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BOUNDARY-VALUE PROBLEMS FOR WAVE EQUATIONS
WITH DATA ON THE WHOLE BOUNDARY

MAKHMUD A. SADYBEKOV, NURGISSA A. YESSIRKEGENOV

Abstract. In this article we propose a new formulation of boundary-value
problem for a one-dimensional wave equation in a rectangular domain in which

boundary conditions are given on the whole boundary. We prove the well-

posedness of boundary-value problem in the classical and generalized senses.
To substantiate the well-posedness of this problem it is necessary to have an

effective representation of the general solution of the problem. In this direc-

tion we obtain a convenient representation of the general solution for the wave
equation in a rectangular domain based on d’Alembert classical formula. The

constructed general solution automatically satisfies the boundary conditions by

a spatial variable. Further, by setting different boundary conditions accord-
ing to temporary variable, we get some functional or functional-differential

equations. Thus, the proof of the well-posedness of the formulated problem is
reduced to question of the existence and uniqueness of solutions of the corre-

sponding functional equations.

1. Introduction

Let Ω ⊂ R2 be a rectangular domain, bounded by following lines: AB : t =
0, 0 ≤ x ≤ `; BC : x = `, 0 ≤ t ≤ T ; CD : t = T, 0 ≤ x ≤ `; and AD : x = 0, 0 ≤
t ≤ T .

We consider a nonhomogeneous wave equation in Ω,

utt − uxx = f(x, t). (1.1)

It is well known that the Dirichlet problem for the wave equation (1.1) in a
rectangular domain is ill-posed [4]. Specifically, in case of our domain Ω it is easy
to see that the homogeneous equation (1.1) with Dirichlet conditions

u
∣∣
AB∪BC∪AD = 0, (1.2)

u
∣∣
CD

= 0 (1.3)

has countable number of nontrivial solutions of the form umn(x, t) = sin mπx
` sin nπt

T ,
m,n = 1, 2, . . . , when the conditions n` = mT hold.

The Dirichlet problem for a wave equation is one of the most difficult models of
mathematical physics. The wave equation describes almost all types of small vibra-
tions in distributional mechanical systems such as longitudinal sound vibrations in
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gas, fluid, solids; transverse waves in strings and etc. Components of electromag-
netic vectors and potentials, and hence many electromagnetic phenomena (from
quasistatics to optics) in some extent are explained by properties of solutions of
wave equation.

Hadamard [5], Huber [6] for the first time noted nonuniqueness of solution of the
Dirichlet problem for a wave equation. Bourgin and Duffin [3] considered Dirichlet
problem for the one-dimensional equation (1.1) in a rectangle {0 ≤ t ≤ T, 0 ≤
x ≤ `}. By using Laplace transformation, they showed that if the number T/`
is irrational, then there is the uniqueness of the solution of the problem in the
class of continuously differentiable functions with the second derivatives integrable
according to Lebesgue.

There are many works that were dedicated to study Dirichlet problem for the
string equation (see [12]). Arnold’s survey [1] and Berezanskii’s [2, Chap. IV]
monograph give more detailed discussion of papers related to this topic. These
papers show that the homogeneous Dirichlet problem has nontrivial solutions, if the
ratio T/` of the sides of the rectangle {0 ≤ t ≤ T, 0 ≤ x ≤ `} (in which the solution
of the Dirichlet problem for the string equation is sought) is a rational number. By
using the method of separation of variables, the solution of inhomogeneous Dirichlet
problem is constructed. In this process, small denominators which are hampering
the series’ convergence arise [13]. If the ratio T/` of the sides is an algebraic
number of degree n ≥ 2 or an irrational number with bounded element, then, for
sufficiently smooth boundary data (functions), the constructed series’ convergence
can be proved for the class of smooth solutions of the string equation.

In [11] the existence and uniqueness of generalized solution for a second-order
hyperbolic equation with integral conditions in a rectangle are proved.

In [8] the uniqueness of solution of initial-boundary value problem for a one-
dimensional wave equation is proved and it is shown that this solution coincides
with the wave potential.

In [14]-[15] it is proved the well-posedness of boundary value problems for a
one-dimensional wave equation in a rectangular domain in case when boundary
conditions are given on the whole boundary of domain.

Also we note that lately interest has increased to the research of classical initial-
boundary problems for a wave equation in rectangular domains in connection with
problems of the optimization of boundary control of string vibrations (see [7, 9, 10]).

In this article, we prove the well-posedness of the problem for a one-dimensional
wave equation in a rectangular domain in case when boundary conditions are given
on the whole boundary of domain which generalizes results of [14]-[15].

2. Representation of solution of the first initial-boundary value
problem

Hereafter, we will assume that `/T ≥ 2.

Problem 1. Find a solution of equation (1.1) in Ω with the initial conditions

u(x, 0) = τ(x), 0 ≤ x ≤ `, (2.1)

ut(x, 0) = ν(x), 0 ≤ x ≤ ` (2.2)

and with boundary conditions

u(0, t) = 0, u(`, t) = 0, 0 ≤ t ≤ `

2
. (2.3)
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Problem 1 is a classical first initial-boundary value problem. The solution of
the Cauchy problem for (1.1) with initial conditions (2.1) and (2.2) exists and is
unique. But it is uniquely defined not in all Ω, but only in its part Ω1 = {(x, t) :
(x, t) ∈ Ω, t ≤ x ≤ ` − t}. And in the domain Ω \ Ω1 the solution is not uniquely
defined from the data of Cauchy (2.1), (2.2). It is uniquely defined only by using
boundary conditions of considered problems.

Let u(x, t) be a solution of Problem 1. We introduce a new function ũ(x, t)
defined in Ω̃, containing initial domain Ω: Ω̃ = {(x, t) : 0 ≤ t ≤ `

2 , t −
`
2 ≤ x ≤

3`
2 − t}.

The function ũ(x, t) is given by the formula

ũ(x, t) =


−u(−x, t), − `

2 ≤ x ≤ 0;
u(x, t), 0 ≤ x ≤ `;
−u(2`− x, t), ` ≤ x ≤ 3`

2 .

(2.4)

Taking into account the boundary condition (2.3), it is easy to see that the
function ũ(x, t) is continuous and continuously differentiable at the transition lines
x = 0 and x = `. Since the function u(x, t) is smooth in Ω, then the function ũ(x, t)
is smooth in Ω̃.

Let us find an equation in which the function ũ(x, t) satisfies that equation in
Ω̃. By direct calculation, it is easy to see that this function satisfies the following
nonhomogeneous wave equation in Ω̃

ũtt − ũxx = f̃(x, t), (2.5)

where

f̃(x, t) =


−f(−x, t), − `

2 ≤ x ≤ 0;
f(x, t), 0 ≤ x ≤ `;
−f(2`− x, t), ` ≤ x ≤ 3`

2 .

(2.6)

From the initial conditions (2.1), (2.2), taking into account (2.4), we obtain
initial conditions for the function ũ(x, t) in Ω̃:

ũ(x, 0) = τ̃(x), 0 ≤ x ≤ `, (2.7)

ũt(x, 0) = ν̃(x), 0 ≤ x ≤ `, (2.8)

where functions τ̃(x) and ν̃(x) are given by the equalities

τ̃(x) =


−τ(−x), − `

2 ≤ x ≤ 0;
τ(x), 0 ≤ x ≤ `;
−τ(2`− x), ` ≤ x ≤ 3`

2 .

(2.9)

ν̃(x) =


−ν(−x), − `

2 ≤ x ≤ 0;
ν(x), 0 ≤ x ≤ `;
−ν(2`− x), ` ≤ x ≤ 3`

2 .

(2.10)

In Ω̃ the solution of the Cauchy problem (2.5), (2.7), (2.8) exists, is unique and
expressed by the classical formula of d’Alambert:

ũ(x, t) =
τ̃(x+ t) + τ̃(x− t)

2
+

1
2

∫ x+t

x−t
ν̃(ξ)dξ+

1
2

∫ t

0

∫ x+t−η

x−t+η
f̃(ξ, η)dξ dη. (2.11)
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By direct calculation, it is easy to check that the function ũ(x, t) satisfies equation
(2.5) and the initial conditions (2.7) and (2.8).

Now we show that by (2.9), (2.10), and taking into account (2.6), the function
ũ(x, t) satisfies the boundary condition (2.3) of Problem 1.

We calculate

ũ(0, t) =
τ̃(t) + τ̃(−t)

2
+

1
2

∫ t

−t
ν̃(ξ)dξ +

1
2

∫ t

0

∫ t−η

−t+η
f̃(ξ, η)dξ dη. (2.12)

By (2.9) it is easy to obtain

τ̃(t) + τ̃(−t)
2

=
τ(t)− τ(t)

2
= 0. (2.13)

From (2.10) by a simple change of variables in the integral we obtain

1
2

∫ t

−t
ν̃(ξ)dξ =

1
2

∫ 0

−t
ν̃(ξ)dξ +

1
2

∫ t

0

ν̃(ξ)dξ

=
1
2

∫ 0

t

ν(ξ)dξ +
1
2

∫ t

0

ν(ξ)dξ = 0.

(2.14)

In the third summand in (2.12) we shall make obvious change of variables. Since
0 ≤ t− η ≤ `

2 ,−
`
2 ≤ η − t ≤ 0, then we obtain

1
2

∫ t

0

∫ t−η

−t+η
f̃(ξ, η)dξ dη

=
1
2

∫ t

0

∫ 0

−t+η
f̃(ξ, η)dξ dη +

1
2

∫ t

0

∫ t−η

0

f̃(ξ, η)dξ dη

=
1
2

∫ t

0

∫ 0

t−η
f(ξ, η)dξ dη +

1
2

∫ t

0

∫ t−η

0

f(ξ, η)dξ dη = 0.

(2.15)

Summing in (2.13)-(2.15), we obtain from (2.12), that ũ(0, t) = 0. That is, the first
boundary condition of (2.3) is fulfilled.

Similarly we check the fulfilling of the second boundary condition from (2.3).
Hence, the formula (2.11) gives the solution of Problem 1. Let us write its

solution in Ω by functions f, τ, ν. For that, we substitute values f̃ , τ̃ , ν̃ into formula
(2.11) expressed by formulas (2.6),(2.9) and (2.10).

Let us introduce notation: Ω1 = {(x, t) : (x, t) ∈ Ω, t < x < `− t}, Ω2 = {(x, t) :
(x, t) ∈ Ω, x < t} and Ω3 = {(x, t) : (x, t) ∈ Ω, x+t > `}. Then by direct calculation
we obtain representation of solution of Problem 1.

In Ω2:

ũ(x, t) =
τ(x+ t)− τ(t− x)

2
+

1
2

∫ x+t

t−x
ν(ξ)dξ

+
1
2

∫ t−x

0

∫ x+t−η

t−x−η
f(ξ, η)dξ dη +

1
2

∫ t

t−x

∫ x+t−η

x−t+η
f(ξ, η)dξ dη.

(2.16)

In Ω1:

ũ(x, t) =
τ(x+ t) + τ(x− t)

2
+

1
2

∫ x+t

x−t
ν(ξ)dξ+

1
2

∫ t

0

∫ x+t−η

x−t+η
f(ξ, η)dξ dη. (2.17)
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In Ω3:
ũ(x, t)

=
τ(x− t)− τ(2`− x− t)

2
+

1
2

∫ 2`−x−t

x−t
ν(ξ)dξ

+
1
2

∫ x+t−`

0

∫ 2`−x−t+η

x−t+η
f(ξ, η)dξ dη +

1
2

∫ t

x+t−`

∫ x+t−η

x−t+η
f(ξ, η)dξ dη.

(2.18)

3. Main result and its proof

Let E = (T, T ), F = (`− T, T ) be points on a boundary CD.

Problem 2. Find a solution of equation (1.1), satisfying the boundary condition
(1.2) and conditions on the boundary CD:

ut
∣∣
DE

= 0, (3.1)

αux + βut
∣∣
EF

= 0, (3.2)

u
∣∣
CF

= 0, (3.3)

where α and β are real numbers.
As usual, we say the function u ∈ L2(Ω) is a strong solution of Problem 2, if

there exists the sequence of functions un ∈W 2
2 (Ω), satisfying boundary conditions

of Problem 2 such that un and Lun converge in L2(Ω) to u and f respectively.
Let us denote by A the matrix

β − α 0 α+ β 0 . . . . . . . . . 0 0 0
0 β − α 0 α+ β 0 . . . . . . 0 0 0
0 0 β − α 0 α+ β 0 . . . 0 0 0
... . . .

...
...

...
...

... . . .
...

...
0 . . . . . . 0 . . . . . . . . . 0 . . . 0
0 0 0 . . . 0 . . . . . . . . . . 0
0 0 . . . . . . . . . 0 β − α 0 α+ β 0
0 0 . . . . . . . . . 0 β − α 0 α+ β
0 0 . . . . . . . . . . . . . . . 0 −1 −1
−1 1 0 . . . . . . . . . . . . . . . 0 0


and assume that detA 6= 0. We denote the inverse of a matrix A by B = A−1 and
elements of a matrix B by {bij}i,j=1,n.

The closest even and odd numbers to n (including n) are denoted by p and q
respectively. Let K be a broken line in Ω, consisting of segments of the charac-
teristics x = 2iT + t, i = 0, 1, . . . , [n−1

2 ] and x = 2jT − t, j = 1, . . . , [n2 ]. Here [z]
denotes the integer part of z.

Also, let us introduce some notation:

Φ1(x) = −F ′1t(x, T ), 0 ≤ x ≤ T,
Φ2j(x) = −αF ′2x(2jT − x, T )− βF ′2t(2jT − x, T ),

j = 1, 2, . . . , [
n− 2

2
] + 1, 2j < n, 0 ≤ x ≤ T,

Φ2j+1(x) = −αF ′2x(2jT + x, T )− βF ′2t(2jT + x, T ),

j = 1, 2, . . . , [
n− 2

2
], 0 ≤ x ≤ T,
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Φn(x) =

{
−F ′3x(nT − x, T ), if n is even
−F ′3x((n− 1)T + x, T ), if n is odd,

0 ≤ x ≤ T,

F1(x, t) =
∫ t−x

0

∫ x+t−η

t−x−η
f(ξ, η)dξ dη +

∫ t

t−x

∫ x+t−η

x−t+η
f(ξ, η)dξ dη,

F2(x, t) =
∫ t

0

∫ x+t−η

x−t+η
f(ξ, η)dξ, dη,

F3(x, t) =
∫ x+t−`

0

∫ 2`−x−t+η

x−t+η
f(ξ, η)dξ dη +

∫ t

x+t−`

∫ x+t−η

x−t+η
f(ξ, η)dξ dη.

Theorem 3.1. Let `/T = n ≥ 2 be a positive integer. A solution of the Problem 2
is unique, if and only if

α(α+ β)(α− β) 6= 0 . (3.4)

If this (3.4) holds, then:
(a) For all functions f ∈ L2(Ω) Problem 2 have a unique strong solution. This

solution belongs to the class u ∈W 1
2 (Ω)

⋂
C(Ω) and satisfies the estimate

‖u‖W 1
2 (Ω) ≤ C‖f‖L2(Ω). (3.5)

(b) If f ∈ C1(Ω), then the strong solution of Problem 2 belongs to the class
u ∈ C2(Ω\K)

⋂
C(Ω).

(c) If f ∈ C1(Ω), then the strong solution of Problem 2 is classical, i.e. u ∈
C2(Ω)

⋂
C1(Ω), if and only if conditions (3.6) and (3.7) hold:
b21 − (−1)ib11 b22 − (−1)ib12 . . . b2n − (−1)ib1n
b41 − (−1)ib31 b42 − (−1)ib32 . . . b4n − (−1)ib3n

...
...

...
...

bp−21 − (−1)ibp−31 bp−22 − (−1)ibp−32 . . . bp−2n − (−1)ibp−3n

bp1 − (−1)ibp−11 bp2 − (−1)ibp−12 . . . bpn − (−1)ibp−1n



×


Φ(i)

1 (0)
Φ(i)

2 (0)
...

Φ(i)
n (0)

 =


0
0
...
0

 , i = 0, 1;

(3.6)


b31 − (−1)ib21 b32 − (−1)ib22 . . . b3n − (−1)ib2n
b51 − (−1)ib41 b52 − (−1)ib42 . . . b5n − (−1)ib4n

...
...

...
...

bq−21 − (−1)ibq−31 bq−22 − (−1)ibq−32 . . . bq−2n − (−1)ibq−3n

bq1 − (−1)ibq−11 bq2 − (−1)ibq−12 . . . bqn − (−1)ibq−1n



×


Φ(i)

1 (T )
Φ(i)

2 (T )
...

Φ(i)
n (T )

 =


0
0
...
0

 , i = 0, 1.

(3.7)

This solution is stable in the norm of C1(Ω).
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Proof. Since T ≤ `/2, we use the representation of solution (2.16)–(2.18) in this
proof. Taking into account (1.2), we obtain u

∣∣
AB

= τ(x) = 0, then substitute the
representation of solution (2.16) in the boundary condition (3.1):

ν(x+ T )− ν(T − x) + F ′1t(x, T ) = 0, 0 ≤ x ≤ T. (3.8)

Now substitute the representation of solution (2.17) into the boundary condition
(3.2). Then

(α+ β)ν(x+ T ) + (β − α)ν(x− T ) + αF ′2x(x, T ) + βF ′2t(x, T ) = 0, (3.9)

for T ≤ x ≤ T (n− 1). In equation (3.9) for each n− 2 segments [Ti, T (i+ 1)], i =
1, n− 2 we make change of x = T (i+ 1)− y, 0 ≤ y ≤ T ,

(α+ β)ν(T (i+ 2)− y) + (β − α)ν(Ti− y) + αF ′2x(T (i+ 1)− y, T )

+ βF ′2t(T (i+ 1)− y, T ) = 0, 0 ≤ y ≤ T, i = 1, n− 2.
(3.10)

Now we substitute the representation of solution (2.18) into the boundary con-
dition (3.3). Then∫ 2`−x−T

x−T
ν(ξ)dξ + F3(x, T ) = 0, T (n− 1) ≤ x ≤ Tn.

We take a derivative with respect to x, then we have

− ν(2`− x− T )− ν(x− T ) + F ′3x(x, T ) = 0, T (n− 1) ≤ x ≤ Tn. (3.11)

Then we make change of variable x = `− y, 0 ≤ y ≤ T ,

− ν(`+ y − T )− ν(`− y − T ) + F ′3x(`− y, T ) = 0, 0 ≤ y ≤ T. (3.12)

We have n nonhomogeneous equations. Now we show that the number of un-
known functions in equations (3.8), (3.10) and (3.12) equals n. For that we consider
2 cases:
Case 1. Let n = 2m,m ∈ Z+. Then in (3.10) for even numbers i = 2k, k =
1,m− 1 we make change of variable y = T − z,

(α+ β)ν((2k + 1)T + z) + (β − α)ν((2k − 1)T + z) + αF ′2x(2kT + z, T )

+ βF ′2t(2kT + z, T ) = 0, 0 ≤ z ≤ T, k = 1,m− 1.
(3.13)

Here it is easy to see that the number of unknown functions in equations (3.8),
(3.10) (for odd numbers i = 2k − 1, k = 1,m− 1), (3.12) and (3.13) equals n.
Case 2. Let n = 2m+ 1,m ∈ Z+. Then in (3.10) for even i = 2k, k = 1,m− 1 we
make change of y = T − z,

(α+ β)ν((2k + 1)T + z) + (β − α)ν((2k − 1)T + z) + αF ′2x(2kT + z, T )

+ βF ′2t(2kT + z, T ) = 0, 0 ≤ z ≤ T, k = 1,m− 1.
(3.14)

Then in (3.12) we make change of of variable y = T − z,
−ν((2m+1)T−z)−ν((2m−1)T+z)+F ′3x(2mT+z, T ) = 0, quad0 ≤ z ≤ T. (3.15)

Here it is easy to see that the number of unknown functions in equations (3.8),
(3.10) (for odd numbers i = 2k − 1, k = 1,m), (3.14) and (3.15) equals n.

Thus, we have n nonhomogeneous equations for n unknown functions ν(xi),
T (i − 1) ≤ xi ≤ Ti, i = 1, n. The existence and uniqueness of the solution of
Problem 2 are equivalent to the existence and uniqueness of the functions ν(xi),
T (i− 1) ≤ xi ≤ Ti, i = 1, n, satisfying equations (3.8), (3.10) and (3.12).
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Also the existence and uniqueness of the functions ν(xi), T (i − 1) ≤ xi ≤ Ti,
i = 1, n are equivalent to the following:

0 6= detA =


2(β − α)2k−1(α+ β)2k−1, if n = 4k;
−2α(β − α)2k−2(α+ β)2k−2, if n = 4k − 1;
−2(β − α)2k−2(α+ β)2k−2, if n = 4k − 2;
2α(β − α)2k−3(α+ β)2k−3, if n = 4k − 3

k = 1, 2, . . . .

In case the α(α + β)(α − β) 6= 0 we can see that detA 6= 0. Thus, we have
proved the existence and uniqueness of the solution of Problem 2 when condition
(3.4) holds.

Now we show the stability according to the norm of C1(Ω). By (3.6), (3.7) and
equations (3.8), (3.10), (3.12), we obtain

ν(iT − 0) = ν(iT + 0), i = 1, 2, . . . , n− 1; (3.16)

ν′(iT − 0) = ν′(iT + 0), i = 1, 2, . . . , n− 1. (3.17)

Therefore the solution of Problem 2 is stable according to the norm of C1(Ω).
From the existence and uniqueness of the classical solution of Problem 2 by

standard methods we obtain existence and uniqueness of the strong solution of
Problem 2.

From the representation of the solution of the problem it is easy to note that
the strong solution depends only on ν(x) and f(x, t). Since detA 6= 0, then from
equations (3.8), (3.10) and (3.12) it is seen that the function ν(x) depends only on
f(x, t). Then

‖u‖W 1
2 (Ω) ≤ C1‖ν(x)‖L2(0,`) + C2‖f‖L2(Ω) = C1‖Bf‖L2(0,`) + C2‖f‖L2(Ω)

≤ C3|B| × ‖f‖L2(Ω) ≤ C‖f‖L2(Ω).

�

We note that in [12] it is proved the well-posedness of problem for (1.1) with
boundary condition (1.2) and with conditions on the boundary CD:

ut
∣∣
DE

= 0, u
∣∣
CE

= 0. (3.18)

From the condition (3.4) follows that the case α = 0 in (3.2) leads to ill-posedness
of Problem 2. Thus, unlike problem (1.1), (1.2), (3.18) the problem with boundary
conditions

ut
∣∣
DF

= 0, u
∣∣
CF

= 0
is ill-posed.
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