{1.3}\\
\left(\frac{w_{i}(t)}{t}\right)^{q-1} \int_{0}^{w_{i}^{-1}(t)}\left(\frac{w_{i}(z)}{z}\right)^{q} d z \leq c_{1} t \tag{1.4}
\end{gather*}
$$

[^0]with some constant $q>n$ and positive constant c_{1} independent of t. A simple example of function w_{i} is $w_{i}(t)=t^{\alpha_{i}}$ where
$$
\alpha_{i} \geq \frac{-1+\sqrt{1+4 q(q-1)}}{2(q-1)}
$$

The principal result of this article is the Harnack type inequality for non-negative weak solutions of equation 1.1 .

For uniformly second-order parabolic equations of divergent structure, with discontinuous coefficients the Harnack inequality was obtained in the well known paper by Nash [5]. Moser [4] obtained another proof of this fact. For parabolic equations of divergent structure with uniform degeneration we refer to [1, 2]. When $w_{i}(t)$ are power functions, the Harnack type inequality was obtained in 3 .

Now we introduce some notation: let D be a cylindrical domain $\Omega \times\left[T_{0}, T\right]$, where Ω is a bounded domain in \mathbb{R}^{n} and $-\infty<T_{0}<T<\infty$.

By $W_{2, \Lambda}^{1,0}(D)$ and $W_{2, \Lambda}^{1,1}(D)$ we denote Banach spaces of functions $u(x, t)$ with finite norms in D,

$$
\begin{aligned}
\|u\|_{W_{2, \Lambda}^{1,0}(D)} & =\left(\sup _{t \in\left[T_{0}, T\right]} \int_{\Omega} u^{2} d x+\sum_{i=1}^{n} \int_{\Omega} \lambda_{i}(x, t)\left(\frac{\partial u}{\partial x_{i}}\right)^{2} d x d t\right)^{1 / 2} \\
\|u\|_{W_{2, \Lambda}^{1,1}(D)} & =\left(\int_{D}\left(u^{2}+\sum_{i=1}^{n} \lambda_{i}(x, t)\left(\frac{\partial u}{\partial x_{i}}\right)^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}\right) d x d t\right)^{1 / 2}
\end{aligned}
$$

Let $A(D)$ be the set of all infinitely differentiable functions $u(x, t)$ on \bar{D}, such that $\operatorname{supp} u \subset\left(\bar{\Omega}_{u} \times\left[T_{0}, T\right]\right), \bar{\Omega}_{u}$ is a bounded subdomain of $\Omega,\left.u\right|_{t=T_{0}}=0$. By $\stackrel{\circ}{W}_{2, \Lambda}^{1,1}(D)$ we denote the closure of $A(D)$ in $W_{2, \Lambda}^{1,1}(D)$. We set $u_{t}=\frac{\partial u}{\partial t}, u_{x_{i}}=\frac{\partial u}{\partial x_{i}}$, $i=1,2, \ldots, n$.

A function $u(x, t) \in W_{2, \Lambda}^{1,0}(D)$ is called the weak solution of 1.1 in D if for any test function $\psi(x, t) \in \stackrel{\circ}{W}_{2, \Lambda}^{1,1}(D)$ and $t_{1} \in\left(T_{0}, T\right]$ we have

$$
\begin{equation*}
\int_{\Omega} u\left(x, t_{1}\right) \psi\left(x, t_{1}\right) d x-\int_{D_{t_{1}}} u \psi_{t} d x d t+\int_{D_{t_{1}}} \sum_{i, j=1}^{n} a_{i j}(x, t) u_{x_{i}} \psi_{x_{j}} d x d t=0 \tag{1.5}
\end{equation*}
$$

where $D_{t_{1}}=\Omega \times\left(T_{0}, t_{1}\right)$.

2. Norm estimates of weak non-negative solutions

Here $|E|$ stands for n-dimensional (or $(n+1$)-dimensional) Lebesque measure of the measurable set $E \subset \mathbb{R}^{n}$ (or $E \subset \mathbb{R}^{n+1}$). We use the notation:

$$
\begin{gathered}
\Pi_{R}=\left\{x:\left|x_{i}\right|<\omega_{i}^{-1}(R), i=1,2, \ldots, n\right\} \\
S(\rho)=\left\{x:\left|x_{i}\right|<\rho \omega_{i}^{-1}(R), i=1,2, \ldots, n\right\} \times\left(-(1 / 3+\rho) R^{2},-(3 / 4-\rho) R^{2}\right)
\end{gathered}
$$

where $\rho \in(1 / 3,1 / 2]$. We assume that $S(\rho) \subset D$. Denote

$$
r_{\nu}=\sigma^{-\nu}(1+\sigma)^{-1}, \quad \nu=0,1,2, \ldots
$$

where $\sigma>1$ will be defined later (it is the exponent of the imbedding theorem corresponding to the weights λ_{i}).

Now we state a Sobolev-type embedding theorem with weights, whose proof can be found in [3]. We set

$$
f_{\Pi_{R}} f d x=\frac{1}{\left|\Pi_{R}\right|} \int_{\Pi_{R}} f d x, \quad \int_{S_{\rho}} g d x d t=\frac{1}{|S(\rho)|} \int_{S(\rho)} g d x d t
$$

Theorem 2.1 (Sobolev theorem with weights). For any function $\varphi \in W_{2, \Lambda}^{1,0}(S(\rho))$ with zero trace on the lateral boundary of $S(\rho)$, and any $R \leq R_{0}$ it holds

$$
\begin{align*}
\left(f_{S_{\rho}}|\varphi|^{2 \sigma} d x d t\right)^{1 / \sigma} \leq & c\left(\sup _{t \in\left(-\left(\frac{1}{3}+\rho\right) R^{2},-\left(\frac{3}{4}-\rho\right) R^{2}\right)} f_{\Pi(R)} \varphi^{2} d x\right. \\
& \left.+R^{2} f_{S_{\rho}} \sum_{i=1}^{n} \lambda_{i}(x, t) \varphi_{x_{i}}^{2} d x d t\right) \tag{2.1}
\end{align*}
$$

for $\sigma>1$, where the constant c does not depend on φ, R and ρ.
Theorem 2.2. Let $u(x, t)$ be a non-negative weak solution of (1.1) with coefficients that satisfy (1.2)- For any $r>0$ and $1 / 3 \leq \rho^{\prime}<\rho \leq 1 / 2$ it holds

$$
\begin{equation*}
\sup _{S\left(\rho^{\prime}\right)} u \leq c\left(\rho-\rho^{\prime}\right)^{-\xi}\left(f_{S(\rho)} u^{r} d x d t\right)^{-1 / r} \tag{2.2}
\end{equation*}
$$

where positive constants c and ξ depend only on q, c_{1}, n, r and γ.
Proof. First, we prove the statement of this theorem for $r=2$. The case $r>2$ follows then by the Hölder inequality. To treat the case $r \in(0,2)$, we use an additional iteration.

Take a function η such that $\eta(x, t)=1$ in $S\left(\rho^{\prime}\right), \eta(x, t)=0$ outside of $S(\rho)$, $0 \leq \eta(x, t) \leq 1$, and there exists a constant $c(n)$ such that

$$
\begin{equation*}
\left|\eta_{x_{i}}\right| \leq \frac{c}{\left(\rho-\rho^{\prime}\right) w_{i}^{-1}(R)}, \quad i=1,2, \ldots, n ; \quad\left|\eta_{t}\right| \leq \frac{c}{\left(\rho-\rho^{\prime}\right) R^{2}} \tag{2.3}
\end{equation*}
$$

In (1.5) choose a test function $\psi=u^{\beta} \eta^{2}$, where $\beta>0$. We obtain

$$
\begin{aligned}
& \sup _{t \in\left(-\left(\frac{1}{3}+\rho\right) R^{2},-\left(\frac{3}{4}-\rho\right) R^{2}\right)} \frac{1}{\beta+1} \int_{\Pi(\rho)} u^{\beta+1} \eta^{2} d x+\beta \int_{S(\rho)} u^{\beta-1} \eta^{2} a_{i j} u_{x_{i}} u_{x_{j}} d x d t \\
& =\frac{2}{\beta+1} \int_{S(\rho)} u^{\beta+1} \eta \eta_{t} d x d t-2 \int_{S(\rho)} u^{\beta} \eta a_{i j} u_{x_{i}} \eta_{x_{i}} d x d t
\end{aligned}
$$

Let $v=u^{(\beta+1) / 2}$. Using 1.2 and the Young inequality, we arrive at

$$
\begin{aligned}
& \sup _{t \in\left(-\left(\frac{1}{3}+\rho\right) R^{2},-\left(\frac{3}{4}-\rho\right) R^{2}\right)} \int_{\Pi(\rho)} v^{2} \eta^{2} d x+\frac{4 \beta}{\beta+1} \int_{S(\rho)} \eta^{2} v_{x_{i}}^{2} \lambda_{i}(x, t) d x d t \\
& \leq C \int_{S(\rho)} v^{2} \eta\left|\eta_{t}\right| d x d t+C(\beta+1) \beta^{-1} \int_{S(\rho)} v^{2} \eta_{x_{i}}^{2} \lambda_{i}(x, t) d x d t
\end{aligned}
$$

The above integral is taken over the set $S(\rho) \backslash S\left(\rho^{\prime}\right)$, since $\eta_{x_{i}}=0$ in $S\left(\rho^{\prime}\right)$. But in this set

$$
\rho(x) \leq c R, \quad \sqrt{|t|} \leq R, \quad \lambda_{i}(x, t) \leq c \frac{\left(w_{i}^{-1}(R)\right)^{2}}{R^{2}}
$$

therefore,

$$
\int_{S(\rho)} \eta^{2} \sum_{i=1}^{n} \lambda_{i}(x, t) v_{x_{i}}^{2} d x d t \leq \frac{c(\beta+1)^{2}}{\beta^{2}\left(\rho-\rho^{\prime}\right)^{2} R^{2}} \int_{S(\rho)} v^{2} d x d t
$$

On the other hand, we have

$$
\sup _{t \in\left(-\left(\frac{1}{3}+\rho\right) R^{2},-\left(\frac{3}{4}-\rho\right) R^{2}\right)} \int_{\Pi_{\rho R}} v^{2} \eta^{2} d x \leq C \frac{\beta+1}{\beta}\left(\rho-\rho^{\prime}\right)^{-2} R^{-2} \int_{S(\rho)} v^{2} d x d t
$$

For $\beta \geq 1$ these estimates take the form

$$
\begin{align*}
& \sup _{t \in\left(-\left(\frac{1}{3}+\rho\right) R^{2},-\left(\frac{3}{4}-\rho\right) R^{2}\right)} f_{\Pi_{\rho R}} \eta^{2} v^{2} d x \leq c\left(\rho-\rho^{\prime}\right)^{-2} f_{S(\rho)} v^{2} d x d t \tag{2.4}\\
& f_{S(\rho)} \sum_{i=1}^{n} \lambda_{i}(x, t) v_{x_{i}}^{2} \eta^{2} d x d t \leq c\left(\rho-\rho^{\prime}\right)^{-2} R^{-2} \int_{S(\rho)} v^{2} d x d t \tag{2.5}
\end{align*}
$$

Further more we assume that $\beta \geq 1$.
Applying 2.4 , 2.5 and the embedding theorem (2.1) we obtain

$$
\begin{align*}
& \left(f_{S\left(\rho^{\prime}\right)} v^{2 \sigma} d x d t\right)^{1 / \sigma} \\
& \leq c\left(f_{S(\rho)} v^{2 \sigma} \eta^{2 \sigma} d x d t\right)^{1 / \sigma} \\
& \leq c\left(\sup _{t \in\left(-\left(\frac{1}{3}+\rho\right) R^{2},-\left(\frac{3}{4}-\rho\right) R^{2}\right)} f_{\Pi_{\rho R}} \eta^{2} v^{2} d x+R^{2} f_{S(\rho)} \sum_{i=1}^{n} \lambda_{i}(x, t)(v \eta)_{x_{i}}^{2} d x d t\right) \tag{2.6}\\
& \leq c\left(\rho-\rho^{\prime}\right)^{2} \int_{S(\rho)} v^{2} d x d t
\end{align*}
$$

We define the sequences

$$
\begin{gathered}
\rho_{m}^{\prime}=\rho^{\prime}+\frac{\rho-\rho^{\prime}}{2^{m+1}}, \quad \rho_{m}=\rho^{\prime}+\frac{\rho-\rho^{\prime}}{2^{m}} \\
\beta_{m}=2 \sigma^{m}-1, \quad v_{m}=u^{\frac{\beta_{m}+1}{2}}
\end{gathered}
$$

Then from (2.6) we deduce

$$
\begin{aligned}
\phi_{m+1} & :=\left(f_{S\left(\rho_{m+1}\right)} u^{2 \sigma^{m+1}} d x d t\right)^{\frac{1}{2 \sigma^{m+1}}} \\
& =\left(f_{S\left(\rho_{m+1}\right)} v_{m+1}^{2} d x d t\right)^{\frac{1}{2 \sigma^{m+1}}} \\
& =\left(f_{S\left(\rho_{m}^{\prime}\right)} v_{m}^{2 \sigma} d x d t\right)^{\frac{1}{2 \sigma^{m+1}}} \\
& \leq\left(c\left(\rho_{m}-\rho_{m}^{\prime}\right)^{-2} f_{S\left(\rho_{m}\right)} v_{m}^{2} d x d t\right)^{\frac{1}{2 \sigma^{m}}} \\
& \leq\left(c 2^{m}\left(\rho-\rho^{\prime}\right)^{-2}\right)^{\frac{1}{2 \sigma^{m}}} \phi_{m}
\end{aligned}
$$

It easily follows that

$$
\phi_{m+1} \leq C\left(\rho-\rho^{\prime}\right)^{\sigma /(1-\sigma)} \phi_{0}, \quad m \geq 0
$$

Thus,

$$
\limsup _{m \rightarrow \infty}\left(f_{S\left(\rho_{m}\right)} u^{2 \sigma^{m}} d x d t\right)^{\frac{1}{2 \sigma^{m}}} \leq C\left(\rho-\rho^{\prime}\right)^{\sigma /(1-\sigma)}\left(f_{S\left(\rho_{0}\right)} u^{2} d x d t\right)^{1 / 2}
$$

The statement of the theorem for $r=2$ easily follows, in view of the well-known property

$$
\operatorname{ess} \sup \{u ; A\}=\limsup _{q \rightarrow \infty}\left(\int_{A} u^{q} d x d t\right)^{1 / q}
$$

The statement of the theorem for $r>2$ follows by a direct application of the Hölder inequality

$$
\left(f_{S(\rho)} u^{2} d x d t\right)^{\frac{1}{2}} \leq\left(f_{S(\rho)} u^{r} d x d t\right)^{-1 / r}, \quad r>2
$$

Now, we treat the case $r \in(0,2)$. Here we need an additional iteration. In the integral identity (1.5) we choose the test function $\psi=u^{\beta} \eta^{2}$, where $\beta=-1+r$, and the cut-off function η has the same meaning as in (2.3). We arrive at the estimate (2.6) with the constant c, which depends on r. Iterating this relation as above, by a finite number of steps we obtain

$$
f_{S\left(\rho^{\prime}\right)} u^{2} d x d t \leq c\left(\rho-\rho^{\prime}\right)^{-\xi_{0}}\left(f_{S(\rho)} u^{r} d x d t\right)^{-1 / r}
$$

where positive constants c and ξ_{0} depend only on q, c_{1}, n, r and γ. Combining this inequality with the estimate 2.2 obtained earlier for $r \geq 2$, and using that ρ^{\prime} can be taken arbitrarily, we arrive at the desired statement.

Now let

$$
Q(\rho)=\Pi_{\rho R} \times\left(-\rho^{2} R^{2}, 0\right) ; \quad \rho \in(0,1)
$$

The following statement is proved as in the previous theorem. The only difference is that the value of β in the proof is taken to be less than -1 .

Lemma 2.3. Let $r>0$ and $u(x, t)$ be a weak non-negative solution of (1.1). Then the following estimate holds

$$
\inf _{Q\left(\rho^{\prime}\right)} u \geq c\left(\rho-\rho^{\prime}\right)^{-\xi}\left(f_{Q(\rho)} u^{-r} d x d t\right)^{-1 / r}
$$

where $1 / 3 \leq \rho^{\prime}<\rho \leq 1 / 2$.
The next Lemma is a variant of Theorem 2.2 with a slightly different choice of the outer and inner cylinders.

Lemma 2.4. Let the conditions of the previous lemma be fulfilled. Then the following estimate is valid

$$
\sup _{Q(1 / 3)} u \leq c\left(f_{Q(1 / 2)} u^{2} d x d t\right)^{1 / 2}
$$

3. Harnack type inequality

The technique of this section is based on ideas from 4.
Theorem 3.1. Let $u(x, t)$ be a non-negative weak solution of equation 1.1. Then there exist the constants $a_{1}(\Lambda, n)$ and $a_{2}(\Lambda, n)$ such that for any $s>0$,

$$
\begin{aligned}
& \left|\left\{(x, t) \in D_{1}, \ln u(x, t)>s+a_{1}\right\}\right| \leq c \frac{R^{2}\left|\Pi_{R}\right|}{s} \\
& \left|\left\{(x, t) \in D_{2}, \ln u(x, t)<-s+a_{1}\right\}\right| \leq c \frac{R^{2}\left|\Pi_{R}\right|}{s}
\end{aligned}
$$

where

$$
D_{1}=\Pi_{R / 2} \times\left(-R^{2},-\frac{R^{2}}{2}\right), \quad D_{2}=\Pi_{R / 2} \times\left(-\frac{R^{2}}{2}, 0\right)
$$

Proof. Assume $v(x, t)=-\ln u(x, t)$ and let $\eta(x, t)=\xi(x) w(t)$, where $w(t)=1$ for $t \leq-\tau_{1} R^{2}, w(t)=0$ for $t \geq-\frac{\tau_{1}}{2} R^{2}, 0 \leq w(t) \leq 1,\left|w_{t}\right| \leq \frac{c}{\tau_{1} R^{2}} ;$ and $\xi(x)=1$ for $x \in \Pi_{R / 2}, \xi(x)=0$ for $x \notin \Pi_{\frac{5 R}{2}}, 0 \leq \xi(x) \leq 1,\left|\xi_{x_{i}}\right| \leq \frac{c}{w_{i}^{-1}(R)} ; i=1,2, \ldots, n$ moreover for $0<\tau_{1}<1$, and the function $\xi(x)$ such that for an arbitrary C the set $\{x: \xi(x) \geq C\}$ is convex. From Theorem 2.2 we have (if only $\tau_{1}<\tau_{2} \leq 1$)

$$
\begin{equation*}
\left.\int_{\Pi_{\frac{5 R}{6}}} v \xi^{2} d x\right|_{-\tau_{1} R^{2}} ^{-\tau_{2} R^{2}}+\frac{\gamma}{2} \int_{-\tau_{2} R^{2}}^{-\tau_{1} R^{2}} d t \int_{\Pi_{\frac{5 R}{6}}} \xi^{2} \sum_{i=1}^{n} \lambda_{i}(x, t) v_{x_{i}}^{2} d x \leq c\left(\tau_{2}-\tau_{1}\right)\left|\Pi_{R}\right| \tag{3.1}
\end{equation*}
$$

Indeed, since $\eta_{t}=0$ for $t \in\left(-\tau_{2} R^{2},-\tau_{1} R^{2}\right)$, according to Theorem 2.2, the lefthand side of 3.1) is estimated by

$$
J=c(\gamma) \int_{-\tau_{2} R^{2}}^{-\tau_{1} R^{2}} d t \int_{\Pi_{R} \backslash \Pi_{R / 2}} \sum_{i=1}^{n} \lambda_{i}(x, t) \xi_{x_{i}}^{2} d x
$$

(since $\xi_{x_{i}} \equiv 0$ in $\Pi_{R / 2}$). Note that, for $x \in \Pi_{R} \backslash \Pi_{R / 2}, w_{i}\left(\left|x_{i}\right|\right) \leq c R$. Thus, $\rho(x)+\sqrt{|t|} \leq c R$, i.e. $\lambda_{i}(x, t) \leq c \frac{\left(w_{i}^{-1}(R)\right)^{2}}{R^{2}}$. Hence we deduce that

$$
\sum_{i=1}^{n} \lambda_{i}(x, t) \xi_{x_{i}}^{2} \leq c \frac{\left(w_{i}^{-1}(R)\right)^{2}}{R^{2}} \frac{1}{\left(w_{i}^{-1}(R)\right)^{2}}=\frac{c}{R^{2}}
$$

So,

$$
J \leq \frac{c}{R^{2}}\left(\tau_{2}-\tau_{1}\right) R^{2}=c\left(\tau_{2}-\tau_{1}\right)
$$

and (3.1) is proved.
Now consider the functions

$$
V(t)=\frac{\int_{\Pi_{R}} v(x, t) \xi^{2}(x) d x}{\int_{\Pi_{R}} \xi^{2}(x) d x}, \quad D(t)=\frac{\int_{\Pi_{R}}(v(x, t)-V(t))^{2} \xi^{2}(x) d x}{\int_{\Pi_{R}} \xi^{2}(x) d x}
$$

By the Poincare inequality [3], we have

$$
D(t)\left(\int_{\Pi_{R}} \xi^{2}(x) d x\right)^{2} \leq c R^{2}\left|\Pi_{R}\right| \int_{\Pi_{R}} \xi^{2}(x) \sum_{i=1}^{n} \lambda_{i}(x, t) v_{x_{i}}^{2} d x
$$

that together with (3.1) gives

$$
V\left(-\tau_{1} \cdot R^{2}\right)-V\left(-\tau_{2} \cdot R^{2}\right)+\frac{c}{R^{2}\left|\Pi_{R}\right|} \int_{-\tau_{2} R^{2}}^{-\tau_{1} R^{2}} d t \int_{\Pi_{R / 2}}(v-V)^{2} d x \leq c\left(\tau_{2}-\tau_{1}\right)
$$

When let τ_{2} to τ_{1} and assume $t=-\tau_{1} R^{2}$. Then it follows from the above inequality that

$$
\begin{equation*}
R^{2} \frac{d V}{d t}+\frac{c}{\left|\Pi_{R}\right|} \int_{\Pi_{R / 2}}(v-V)^{2} d x \leq c \tag{3.2}
\end{equation*}
$$

Now consider the functions

$$
\begin{aligned}
\omega(x, t) & =v(x, t)+\frac{c}{R^{2}}\left(-\frac{R^{2}}{2}-t\right) \\
W(t) & =V(t)+\frac{c}{R^{2}}\left(-\frac{R^{2}}{2}-t\right)
\end{aligned}
$$

Then from (3.2) we deduce

$$
\begin{equation*}
R^{2} \frac{d W}{d t}+\frac{c}{\left|\Pi_{R}\right|} \int_{\Pi_{R / 2}}(\omega-W)^{2} d x \leq 0 \tag{3.3}
\end{equation*}
$$

From (3.3) it follows that the function $W(t)$ does not increase with respect to t, therefore for all $t \in\left(-R^{2},-\frac{R^{2}}{2}\right)$, we have

$$
W(t) \geq W\left(-\frac{R^{2}}{2}\right)=V\left(-\frac{R^{2}}{2}\right)
$$

By the same reason, for $t \in\left(-\frac{R^{2}}{2}, R^{2}\right)$, we have

$$
W(t) \leq W\left(-\frac{R^{2}}{2}\right)=V\left(-\frac{R^{2}}{2}\right)
$$

Assume that $s_{1}<V\left(-\frac{R^{2}}{2}\right)$, and let

$$
E_{1}(t)=\left\{x: x \in \Pi_{\frac{R}{2}}, \omega(x, t)<s_{1}\right\} .
$$

Then for $t \in\left(-R^{2},-\frac{R^{2}}{2}\right)$, we have

$$
\begin{aligned}
0 & \geq R^{2} \frac{d W}{d t}+\frac{c}{\left|\Pi_{R}\right|} \int_{E_{1}(t)}(w-W)^{2} d x \\
& \geq R^{2} \frac{d W}{d t}+\frac{c}{\left|\Pi_{R}\right|} \int_{E_{1}(t)}\left(W-s_{1}\right)^{2} d x \\
& =R^{2} \frac{d W}{d t}+c\left(W(t)-s_{1}\right)^{2} \frac{\left|E_{1}(t)\right|}{\left|\Pi_{R}\right|}
\end{aligned}
$$

Hence we deduce that

$$
\begin{aligned}
R^{2} \int_{-R^{2}}^{-\frac{R^{2}}{2}} \frac{d W}{\left(W-s_{1}\right)^{2}} & \leq-\frac{c}{\left|\Pi_{R}\right|} \int_{-R^{2}}^{-\frac{R^{2}}{2}}\left|E_{1}(t)\right| d t \\
& =-\frac{c}{\left|\Pi_{R}\right|}\left|\left\{(x, t) \in D_{1} ; \omega(x, t)<s_{1}\right\}\right| \\
& =-\frac{c}{\left|\Pi_{R}\right|} m_{1}\left(s_{1}\right)
\end{aligned}
$$

Thus,

$$
-\left.\frac{R^{2}}{W(t)-s_{1}}\right|_{-R^{2}} ^{-\frac{R^{2}}{2}} \leq-\frac{c}{\left|\Pi_{R}\right|} m_{1}\left(s_{1}\right)
$$

From this inequality we get that for all $s>0$,

$$
\text { meas }\left\{(x, t) \in D_{1}: \omega(x, t)<-s+V\left(-\frac{R^{2}}{2}\right)\right\} \leq c \frac{R^{2}\left|\Pi_{R}\right|}{s},
$$

and

$$
\begin{equation*}
\text { meas }\left\{(x, t) \in D_{1}: \ln u(x, t)>s-V\left(-\frac{R^{2}}{2}\right)+\frac{c}{R^{2}}\left(-\frac{R^{2}}{2}-t\right)\right\} \leq c \frac{R^{2}\left|\Pi_{R}\right|}{s} . \tag{3.4}
\end{equation*}
$$

Now it suffices to take into account that $t \in\left(-R^{2},-\frac{R^{2}}{2}\right)$, and from (3.4) it follows that for $a_{1}=-V\left(-\frac{R^{2}}{2}\right)+\frac{c}{2}$,

$$
\begin{aligned}
& \text { meas }\left\{(x, t) \in D_{1}: \ln u(x, t)>s+a_{1}\right\} \\
& \leq \text { meas }\left\{(x, t) \in D_{1}: \ln u(x, t)>s-V\left(-\frac{R^{2}}{2}\right)+c\left(-\frac{R^{2}}{2}-t\right)\right\}
\end{aligned}
$$

$$
\leq c \frac{R^{2}\left|\Pi_{R}\right|}{s}
$$

and the right side of the statement of the lemma is proved. Its second part is proved in the same way. Indeed, it suffices to obtain $s_{2}>V\left(-\frac{R^{2}}{2}\right)$ and

$$
m_{2}\left(s_{2}\right)=\left|\left\{(x, t) \in D_{2}: \omega(x, t)>s_{2}\right\}\right|
$$

Then

$$
m_{2}\left(s_{2}\right) \leq c \frac{R^{2}\left|\Pi_{R}\right|}{\left(s_{2}-V\left(-\frac{R^{2}}{2}\right)\right)}
$$

i.e. for any $s>0$ and

$$
a_{2}=-V\left(-\frac{R^{2}}{2}\right)-\frac{c}{2}
$$

we have

$$
\left|\left\{(x, t) \in D_{2}: \ln u(x, t)<-s+a_{2}\right\}\right| \leq c \frac{R^{2}\left|\Pi_{R}\right|}{s}
$$

The proof is complete.
It is easy to see that

$$
a_{1}-a_{2}=c
$$

Now consider the functions $\omega_{1}(x, t)=u(x, t) e^{-a_{1}}$ and $\omega_{2}(x, t)=(u(x, t))^{-1} e^{a_{2}}$, where $u(x, t)$ is a non-negative weak solution of equation (1.1). Let $\frac{1}{3} \leq \rho^{\prime}<\rho \leq \frac{1}{2}$, $r_{\nu}=\sigma^{-\nu}(1+\sigma)^{-1}, \nu=0,1,2, \ldots ; s_{1}(\rho)=S(\rho), s_{2}(\rho)=Q(\rho)$. In fact, from Theorem 3.1 it follows that

$$
\begin{gathered}
\sup _{s_{j}\left(\rho^{\prime}\right)} \omega_{j}^{r_{\nu}} \leq c\left(\rho-\rho^{\prime}\right)^{-(n+1)}\left(f_{s_{j}(\rho)} \omega_{j}^{2} d x\right)^{1 / 2} \\
\left|\left\{(x, t) \in s_{j}\left(\frac{1}{2}\right), \ln \omega_{j}>s\right\}\right| \leq c \frac{R^{2}\left|\Pi_{R}\right|}{s}
\end{gathered}
$$

where $j=1,2$.
Lemma 3.2. If the conditions of the previous theorem are fulfilled, then the following estimates hold:

$$
\sup _{s_{j}\left(\frac{1}{3}\right)} \omega_{j} \leq c, \quad j=1,2
$$

Proof. It is obvious that it suffices to prove the lemma for $j=1$. Consider the function $\varphi(\rho)=\sup _{s(\rho)} \ln \omega_{1}(x, t)$, and let $\kappa=\max \{c, 1\}$. Then $\varphi(\rho)$ does not decrease with respect to ρ. If $\varphi(1 / 3) \leq 3 \kappa$, then the lemma is proved with $c=e^{3 \kappa}$.

Now let $\varphi(1 / 3)>3 \kappa$. Then for $\rho \in[1 / 3,1 / 2]$,

$$
\varphi(\rho)>3 \kappa
$$

We show that for ρ^{\prime} and ρ satisfying

$$
\frac{1}{3} \leq \rho^{\prime}<\rho \leq \frac{1}{2}
$$

the it holds

$$
\begin{equation*}
\varphi\left(\rho^{\prime}\right)<\frac{3}{4} \varphi(\rho)+c\left(\rho-\rho^{\prime}\right)^{-8(n+1)} \tag{3.5}
\end{equation*}
$$

Let $s(\rho)=s^{1}(\rho)+s^{2}(\rho)$, where

$$
s^{1}(\rho)=\left\{(x, t) \in s(\rho): \frac{1}{2} \varphi(\rho)<\ln \omega_{1}(x, t) \leq \varphi(\rho)\right\}
$$

$$
s^{2}(\rho)=\left\{(x, t) \in s(\rho): \frac{1}{2} \varphi(\rho) \geq \ln \omega_{1}(x, t)\right\}
$$

We have

$$
\begin{aligned}
f_{s(\rho)} \omega_{1}^{2 r_{\nu}} d x d t & =\frac{1}{R^{2}\left|\Pi_{\rho}\right|}\left(f_{s^{1}(\rho)} \omega_{1}^{2 r_{\nu}} d x d t+f_{s^{2}(\rho)} \omega_{1}^{2 r_{\nu}} d x d t\right) \\
& \leq \frac{1}{R^{2}\left|\Pi_{\rho}\right|}\left(c \frac{R^{2}\left|\Pi_{R}\right|}{\frac{1}{2} \varphi(\rho)} e^{2 r_{\nu} \varphi(\rho)}+R^{2}\left|\Pi_{\rho}\right| e^{r_{\nu} \varphi(\rho)}\right) \\
& \leq \frac{\kappa}{\varphi(\rho)} e^{2 r_{\nu} \varphi(\rho)}+e^{r_{\nu} \varphi(\rho)}
\end{aligned}
$$

Since $\frac{\kappa}{\varphi(\rho)}<1 / 3$, then for any $\rho \in\left[\frac{1}{3}, \frac{1}{2}\right]$ there exists r_{ν} such that

$$
\frac{\kappa}{\varphi(\rho)} e^{2 r_{\nu} \varphi(\rho)} \leq e^{r_{\nu} \varphi(\rho)}
$$

and we can choose the non-negative integer ν so large that

$$
r_{\nu}=\sigma^{-\nu}(1+\sigma)^{-1} \leq \frac{1}{\varphi(\rho)} \ln \frac{\varphi(\rho)}{\kappa}
$$

and furthermore for any $\rho \in\left[\frac{1}{3}, \frac{1}{2}\right]$

$$
r_{\nu} \sigma=\frac{\sigma}{\sigma^{\nu}(1+\sigma)}>\frac{1}{\varphi(\rho)} \ln \frac{\varphi(\rho)}{\kappa}
$$

since $\sigma>1$ and $\kappa \geq 1, \frac{\varphi(\rho)}{\kappa}>3$; therefore,

$$
\frac{1}{\varphi(\rho)} \ln \frac{\varphi(\rho)}{\kappa}=\frac{1}{\kappa} \cdot \frac{\ln \frac{\varphi(\rho)}{\kappa}}{\frac{\varphi(\rho)}{\kappa}} \leq \frac{\ln 3}{3}<\frac{1}{2}
$$

We have taken into account that for $x \geq 3$ the function $\frac{\ln \chi}{\chi}$ decreases. Thus, we obtain

$$
\begin{aligned}
\varphi\left(\rho^{\prime}\right) & =\sup _{s\left(\rho^{\prime}\right)} \ln \omega_{1}(x, t)=\frac{1}{2 r_{\nu} \varphi(\rho)} \ln \sup _{s\left(\rho^{\prime}\right)} \omega_{1}^{2 r_{\nu}} \\
& \leq \frac{1}{2 r_{\nu}} \ln \left(c\left(\rho-\rho^{\prime}\right)^{-2(n+1)}\right)+\frac{\varphi(\rho)}{2}
\end{aligned}
$$

Then we have

$$
\varphi\left(\rho^{\prime}\right) \leq \frac{1}{2} \varphi(\rho)\left(\frac{\sigma}{\ln \frac{\varphi(\rho)}{\kappa}} \ln \left(c\left(\rho-\rho^{\prime}\right)^{-2(n+1)}\right)+1\right)
$$

From the above estimate it follows (3.5). Indeed, if the first term of the right-hand side is no greater than $1 / 2$, then $\varphi\left(\rho^{\prime}\right) \leq \frac{3}{4} \varphi(\rho)$. But if

$$
\frac{\sigma}{\ln \frac{\varphi(\rho)}{\kappa}} \ln \left(c\left(\rho-\rho^{\prime}\right)^{-2(n+1)}\right)>\frac{1}{2}
$$

then

$$
\ln \frac{\varphi(\rho)}{\kappa}<2 \sigma \ln \left(c\left(\rho-\rho^{\prime}\right)^{-2(n+1)}\right) \leq 4 \ln \left(c\left(\rho-\rho^{\prime}\right)^{-2(n+1)}\right)
$$

Hence it follows that

$$
\varphi\left(\rho^{\prime}\right) \leq \varphi(\rho) \leq c\left(\rho-\rho^{\prime}\right)^{-8(n+1)}
$$

and 3.5 is proved.

Now consider the sequence

$$
\rho_{j}=\frac{1}{2}-\frac{1}{\sigma(1+j)}, \quad j=0,1,2, \ldots
$$

and using 3.5 we obtain

$$
\begin{aligned}
\varphi\left(\frac{1}{3}\right) & =\varphi\left(\rho_{0}\right)<\frac{3}{4} \varphi\left(\rho_{1}\right)+\frac{c}{\left(\rho_{1}-\rho_{0}\right)^{8(n+1)}} \\
& <\left(\frac{3}{4}\right)^{2} \varphi\left(\rho_{2}\right)+c\left(\left(\rho_{1}-\rho_{0}\right)^{-8(n+1)}+\frac{3}{4}\left(\rho_{2}-\rho_{1}\right)^{-8(n+1)}\right) \\
& <\cdots<\left(\frac{3}{4}\right)^{m} \varphi\left(\rho_{m}\right)+c \sum_{j=0}^{m-1}\left(\frac{3}{4}\right)^{j}\left(\rho_{j+1}-\rho_{j}\right)^{-8(n+1)} \\
& =\left(\frac{3}{4}\right)^{m} \varphi\left(\rho_{m}\right)+c \sum_{j=0}^{m-1}\left(\frac{3}{4}\right)^{j}(\sigma(j+1)(2+j)) .
\end{aligned}
$$

From the continuity of the function ω_{1} it follows $\varphi\left(\frac{1}{2}\right)<\infty$, thus

$$
\varphi\left(\frac{1}{3}\right) \leq 1+c \sum_{j=0}^{\infty}\left(\frac{3}{4}\right)^{j}(\sigma(j+1)(2+j)) \leq c<\infty
$$

and the proof is complete.
Theorem 3.3. Let $u(x, t)$ be a non-negative weak solution of (1.1) whose coefficients satisfy conditions (1.2)-1.4. Then there exists a constant $c=c\left(\gamma, n, q, c_{1}\right)$ such that

$$
\sup _{S(1 / 3)} u \leq c \inf _{Q(1 / 3)} u
$$

Proof. From Lemma 3.2, we have

$$
\sup _{S(1 / 3)} \omega_{1}(x, t) \sup _{Q(1 / 3)} \omega_{2}(x, t)=e^{-a_{1}+a_{2}} \sup _{S(1 / 3)} u(x, t) \sup _{Q(1 / 3)}(u(x, t))^{-1} \leq c .
$$

Thus,

$$
\sup _{S(1 / 3)} u(x, t) \leq c \inf _{Q(1 / 3)} u(x, t)
$$

and the proof is complete.
Acknowledgements. The author wants to express his gratitude to the referees for their very valuable comments and suggestions.

References

[1] Chiarenza, F. M.; Serapioni, R. P.; A Harnack inequality for degenerate parabolic equations. Comm. Part. Differ. Eq., 1984, vol. 9, pp. 719-749.
[2] Fernandes, J.; Mean value and Harnack's inequalities for a certain class of degenerate parabolic equations. Revista Math. Iberoamer, 1991, vol. 7, pp. 247-286.
[3] Guseynov, S. T.; A Harnack inequality for solutions of the second order non-uniformly degenerate parabolic equations. Transactions of NAS of Azerb., vol. XXII, No1, 2002, pp. 102-112.
[4] Moser, J.; A Harnack inequality for parabolic differential equations. Comm. Pure and Appl. Math., 1964, vol. 17, pp. 101-134.
[5] Nash, J.; Continuity of solutions of parabolic and elliptic equations. Amer. J. Math., 1958, vol. 80, pp. 931-934.

Sarvan T. Huseynov
Baku State University, Baku, AZ1148, Azerbaijan
E-mail address: sarvanhuseynov@rambler.ru

[^0]: 2010 Mathematics Subject Classification. 35K65, 35K10.
 Key words and phrases. Degenerate equations; weighted Sobolev space; weak solution;
 Poincare inequality; Harnack inequality.
 (C)2016 Texas State University.

 Submitted May 30, 2016. Published October 18, 2016.

