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HOMOGENIZATION OF DIFFUSION PROCESSES ON
SCALE-FREE METRIC NETWORKS

FERNANDO A. MORALES, DANIEL E. RESTREPO

Abstract. This work studies the homogenization of diffusion processes on
scale-free metric graphs, using weak variational formulations. The oscillations

of the diffusion coefficient along the edges of a metric graph induce internal

singularities in the global system which, together with the high complexity
of large networks constitute significant difficulties in the direct analysis of the

problem. At the same time, these facts also suggest homogenization as a viable

approach for modeling the global behavior of the problem. To that end, we
study the asymptotic behavior of a sequence of boundary problems defined on

a nested collection of metric graphs. This paper presents the weak variational

formulation of the problems, the convergence analysis of the solutions and
some numerical experiments.

1. Introduction

A scale-free network is a large graph with power law degree distribution, i.e.,
P[deg(v) = k] ∼ k−γ where γ is a fixed positive constant. Equivalently, the prob-
ability of finding a vertex of degree k, decays as a power-law of the degree value.
Power-law distributed networks are of noticeable interest because they have been
frequently observed in very different fields such as the World Wide Web, business
networks, neuroscience, genetics, economics, etc. The current research on scale-free
networks is mainly focused in three aspects: first, generation models (see [1, 2]),
second, solid evidence detection of networks with power-law degree distribution
(see [25, 9, 5, 24]). The third and final aspect studies the extent to which the
power-law distribution relates with other structural properties of the network, such
as self-organization (see [16, 19]); this is subject of intense debate, see [16] for a
comprehensive survey on the matter.

This article studies scale-free networks from a very different perspective. Its
main goal is to introduce a homogenization process on the network to reduce the
original order of complexity but preserve the essential features (see Figure 1). In
this way, the “homogenized” or “upscaled” network is reliable for data analysis
while, at the same time, involves lower computational costs and lower numerical
instability. Additionally, the homogenization process derives a neater and more
structural picture of the starting network since unnecessary complexity is replaced
by the average asymptotic behavior of large data. The phenomenon known as “The
Aggregation Problem” in economics is an example of how this type of reasoning

2010 Mathematics Subject Classification. 35R02, 35J50, 05C07, 05C82.
Key words and phrases. Coupled PDE systems; homogenization; graph theory.
c©2016 Texas State University.

Submitted December 30, 2015. Published October 22, 2016.

1



2 F. A. MORALES, D. E. RESTREPO EJDE-2016/282

is implicitly applied in modeling the global behavior of large networks (see [18]).
Usually, homogenization techniques require some assumptions of periodicity of the
singularities or periodicity of the coefficients of the system (see [6, 10]), in turn this
case demands averaging hypotheses in the Cesàro sense. The resulting network has
the desired features because of two characteristic properties of scale-free networks.
On one hand, they resemble star-like graphs (see [7]), on the other hand, they have
a “communication kernel” carrying most of the network traffic (see [17]).

This article, for the sake of clarity, restricts the analysis to the asymptotic behav-
ior of diffusion processes on star-like metric graphs (see Definition 2.2 and Figure
2 below). However, while most of the models in the preexistent literature are con-
cerned with the strong forms of differential equations (see [3] for a general survey
and [22] for the stochastic modeling of advection-diffusion on networks), here we
use the variational formulation approach, which is a very useful tool for upscal-
ing analysis. More specifically, we introduce the pseudo-discrete analogous of the
classical stationary diffusion problem

−∇ · (K∇p) = f in Ω ,

p = 0 on ∂Ω ,
(1.1)

where K is the diffusion coefficient (see Definition 2.6 and Equation (2.8) below).
Because of the variational formulation it will be possible to attain a-priori estimates
for a sequence of solutions, an asymptotic variational form of the problem and the
computation of effective coefficients. Finally, from the technique, it will be clear
how to apply the method to scale-free metric networks in general.

Throughout the exposition the terms “homogenized”, “upscaled” and “averaged”
have the same meaning and we use them indistinctly. This article is organized
as follows, in Section 2 the necessary background is introduced for L2, H1-type
spaces on metric graphs as well as the strong form and the weak variational form,
together with its well-posedness analysis. Also a quick review of equidistributed
sequences and Weyl’s Theorem is included to be used mostly in the numerical
examples. In Section 3 we introduce a geometric setting and a sequence of problems
for asymptotic analysis, a-priori estimates are presented and a type of convergence
for the solutions. In Section 4, under mild hypotheses of Cesàro convergence for
the forcing terms, the existence and characterization of a limiting or homogenized
problem are shown. Finally, Section 5 is reserved for the numerical examples and
Section 6 has the conclusions.

2. Preliminaries

2.1. Metric Graphs and Function Spaces. We begin this section by recalling
some facts for embeddings of graphs.

Definition 2.1. A graph G = (V,E) is said to be embeddable in RN if it can be
drawn in RN so that its edges intersect only at their ends. A graph is said to be
planar if it can be embedded in the plane.

It is a well-known fact that any simple graph can be embedded in R2 or R3 (de-
pending whether it is planar or not) in a way that its edges are drawn with straight
lines; see [8] for planar graphs and [4] for non-planar graphs. In the following it
will always be assumed that the graph is already embedded in R2 or R3.
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Figure 1. (a) depicts a scale-free network. (b) depicts a homog-
enization of the original network.

Definition 2.2. Let G = (V,E) be a graph embedded in R2 or R3, depending on
the case.

(i) The graph G is said to be a metric graph if each edge e ∈ E is assigned a
positive length `e ∈ (0,∞).

(ii) The graph G is said to be locally finite if deg(v) < +∞ for all v ∈ V .
(iii) If the graph G is metric, the boundary of the graph is defined by the set

of vertices of degree one. The set will also be denominated as the set of
boundary vertices and denoted by

∂V := {v ∈ V : deg(v) = 1}. (2.1)

(iv) Given a metric graph we define its natural domain by

ΩG := ∪e∈E int(e). (2.2)

Definition 2.3. Let G = (V,E) be a metric graph, we define the following associ-
ated Hilbert spaces

(i) The space of square integrable functions, or mass space is defined by

L2(G) := ⊕e∈EL2(e), (2.3a)

endowed with its natural inner product

〈f, g〉L2(G) :=
∑
e∈E

∫
e

fg. (2.3b)

(ii) The energy space of functions is defined by

H1(G) :=
{
f ∈ ⊕e∈EH1(e) : lim

x→v, x∈e
f(x) = lim

x→v, x∈σ
f(x) ,

for all vertices v ∈ V and all edges e, σ incident on v
}
.

(2.4a)
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In the sequel f(v) := lim{f(x) : x → v, x ∈ e}, where e ∈ E is any edge
incident on v. We endow the space with its natural inner product

〈f, g〉H1(G) :=
∑
e∈E

∫
e

f g +
∑
e∈E

∫
e

∂ef ∂eg. (2.4b)

Here ∂e denotes the derivative along the edge e ∈ E.
(iii) The space H1

0 (G) is defined by

H1
0 (G) :=

{
f ∈ H1(G) : f(v) = 0 , for all v ∈ ∂V

}
, (2.5)

endowed with the standard inner product (2.4b).

Remark 2.4. Let G be a metric graph.
(i) Note that the definition of ∂e is ambiguous in Expression (2.4b). Such am-

biguity will cause no problems since the bilinear structure of the inner product is
indifferent to the choice of direction

(q, r) 7→ ∂eq∂er =
(
− ∂eq

)
(−∂er).

(ii) Whenever there is need to specify the direction of the derivate, we write ∂e,v
to indicate the direction pointing from the interior of the edge e towards the vertex
v on one of its extremes.

(iii) Notice that if the metric graph G is connected, then the Poincaré inequality
holds, and the inner product

(f, g) 7→
∑
e∈E

∫
e

∂ef∂eg, (2.6)

is equivalent to the standard one (2.4b) in the space H1
0 (G).

(iv) Observe that the condition of agreement of a function f ∈ H1(G) on the
vertices of the graphG, does not necessarily imply continuity as a function f : ΩG →
R. For if the degree of a vertex v ∈ V is infinite and the function is continuous on
v, then it follows that the convergence f(v) := lim{f(x) : x→ v, x ∈ e} is uniform
for all the edges e incident on v. Such a condition can not be derived from the norm
induced by the inner product (2.4b), although the function f1int(e) is continuous
for all e ∈ E.

Definition 2.5. Let Gn = (Vn, En) be a sequence of graphs.
(i) The sequence {Gn : n ∈ N} is said to be increasing if Vn ⊆ Vn+1 and

En ⊆ En+1 for all n ∈ N.
(ii) Given an increasing sequence of graphs {Gn : n ∈ N}, we define the limit

graph G = (V,E) in the natural way i.e.,

V := ∪n∈NVn E := ∪n∈NEn.

In analogy with monotone sequences of sets we adopt the notation

G := ∪n∈NGn.

2.2. Strong and weak forms of the stationary diffusion problem on graphs.

Definition 2.6. Let G = (V,E) be a locally finite metric graph, F ∈ L2(G) and
h : V − ∂V → R, define the diffusion problem∑

e∈E
−∂e

(
K∂ep

)
1e =

∑
e∈E

F 1e in ΩG. (2.7a)
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Here, K ∈ L∞(ΩG) is a nonnegative diffusion coefficient. We endow the problem
with normal stress continuity conditions

lim
x→v, x∈e

p(x) = p(v) for all p ∈ V − ∂V, (2.7b)

and normal flux balance conditions

h(v) +
∑

e∈E, e incident on v

lim
x→v, x∈e

∂e,v p(x) = 0 for all v ∈ V − ∂V. (2.7c)

Here, ∂e,v denotes the derivative along the edge e pointing away from the vertex v.
Finally, we declare homogeneous Dirichlet boundary conditions

p(v) = 0 for all v ∈ ∂V. (2.7d)

A weak variational formulation of this problem is given by

p ∈ H1
0 (G) :

∑
e∈E

∫
e

K∂ep∂eq =
∑
e∈E

∫
e

Fq +
∑

v∈V−∂V

h(v)q(v) (2.8)

for all q ∈ H1
0 (G). For the sake of completeness we present the following standard

result.

Proposition 2.7. Let G = (V,E) be a locally finite connected metric graph such
that ∂V 6= ∅ and let K ∈ L∞(ΩG) be a diffusion coefficient such that K(x) ≥ cK > 0
almost everywhere in ΩG. Then Problem (2.8) is well-posed.

Proof. Clearly the functionals on the right-hand side of (2.8) are linear and contin-
uous, as well as the bilinear form b(p, q) :=

∑
e∈E

∫
e
K∂ep∂eq of the left-hand side.

Additionally,∑
e∈E

∫
e

K|∂ep|2 ≥ cK
∑
e∈E

∫
e

|∂ep|2 ≥ c̃
∑
e∈E
‖p‖2H1(e) = c̃‖p‖2H1(G).

The first inequality above holds due to the conditions on K. The second inequality
hods due to the Dirichlet homogeneous boundary conditions and the connectedness
of the graph G, which permits the Poincaré inequality on the space H1

0 (G) as
discussed in Remark 2.4-(iii). Therefore, by the Lax-Milgram Theorem, Problem
(2.8) is well-posed. �

2.3. Equidistributed sequences and Weyl’s Theorem. The brief review of
equidistributed sequences and Weyl’s theorem of this section will be applied, al-
most exclusively in the numerical examples below, see Section 5. For a complete
exposition on equidistributed sequences and Weyl’s Theorem see [23].

Definition 2.8. A sequence {θn : n ∈ N} is called equidistributed on an interval
[a, b] if for each subinterval [c, d] ⊆ [a, b] it holds that

lim
n→∞

#{i : θi ∈ [c, d], 1 ≤ i ≤ n}
n

=
d− c
b− a

. (2.9)

Theorem 2.9 (Weyl’s Theorem). Let
{
θn : n ∈ N

}
be a sequence on [a, b], the

following conditions are equivalent:
(i) The sequence {θn : n ∈ N} is equidistributed in [a, b].

(ii) For every Riemann integrable function f : [a, b]→ C

lim
n→∞

1
n

n∑
i=1

f(θi) =
1

b− a

∫ b

a

f(θ) dθ.
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Definition 2.10. Let Ω = B(0, 1) ⊆ R2 and let f : Ω → R be such that its
restriction to every sphere ∂B(0, ρ) with 0 ≤ ρ < 1 is Riemann integrable. Then,
we define its angular average by the average value of f along the sphere ∂(B(0, ρ)),
i.e., mθ[f ] : [0, 1)→ R,

mθ[f ](t) :=
1

2π

∫ 2π

0

f
(
t cos θ, t sin θ)

)
dθ. (2.10)

3. Sequence of problems

In this section we analyze the behavior of the solutions {pn : n ∈ N} of a
family of well-posed problems on an very particular increasing sequence of graphs
{Gn : n ∈ N}, depicted in Figure 2.

3.1. Geometric setting and the n-stage problem. In the following we denote
by Ω, S1 the unit disk and the unit sphere in R2 respectively. The function F :
ΩG → R is such that F1Ωn ∈ L2(Ωn) for all n ∈ N, {hn : n ∈ N} is a sequence of
real numbers and the diffusion coefficient K ∈ L∞(ΩG) is such that K(·) ≥ cK > 0
almost everywhere in ΩG.

Definition 3.1. Let {vn : n ≥ 1} be an equidistributed sequence in S1 and v0 :=
0 ∈ R2.

(i) For each n ∈ N define the graph Gn = (Vn, En) as follows:

Vn := {vn : 0 ≤ i ≤ n}, En := {v0vi : 1 ≤ i ≤ n}. (3.1)

(ii) For the increasing sequence of graphs {Gn : n ∈ N}, define the limit graph
G := ∪n∈NGn as described in Definition 2.5.

(iii) In the following we denote the natural domains corresponding to G, Gn by
ΩG and Ωn respectively.

(iv) For any edge e ∈ E we denote by ve its boundary vertex and θe ∈ [0, 2π]
the direction of the edge.

(v) From now on, for each edge e = v0ve and f : e → R a function, it will be
understood that its one-dimensional parametrization, is oriented from the
central vertex v0 to the boundary vertex ve. Consequently the derivative
∂e equals ∂e,ve

.
(vi) For any given function f : ΩG → R (or f : Ωn → R) we denote by fe :

(0, 1)→ R, the real variable function fe(t) := (f1e)(t cos θe, t sin θe) on the
edges e ∈ E (or e ∈ En respectively).

Remark 3.2. From the following analysis, it will be clear that it is not necessary
to assume that the sequence of vertices {vn : n ∈ N} of the graph is equidistributed
or that the vertices are in S1 or even that the graph is embedded in R2. We adopt
these assumptions, mainly to facilitate a geometric visualization of the setting.

For the rest of this article it will be assumed that {Gn : n ∈ N} is the increasing
sequence of graphs, with G its limit graph, as in the Definition 3.1 above. Next, we
define the family of well-posed problems to be studied, for each n ∈ N, these are

pn ∈ H1
0 (Gn) :

∑
e∈En

∫
e

K∂ep
n∂eq =

∑
e∈En

∫
e

Fq + hnq(v0) , (3.2)

for all q ∈ H1
0 (Gn). We need to analyze the asymptotic behavior of the sequence

of solutions {pn : n ∈ N}. One of the main challenges is that the elements of the
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Figure 2. (a) depicts the stage 5 of the graph G. (b) depicts a
more general stage n of the graph G.

sequence are not defined on the same global space. The fact that pn(0) may not be
zero makes it impossible to extend this function to H1

0 (G) directly, however it will
play a central role in the asymptotic analysis of the problem.

3.2. Estimates and edgewise convergence. In this section we obtain estimates
for the sequence of solutions, several steps have to be made as it is not direct to
attain them. We start introducing conditions to be assumed from now on.

Hypothesis 3.3. (i) The forcing term F is defined in the whole domain, i.e.,
F : ΩG → R and M := supe∈E ‖F‖L2(e) < +∞.

(ii) The sequence
{

1
n h

n : n ∈ N
}

is bounded.
(iii) The permeability coefficient satisfies that K ∈ L∞(ΩG), infx∈ΩG

K(x) =
cK > 0 and K1e = K(e) i.e., it is constant along each edge e ∈ E.

Remark 3.4. Note that Hypothesis 3.3-(ii) states that the balance of normal flux
on the central vertex is of order O(n), i.e., it scales with the number of incident
edges.

Lemma 3.5. Under Hypothesis 3.3, the following facts hold

(i) The sequence {pn(0) : n ∈ N} ⊆ R is bounded.
(ii) Let e ∈ E be an edge of the graph G then, the sequence {∂epn(0) : e ∈

En} ⊆ R is bounded. Moreover, there exists M0 such that |∂epn(0)| ≤ M0

for all e ∈ E and n ∈ N such that e ∈ En.
(iii) Suppose that the sequences

{
1
n

∑
e∈En

∫ 1

0
(t − 1)Fe(t)dt : n ∈ N

}
,
{

1
n h

n :
n ∈ N

}
and

{
1
n

∑
e∈En

K(e) : n ∈ N
}

are convergent, then

lim
n→∞

pn(0) = lim
n→∞

1
n

∑
e∈En

∫ 1

0
(t− 1)Fe(t)dt− 1

nh
n

1
n

∑
e∈En

K(e)
. (3.3a)
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For any fixed edge e ∈ E, it holds

lim
n→∞

K(e)∂epn(0) = L(e)

:=
∫ 1

0

(t− 1)Fe(t)dt

−K(e) lim
n→∞

1
n

∑
σ∈En

∫ 1

0
(t− 1)Fσ(t)dt− 1

nh
n

1
n

∑
σ∈En

K(σ)
.

(3.3b)

Moreover, the convergence is uniform in the following sense: for each ε > 0
there exists N ∈ N such that, if n > N and e ∈ En, then

|K(e)∂epn(0)− L(e)| < ε . (3.3c)

Proof. (i) Let q ∈ H1
0 (Gn) be the function such that q(0) = −1 and qe(t) = t − 1

for all e ∈ En. Test (3.2) with q, this yields

q(0)
∑
e∈En

K

∫
e

∂ep
n =

∑
e∈En

∫
e

Fq + hn q(0). (3.4)

Computing and doing some estimates we obtain

#EncK |pn(0)| ≤ 1√
3

∑
e∈En

‖F‖L2(e) + |hn|.

Hence

|pn(0)| ≤ 1
cK

M +
1
cK

∣∣hn
n

∣∣.
This proves the first part.

(ii) Let e ∈ E be a fixed edge, let n ∈ N be such that e ∈ En and let pn be
the solution to (3.2). Let q ∈ H1

0 (Gn) be as in the previous part and test (3.2) to
obtain

−K(e)pn(0) q(0) +
∑

σ∈En, σ 6=e

K

∫
σ

∂σp
n ∂σq

= K(e)pn(0)−
∑

σ∈En, σ 6=e

K

∫
σ

∂σ
2pnq + q(0)

∑
σ∈En, σ 6=e

K∂σp
n(0)

=
∫
e

Fq +
∑

σ∈En, σ 6=e

∫
σ

Fq + hn q(0).

In the expression above, integration by parts was applied to each summand σ 6= e of
the left hand side, to obtain the second equality. Now, recalling that

∑
e∈En

K ∂ep
n(0) =

hn and that −K1e∂e2pn = F1e for each e ∈ En, the equality above reduces to

K(e)pn(0) =
∫ 1

0

(t− 1)Fe(t)dt−K(e)∂e pn(0). (3.5)

Hence,

|∂e pn(0)| ≤ |pn(0)|+ 1
cK
‖F‖L2(e) ≤

2
cK

M +
1
cK

∣∣∣hn
n

∣∣∣. (3.6)

Choosing M0 > 0 large enough, the result follows.
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(iii) Let q ∈ H1
0 (Gn) be as in the previous part, testing (3.2) with it yields (3.4),

which is equivalent to

pn(0)
1
n

∑
e∈En

K =
1
n

∑
e∈En

∫
e

Fq +
1
n
hn q(0).

Now, letting n→∞, Equality (3.3a) follows because the hypothesis K(e) > cK for
all e ∈ E, implies that 1

n

∑
e∈En

K(e) ≥ cK > 0. For the convergence of {∂epn(0) :
e ∈ En}, let n→∞ in (3.5) to obtain (3.3b). For the uniform convergence observe
that (3.5) yields∣∣K(e)∂epn(0)− L(e)

∣∣
=
∣∣∣K(e) lim

n→∞

1
n

∑
σ∈En

∫ 1

0
(t− 1)Fσ(t)dt− 1

nh
n

1
n

∑
σ∈En

K(σ)
−K(e)pn(0)

∣∣∣
≤ ‖K‖L∞

∣∣∣ lim
n→∞

1
n

∑
σ∈En

∫ 1

0
(t− 1)Fσ(t)dt− 1

nh
n

1
n

∑
σ∈En

K(σ)
− pn(0)

∣∣∣.
Finally, choose N ∈ N such that the right hand side of the expression above is less
than ε > 0 for all n > N then, the term of the left-hand side is also dominated by
ε > 0 for all n > N and e ∈ En. �

Remark 3.6. It is clear that in Lemma 3.5 part (iii), it suffices to require the mere
existence of the limit

lim
n→∞

∑
σ∈En

∫ 1

0
(t− 1)Fσ(t)dt− hn∑
σ∈En

K(σ)
,

to attain the same conclusion. However, the hypotheses in (iii) are necessary to
identify the asymptotic problem and to compute the effective coefficients.

Theorem 3.7. Let F , {hn : n ∈ N} and K satisfy Hypothesis 3.3 as in Lemma
3.5 . Then:

(i) There exists a constant M1 such that ‖pn‖H2(e) ≤ M1 for all e ∈ E and
n ∈ N such that e ∈ En.

(ii) For each e ∈ E there exists p(e) ∈ H1(e) such that ‖pn1e−p(e)‖H1(e) −−−−→
n→∞

0. Moreover, this convergence is uniform in the following sense: for each
ε > 0 there exists N ∈ N such that, if n > N and e ∈ En, then

‖∂epn − ∂ep(e)‖H1(e) < ε . (3.7)

(iii) The function p : ΩG → R given by p1e := p(e) is well-defined and it will be
referred to, as the limit function.

Proof. (i) Fix e ∈ E and let n ∈ N be such that e ∈ En. Since pn is the solution
of (3.2) it follows that −K(e) ∂e2pn = F1e ∈ L2(e) for all e ∈ En, in particular
pn1e ∈ H2(e) with ‖∂e2pn‖L2(e) ≤ 1

cK
‖F‖L2(e) ≤ 1

cK
M . On the other hand, since

∂ep
n1e is absolutely continuous, the fundamental theorem of calculus applies, hence

∂ep
n(x) = ∂ep

n(0) +
∫ x

0
∂2pne (t) dt = ∂ep

n(0) +
∫ x

0
Fe(t) dt for all x ∈ e. Therefore,

|∂epn(x)|2 = 2|∂epn(0)|2 + 2x‖F‖2L2(e) ≤ 2M2
0 + 2M2.

Where M0 is the global bound found in Lemma 3.5-(ii) above. Integrating along
the edge e gives ‖∂epn‖L2(e) ≤

√
2(M2

0 +M2). Next, given that pn(v) = 0 for
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all v ∈ En, repeating the previous argument yields ‖pn‖L2(e) ≤
√

2(M2
0 +M2).

Finally, since ‖∂e2pn‖L2(e) ≤ 1
cK
M , the result follows for any M1 satisfying

M2
1 ≥ 4M2

0 +
(

4 +
1
c2K

)
M2.

(ii) Fix e ∈ E, due to the previous part the sequence {pn1e : e ∈ En} is bounded
in H2(e), then there exists p(e) ∈ H2(e) and a subsequence {nk : k ∈ N} such that
as k →∞,

pnk → p(e) weakly in H2(e) and strongly in H1(e).

Let ϕ ∈ H1(e) be such that equals zero on the boundary vertex of e. Let q be the
function in H1

0 (Gn) such that qe = ϕ and qσ(t) = ϕ(0)(1− t) (linear affine) for all
σ ∈ En − {e}. Test (3.2) with this function to obtain∫

e

K(e)∂epn∂eq +
∑

σ∈En, σ 6=e

K

∫
σ

∂σp
n∂σq

=
∫
e

Fq +
∑

σ∈En, σ 6=e

∫
σ

Fq + hn q(0).

Integrating by parts the second summand of the left-hand side yields∫
e

K(e)∂epn∂eϕ−
∑

σ∈En, σ 6=e

K

∫
σ

∂σ
2pnq − ϕ(0)

∑
σ∈En, σ 6=e

K∂σp
n(0)

=
∫
e

Fϕ+
∑

σ∈En, σ 6=e

∫
σ

Fϕ+ hnq(0).

Since pn is a solution of the problem, the above expression reduces to∫
e

K(e)∂epn∂eϕ+K(e)∂epn(0)ϕ(0) =
∫
e

Fq. (3.8)

Equality (3.8) holds for all n ∈ N, in particular it holds for the convergent subse-
quence {nk : k ∈ N}; taking limit on this sequence and recalling (3.3b), we have∫

e

K(e)∂ep(e)∂eϕ =
∫
e

Fϕ− L(e)ϕ(0). (3.9)

Then (3.9) holds for all ϕ ∈ H1(e) vanishing at ve, the boundary vertex of e. Define
the space H(e) := {ϕ ∈ H1(e) : ϕ(ve) = 0} and consider the problem

u ∈ H(e) :
∫
e

K(e)∂eu ∂eϕ =
∫
e

Fϕ− L(e)ϕ(0) ∀ϕ ∈ H(e). (3.10)

By the Lax-Milgram Theorem the problem above is well-posed, additionally it is
clear that p(e) ∈ H(e), therefore it is the unique solution to (3.10) above. Now,
recall that {pn1e : e ∈ En} is bounded in H2(e) and that the previous reasoning
applies for every strongly H1(e)-convergent subsequence, therefore its limit is the
unique solution to (3.10). Consequently, by Rellich-Kondrachov, it follows that the
whole sequence converges strongly. Next, for the uniform convergence test both
Statements (3.8), (3.9) with (pn1e − p(e)) and subtract them to obtain

cK‖∂epn − ∂ep(e)‖2H1(e) ≤ K(e)
∫
e

∣∣∂epn − ∂ep(e)
∣∣2

≤
(
L(e)−K(e)∂epn(0)

)(
pn(0)− p(e)(0)

)
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≤
∣∣L(e)−K(e)∂epn(0)

∣∣‖∂epn − ∂ep(e)‖H1(e).

The above yields∥∥∂epn − ∂ep(e)
∥∥
H1(e)

≤ 1
cK

∣∣L(e)−K(e)∂epn(0)
∣∣.

Now, the uniform convergence (3.7) follows from (3.3c), which concludes the second
part.

(iii) Since p(e)(0) = limn→∞ pn(0) for all e ∈ E, the limit function p is well-
defined and the proof is complete. �

4. Homogenized problem: a Cesàro average approach

In this section we study the asymptotic properties of the global behavior of
the solutions {pn : n ∈ N}. It will be seen that such analysis must be done
for certain type of “Cesàro averages” of the solutions. This is observed by the
techniques and the hypotheses of Lemma 3.5, which are necessary to conclude the
local convergence of {pn1e : e ∈ En}. Additionally, the type of estimates and the
numerical experiments suggest this physical magnitude as the most significant one
for global behavior analysis and upscaling purposes. We start introducing some
necessary hypotheses.

Hypothesis 4.1. Suppose that F , {hn : n ∈ N} and K satisfy 3.3, and

(i) The diffusion coefficient K : ΩG → (0,∞) has finite range. Moreover, if
K(E) = {Ki : 1 ≤ i ≤ I} and Bi := {e ∈ E : K(e) = Ki}, then

1
n

∑
e∈En∩Bi

K(e) =
#(En ∩Bi)

n
Ki −−−−→

n→∞
siKi. (4.1)

With si > 0 for all 1 ≤ i ≤ I and such that
∑I
i=1 si = 1.

(ii) The forcing term F satisfies

1
#(En ∩Bi)

∑
e∈En∩Bi

Fe −−−−→
n→∞

F̄i , for 1 ≤ i ≤ I. (4.2)

Where F̄i ∈ L2(0, 1) and the sense of convergence is pointwise almost ev-
erywhere.

(iii) The sequence
{

1
nh

n : n ∈ N
}

is convergent with h̄ = limn→∞
1
nh

n.

Remark 4.2. (i) Note that if (i) and (ii) in Hypothesis 4.1 are satisfied, then

1
n

∑
e∈En

Fe =
I∑
i=1

#(En ∩Bi)
n

( 1
#(En ∩Bi)

∑
e∈En∩Bi

Fe

)
−−−−→
n→∞

I∑
i=1

siF̄i .

Hence, the sequence {Fe : e ∈ E} is Cesàro convergent.
(ii) A familiar context for the required convergence (4.2) in Hypothesis 4.1 is the

following. Let F be a continuous and bounded function defined on the whole disk Ω
and suppose that for each 1 ≤ i ≤ I, the sequence of vertices {vn : n ∈ N, vnv0 ∈ Bi}
is equidistributed on S1. Then, by Theorem 2.9, for any fixed t ∈ (0, 1) it holds
that 1

#(En∩Bi)

∑
e∈En∩Bi

Fe(t) −−−−→
n→∞

mθ[f ] i.e, the angular average introduced in
Definition 2.10.
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4.1. Estimates and Cesàro convergence.

Lemma 4.3. Let F , {hn : n ∈ N} and K satisfy Hypothesis 4.1. Then
(i) The sequence

{
1
n

∑
e∈En

pne : n ∈ N
}

is bounded in H2(0, 1).
(ii) The sequence { 1

#(En ∩Bi)
∑

e∈En∩Bi

pne : n ∈ N
}

(4.3)

is bounded in H2(0, 1) for all i ∈ {1, . . . , I}.

Proof. (i) Test (3.2) with pn to obtain

cK
∑
e∈En

‖∂epn‖2L2(e) ≤
∑
e∈En

∫
e

K|∂pn|2

≤
∑
e∈En

∫
e

Fe p
n + hnpn(v0)

≤
( ∑
e∈En

‖F‖2L2(e)

)1/2( ∑
e∈En

‖pn‖2L2(e)

)1/2

+ |hn| |pn(v0)|.

Since pn(ve) = 0 for all e ∈ En, it follows that ‖pn‖L2(e) ≤ ‖∂pn‖L2(e) and
‖pn‖H1(e) ≤

√
2‖∂pn‖L2(e). Hence, dividing the above expression by n gives

1
n

∑
e∈En

‖pn‖2H1(e)

≤ 2
( 1
n

∑
e∈En

‖F‖2L2(e)

)1/2( 1
n

∑
e∈En

‖pn‖2H1(e)

)1/2

+ 2
|hn|
n
|pn(v0)|

≤ 2
M

cK

( 1
n

∑
e∈En

‖pn‖2H1(e)

)1/2

+ C .

Here C > 0 is a generic constant independent from n ∈ N. In the second line of
the expression above, we used that M = supe∈En

‖F‖L2(e) < +∞, { 1
n h

n : n ∈ N}
are bounded and that {pn(v0) : n ∈ N} is convergent (therefore bounded) as stated
in Lemma 3.5-(i). Hence, the sequence xn := ( 1

n

∑
e∈En

‖pn‖2H1(e))
1/2 is such that

x2
n ≤ 2 M

cK
xn + C for all n ∈ N, where the constants are all non-negative. Then

{xn : n ∈ N} must be bounded, but this implies∥∥ 1
n

∑
e∈En

pne
∥∥
H1(0,1)

≤ 1
n

∑
e∈En

‖pne ‖H1(0,1)

≤ 1
n

∑
e∈En

‖pn‖H1(e)

≤
( 1
n

∑
e∈En

‖pn‖2H1(e)

)1/2

.

Finally, recalling the estimate

cK
∥∥ 1
n

∑
e∈En

∂2pne
∥∥
L2(0,1)

≤ 1
n

∑
e∈En

∥∥∂K(e)∂pne
∥∥
L2(0,1)
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≤ 1
n

∑
e∈En

‖F‖L2(0,1) ≤M,

the result follows.
(ii) Fix i ∈ {1, 2, . . . , I} then∥∥ 1

#(En ∩Bi)
∑

e∈En∩Bi

pne
∥∥
H2(0,1)

≤ n

#(En ∩Bi)
1
n

∑
e∈En

∥∥pne∥∥H2(0,1)
.

On the right-hand side of the expression above, the first term is bounded becuase
of Hypothesis 4.1-(iii), while the boundedness of the second term was shown in the
previous part. Therefore, the result follows. �

Before presenting the limit problem we introduce some necessary definitions and
notation

Definition 4.4. Let K satisfy 4.1 and I = #K(E). Then
(i) For all 1 ≤ i ≤ I define wi :=

(
cos( 2π

I i), sin( 2π
I i)

)
∈ S1, w0 := v0 = 0 and

V := {wi : 0 ≤ i ≤ I}.
(ii) For all 1 ≤ i ≤ I define the edges σi := w0wi and E := {σi : 1 ≤ i ≤ I}.
(iii) Define the upscaled graph by G := (V, E).
(iv) For any ϕ ∈ H1

0 (G) and n ∈ N denote by Tnϕ ∈ H1
0 (Gn), the function such

that
(
Tnϕ

)
1e agrees with ϕ1σi whenever e ∈ Bi. This is summarized in

the expression

Tnϕ =
∑
e∈En

(
Tnϕ

)
1e :=

I∑
i=1

∑
e∈En∩Bi

(
ϕ1σi

)
.

In the sequel we refer to Tnϕ as the H1
0 (Gn)-embedding of ϕ.

(v) In the following, for any 1 ≤ i ≤ I, we adopt the notation ∂i := ∂σi
. Simi-

larly, for any given function f : ΩG → R and edge σi ∈ E , we denote by fi :
(0, 1)→ R, the real variable function fi(t) := (f1σi

)
(
t cos( 2π

I i), t sin( 2π
I i)
)
.

Theorem 4.5. Let F , {hn : n ∈ N} and K satisfy Hypothesis 4.1. Then
(i) The following problem is well-posed.

p̄ ∈ H1
0 (G) :

I∑
i=1

∫
σi

siKi∂ip̄∂iq =
I∑
i=1

∫ 1

0

siF̄iqi + h̄(0)q(0) , (4.4)

for all q ∈ H1
0 (G). In the sequel, we refer to Problem (4.4) as the up-

scaled or the homogenized problem and its solution p̄ as the upscaled or
the homogenized solution indistinctly.

(ii) The sequence of solutions {pn : n ∈ N} satisfies∥∥ 1
#(En ∩Bi)

∑
e∈En∩Bi

pne − p̄i
∥∥
H1(0,1)

−−−−→
n→∞

0 , for 1 ≤ i ≤ I . (4.5)

(iii) The limit function p : ΩG → R satisfies∥∥ 1
#(En ∩Bi)

∑
e∈En∩Bi

pe − p̄i
∥∥
H1(0,1)

−−−−→
n→∞

0 , for 1 ≤ i ≤ I ;

∥∥ 1
n

∑
e∈En

pe −
I∑
i=1

sip̄i
∥∥
H1(0,1)

−−−−→
n→∞

0 .
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Proof. (i) It follows immediately from Proposition 2.7.
(ii) Let ϕ ∈ H1

0 (G) and let Tnϕ be its H1
0 (Gn)-embedding. Note the equalities

1
n

∑
e∈En

∫
e

K∂ep
n
e ∂eTnϕ

=
I∑
i=1

1
n
Ki

∑
e∈En∩Bi

∫
e

∂ep
n∂eTnϕ

=
I∑
i=1

#(En ∩Bi)
n

Ki

∫ 1

0

∂
( 1

#(En ∩Bi)
∑

e∈En∩Bi

pne

)
∂ϕi ,

(4.6a)

and

1
n

∑
e∈En

∫
e

F Tnϕ =
I∑
i=1

#(En ∩Bi)
n

∫ 1

0

( 1
#(En ∩Bi)

∑
e∈En∩Bi

F
)
ϕi. (4.6b)

From the previous observations, testing (3.2) with 1
n Tnϕ, gives

I∑
i=1

#(En ∩Bi)
n

Ki

∫ 1

0

∂
( 1

#(En ∩Bi)
∑

e∈En∩Bi

pne

)
∂ϕi

=
I∑
i=1

#(En ∩Bi)
n

∫ 1

0

( 1
#(En ∩Bi)

∑
e∈En∩Bi

F
)
ϕi +

hn

n
ϕ(0).

(4.7)

By Lemma 4.3-(ii) there exist a subsequence {nk : k ∈ N} and a collection {ξi : 1 ≤
i ≤ I} ⊆ H2(0, 1) such that

1
#(Enk

∩Bi)
∑

e∈Enk
∩Bi

pnk
e −−−−→

k→∞
ξi

weakly in H2(0, 1) and strongly in H1(0, 1) for 1 ≤ i ≤ I. On the other hand, by
Hypothesis 4.1-(ii) the integrand of the right-hand side in (4.7) is convergent for all
i ∈ {1, . . . , I}. Because of Hypothesis 4.1-(i) the sequences {#(En∩Bi)

n : n ∈ N} are
also convergent for all i ∈ {1, . . . , I}. Then, using (4.7) for the subsequence nk and
letting k →∞ gives

I∑
i=1

siKi

∫ 1

0

∂ξi∂ϕi =
I∑
i=1

si

∫ 1

0

F̄iϕi + h̄ϕ(0).

Note that since pnk ∈ H1
0 (Gnk

), we have
1

#(Enk
∩Bi)

∑
e∈Enk

∩Bi

pnk
e (0)

=
1

#(Enk
∩Bj)

∑
e∈Enk

∩Bj

pnk
e (0) , ∀i, j ∈ {1, . . . , I}.

(4.8)

In particular ξi(0) = ξj(0); consequently the function η ∈ H1
0 (G) such that ηi = ξi

is well-defined. Moreover, (4.8) is equivalent to
I∑
i=1

∫
σi

siKi∂iη∂iϕ =
I∑
i=1

∫
σi

siF̄iϕ+ h̄(0)ϕ(0) .
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Since the latter variational statement holds for any ϕ ∈ H1
0 (G) and η ∈ H1

0 (G),
from the previous part it follows that η ≡ p̄. Finally, the whole sequence {pn :
n ∈ N} satisfies (4.5) because, for every subsequence {pnj : j ∈ N} there exists
yet another subsequence {pnj` : ` ∈ N} satisfying the convergence Statement (4.5).
This concludes the second part.

(iii) Both conclusions follow immediately from the previous part and the uniform
convergence (3.7) shown in Theorem 3.7. �

Remark 4.6 (Probabilistic Flexibilities of the Results). Consider the following two
random variables:

(i) Let X : E → (0,∞) be a random variable of finite range {Ki : 1 ≤ i ≤ I}
and such that E[X = Ki] = si for 1 ≤ i ≤ I. Notice that by the Law of Large
Numbers, with probability one it holds

1
n

∑
e∈En∩Bi

X(e) −−−−→
n→∞

siKi. (4.9)

(ii) Let Y : E → L2(0, 1) be a random variable such that supe∈E ‖Y (e)‖L2(e) <
+∞ and such that

1
#(En ∩Bi)

∑
e∈En∩Bi

Y (e) −−−−→
n→∞

F̄i , for 1 ≤ i ≤ I. (4.10)

Therefore, Theorem 4.5 holds, when replacing K by X or F by Y or when making
both substitutions at the same time.

5. Examples

In this section we present two types of numerical experiments. The first type
are verification examples, supporting our homogenization conclusions for a problem
whose asymptotic behavior is known exactly. The second type are of exploratory
nature, in order to gain further insight of the phenomenon’s upscaled behavior. The
experiments are executed in a MATLAB code using the Finite Element Method
(FEM); it is an adaptation of the code fem1d.m [21].

5.1. General Setting. For the sake of simplicity the vertices of the graph are given
by v` := (cos `, sin `) ∈ S1, as it is known that {v` : ` ∈ N} is equidistributed in S1

(see [23]). The diffusion coefficient hits only two possible values: one and two. Two
types of coefficients will be analyzed, Kd,Kp a deterministic and a probabilistic
one respectively. They satisfy

Kd : ΩG → {1, 2} , Kd(v`v0) :=

{
1, ` ≡ 0 mod 3,
2, ` 6≡ 0 mod 3.

(5.1a)

Kp : ΩG → {1, 2} , E[Kp = 1] =
1
3
, E[Kp = 2] =

2
3
. (5.1b)

In our experiments the asymptotic analysis is performed forKp being a fixed realiza-
tion of a random sequence of length 1000, generated with the binomial distribution
1/3, 2/3. Since #Kd(E) = #Kp(E) = 2, it follows that the upscaled graph G has
only three vertices and two edges namely w1 = (1, 0), w2 = (−1, 0), w0 = (0, 0) and
σ1 = w1w0, σ2 = w2w0. Also, define the domains

Ω1
G := ∪

{
v`v0 : ` ∈ N , K(v`v0) = 1

}
,

Ω2
G := ∪

{
v`v0 : ` ∈ N , K(v`v0) = 2

}
,
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where K = Kd or K = Kp depending on the probabilistic or deterministic context.
Additionally, we define

p̄n1 :=
1

#(En ∩B1)

∑
e∈En∩B1

pne , p̄n2 :=
1

#(En ∩B2)

∑
e∈En∩B2

pne .

In all the examples we use the forcing terms hn = 0 for every n ∈ N. The FEM
approximation is done with 100 elements per edge with uniform grid. In each exam-
ple we present two graphics for values of n chosen from {10, 20, 50, 100, 500, 1000},
based on optical neatness. For visual purposes, in all the cases the edges are col-
ored with red if K(e) = 1 or blue if K(e) = 2. Also, for displaying purposes, in the
cases n ∈ {10, 20} the edges v`v0 are labeled with “`” for identification, however
for n ∈ {50, 100, 500, 1000} the labels were removed since they overload the image.

5.2. Verification for examples.

Example 5.1 (A Riemann integrable forcing term). We begin our examples with
the most familiar context, as discussed in Remark 4.2. Define

F : Ω→ R , F (t cos `, t sin `) := π2 sin(πt) cos(`). (5.2)

Since both sequences {v` : ` ∈ N, ` ≡ 0 mod 3} and {v` : ` ∈ N, ` 6≡ 0 mod 3} are
equidistributed, Theorem 2.9 implies

F̄1 = mθ[F |Ω1
G

] = F̄2 = mθ[F |Ω2
G

] = mθ[F ] ≡ 0.

Here F̄1, F̄2 are the limits defined in Hypothesis 4.1-(ii). For this case the exact
solution of the upscaled Problem (4.4) is given by p̄ := p̄1σ1 + p̄1σ2 ∈ H1

0 (G), with
p̄1(t) = p̄2(t) = 0. For the diffusion coefficient we use the deterministic one, Kd

defined in (5.1a). Table 1 summarizes the convergence behavior.

Table 1. Convergence of solutions to Example 5.1: K = Kd.

n ‖p̄n1 − p̄1‖L2(e1 ) ‖p̄n2 − p̄2‖L2(e1) ‖p̄n1 − p̄1‖H1
0 (e2) ‖p̄n2 − p̄2‖H1

0 (e2)

10 0.3526 0.1717 0.8232 0.3216

20 0.0180 0.0448 0.0900 0.0889

100 0.0160 0.0059 0.0395 0.0116

1000 5.8352× 10−4 8.27772× 10−4 0.0012 0.0016

Example 5.2 (Probabilistic flexibilities for Example 5.1). This experiment follows
the observations in Remark 4.6. In this case X := Kp, defined in (5.1b). Let
Z : N→ [−100, 100] be a random variable with uniform distribution and define

Y : ΩG → R, Y (t cos `, t sin `) := π2 sin(πt) cos(`) + Z(`). (5.3)

It is straightforward to show that X and Y satisfy Hypothesis 4.1 and by the Law
of Large Numbers, they also satisfy (4.9) and (4.10) respectively. Therefore,

Ȳ1 = mθ[F |Ω1
G

] = Ȳ2 = mθ[F |Ω2
G

] = mθ[F ] = p̄1 = p̄2 = 0.

Table 2 is the summary for a fixed realization of X (to keep the edge coloring
consistent) and different realizations of Y on each stage. Convergence is observed
and, as expected, it is slower than in the previous case. This would also occur for
different realizations of X and Y simultaneously.
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(a) Solution p10, n = 10. (b) Solution p100, n = 100.

Figure 3. Solutions to Example 5.1. Diffusion coefficient Kd, see
(5.1a). The solutions depicted in (a) and (b) on the edges v`v0 are
colored with red if Kd(v`v0) = 1 (i.e., ` ≡ 0 mod 3), or blue if
Kd(v`v0) = 2 (i.e., ` 6≡ 0 mod 3). Forcing term F : Ω → R, see
(5.2).

Table 2. Convergence for solutions to For Example 5.2: K = Kp.

n ‖p̄n1 − p̄1‖L2(e1) ‖p̄n2 − p̄2‖L2(e1) ‖p̄n1 − p̄1‖H1
0 (e2) ‖p̄n2 − p̄2‖H1

0 (e2)

10 0.5534 0.0938 1.6629 0.5381

20 0.0965 0.1594 0.5186 0.3761

100 0.0653 0.1322 0.3809 0.2569

1000 0.0201 0.0302 0.0658 0.0597

Example 5.3 (A non-Riemann integrable forcing term). For our final theoretical
example we use a non-Riemann Integrable forcing term. Moreover, the following
function is highly oscillatory inside each subdomain Ω1

G and Ω2
G, and it can not

be seen as Riemann integrable when restricted to any of these sub-domains. Let
F : ΩG → R be defined by

F (t cos `, t sin `) :=

{
4π2 sin(2πt) + (−1)b

`
6 c × 10× (`−

⌊
`

2π

⌋
), ` ≡ 0 mod 3,

π2 sin(πt) + (−1)b
`
6 c × 10× (`−

⌊
`

2π

⌋
), ` 6≡ 0 mod 3.

(5.4)
On the one hand, both sequences {v` : ` ∈ N, ` ≡ 0 mod 3} and {v` : ` ∈ N, ` 6≡ 0
mod 3} are equidistributed. On the other hand, both parts of the forcing term,
the radial and the angular, are Cesàro convergent on each ΩiG for i = 1, 2. The
Cesàro average of the angular summand is zero on ΩiG for i = 1, 2. In contrast,
the radial summand can be seen as Riemann integrable separately on each ΩiG for
i = 1, 2; therefore, by Theorem 2.9 its Cesàro average is given by F̄1 = mθ[F |Ω1

G
]
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(a) Solution p20, n = 20. (b) Solution p50, n = 50.

Figure 4. Solutions of Example 5.2 Fixed realization of diffusion
coefficient Kp, see (5.1b). Forcing term Y : ΩG → R, see (5.3),
with Z : N → [−100, 100], random variable and Z ∼ uniformly.
Different realizations for Y on each stage. The solutions depicted
in (a) and (b) on the edges v`v0 are colored with red if Kp(v`v0) = 1
(E[Kp = 1] = 1

3 ), or blue colored if Kp(v`v0) = 2 (E[Kp = 2] = 2
3 ).

and F̄2 = mθ[F |Ω2
G

]; more explicitly,

F̄1(t) = (2π)2 sin(2πt) , F̄2(t) = π2 sin(πt). (5.5)

For this case the exact solution p̄ = p̄1σ1 + p̄1σ2 ∈ H1
0 (−1, 1) of the upscaled

Problem (4.4) is given by

p̄1(t) = sin(2πt) , p̄2(t) =
1
2

sin(πt). (5.6)

We summarize the convergence behavior in Table 3.

Table 3. Converged of solutions to Example 5.3: K = Kd.

n ‖p̄n1 − p̄1‖L2(e1) ‖p̄n2 − p̄2‖L2(e1) ‖p̄n1 − p̄1‖H1
0 (e2) ‖p̄n2 − p̄2‖H1

0 (e2)

10 1.6392 0.4900 5.7447 1.3210

20 0.4127 0.9305 1.8930 1.7782

100 0.2125 0.3312 0.4986 0.6275

1000 0.0138 0.0189 0.0852 0.0371

5.3. Numerical experiments. In this section we present two examples, breaking
the hypotheses required in the theoretical analysis discussed above. As there is no
known exact solution, we follow Cauchy’s convergence criterion for the sequences



EJDE-2016/282 HOMOGENIZATION OF DIFFUSION PROCESSES 19

1

0.5

18

12

 6

 5

0

11

19

17

-0.5

13 7

 4

-1

 1

10

-1

20

16

-0.5

14
 8

 3

0

 2

 9

15

0.5

6

-8

8

-6

-4

-2

0

2

4

1
1

0.5

0

-0.5

-1-1

-0.5

0

0.5

1

6

4

2

0

-2

8

-6

-8

-4

(a) Solution p20, n = 20. (b) Solution p50, n = 50.

Figure 5. Solutions of Example 5.3 Diffusion coefficient Kd, see
(5.1a). The solutions depicted in (a) and (b) on the edges v`v0 are
colored with red if Kd(v`v0) = 1 (i.e., ` ≡ 0 mod 3), or blue if
Kd(v`v0) = 2 (i.e., ` 6≡ 0 mod 3). Forcing term F : ΩG → R see
(5.4).

{p̄ni : n ∈ N} with i = 1, 2. However, we do not sample only points but intervals of
observation and report the averages of the observed data. More specifically

εni :=
1
10

n+5∑
j=n−4

‖p̄ji − p̄
j−1
i ‖L2(ei), δni :=

1
10

n+5∑
j=n−4

‖p̄ji − p̄
j−1
i ‖H1(ei),

for i = 1, 2, n = 10, 20, 100, 1000.

Example 5.4 (A locally unbounded forcing term). For our experiment we use
a variation of Example 5.3, keeping the well-behaved radial part but adding an
unbounded angular part, which is known to be Cesàro convergent to zero. Consider
the forcing term F : ΩG → R defined by

F (t cos `, t sin `) :=

{
4π2 sin(2πt) + (−1)`

√
` , ` ≡ 0 mod 3,

π2 sin(πt) + (−1)`
√
` , ` 6≡ 0 mod 3.

(5.7)

Clearly, supe∈E ‖F‖L2(e) =∞ i.e., Hypothesis 3.3-(i) is not satisfied. It is not hard
to adjust the techniques presented in Section 4.1 to this case, when the forcing
term is Cesàro convergent without satisfying the condition supe∈E ‖F‖L2(e) < ∞;
however, the properties of edgewise uniform convergence of Section 3.2 can not be
concluded. Consequently, we observe the following convergence behavior.

Example 5.5 (A forcing term with unbounded frequency modes). For our last
experiment we use a variation of Example 5.3, keeping it bounded, but introducing
unbounded frequencies. Consider the forcing term F : ΩG → R defined by

F (t cos `, t sin `) :=

{
4π2 sin(2πt · `) , ` ≡ 0 mod 3,
π2 sin(πt · `) , ` 6≡ 0 mod 3.

(5.8)
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Table 4. Convergence of solutions to Example 5.4: K = Kd.

n εn1 εn2 δn1 δn2

10 0.1547 0.1578 2.7336 2.7338

20 0.0618 0.0645 1.0734 1.0747

100 0.0277 0.0224 0.3394 0.3320

1000 0.0086 0.0065 0.0984 0.0955
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(a) Solution p20, n = 20. (b) Solution p100, n = 100.

Figure 6. Solutions to Example 5.4 Diffusion coefficient Kd, see
(5.1a). The solutions depicted in (a) and (b) on the edges v`v0 are
colored with red if Kd(v`v0) = 1 (i.e., ` ≡ 0 mod 3), or blue if
Kd(v`v0) = 2 (i.e., ` 6≡ 0 mod 3). Forcing term F : ΩG → R see
(5.7).

Clearly, F verifies Hypothesis 3.3, consequently Lemma 3.5 implies edgewise uni-
form convergence of the solutions, however Hypothesis-(ii) 4.1 is not satisfied.
Therefore, we observe that the whole sequence is not Cauchy, although it has
Cauchy subsequences as the Table 5 shows.

Table 5. Convergence of solutions to Example 5.5: K = Kd.

n εn1 εn2 δn1 δn2

10 0.0264 0.0267 0.4157 0.3835

20 0.0078 0.0089 0.1342 0.1327

100 0.0004 0.0005 0.0077 0.0076

500 0.00004 0.00004 0.00073 0.00072

1000 0.00066 0.00049 0.0081 0.0078

1200 0.00004 0.00005 0.000787 0.000786
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(a) Solution p500, n = 500. (b) Solution p1000, n = 1000.

Figure 7. Solutions of Example 5.5. Diffusion coefficient Kd, see
(5.1a). The solutions depicted in (a) and (b) on the edges v`v0 are
colored with red if Kd(v`v0) = 1 (i.e., ` ≡ 0 mod 3), or blue if
Kd(v`v0) = 2 (i.e., ` 6≡ 0 mod 3). Forcing term F : ΩG → R see
(5.8).

It follows that this system has more than one internal equilibrium. Consequently,
an upscaled model of a system such as this, should contain uncertainty which, in
this specific case, remains bounded due to the properties of the forcing term F .

5.4. Closing observations. (i) The authors tried to find experimentally a rate of
convergence using the well-know estimate

αi ∼
log ‖p̄n+1

i − p̄ni ‖ − log ‖p̄ni − p̄
n−1
i ‖

log ‖p̄ni − p̄
n−1
i ‖ − log ‖p̄n−1

i − p̄n−2
i ‖

, i = 1, 2.

The sampling was made on the intervals n− 5 ≤ j ≤ n+ 5, for n = 10, 20, 100, 500
and 1000. Experiments were run on all the examples except for Example 5.5. In
none of the cases was solid numerical evidence detected that could suggest an order
of convergence for the phenomenon.

(ii) Experiments for random variations of the examples above were also executed,
under the hypothesis that random variables were subject to the Law of Large Num-
bers. As expected, convergence slower than its corresponding deterministic version
was observed. This is important for its applicability to upscaling networks derived
from game theory, see [11].

6. Conclusions and final discussion

The present work yields several accomplishments and also limitations as we point
out below.

(i) The method presented in this paper can be easily extended to general scale-
free networks in a very simple way. First, identify the communication kernel (see
[17]). Second, for each node in the kernel, replace its numerous incident low-degree
nodes by the upscaled nodes together with the homogenized diffusion coefficients
and forcing terms, see Figure 1.
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(ii) The particular scale-free network treated in the paper i.e., the star-like metric
graph, arises naturally in some important examples. These come from the theory of
the strategic network formation, where the agents choose their connections following
utilitarian behavior. Under certain conditions for the benefit-cost relation affecting
the actors when establishing links with other agents, the asymptotic network is
star-shaped (see [12]).

(iii) The scale-free networks are frequent in many real world examples as al-
ready mentioned. It follows that the method is applicable to a wide range of cases.
However, important types of networks can not be treated the same way for homog-
enization, even if they share some important properties of communication. The
small-world networks constitute an example since they are highly clustered, this
feature contradicts the power-law degree distribution hypothesis. See [14] for a
detailed exposition on the matter.

(iv) The upscaling of the diffusion phenomenon is done in a hybrid fashion.
On the one hand, the diffusion on the low-degree nodes is modeled by the weak
variational form of the differential operators defined over the graph, but ignoring
its combinatorial structure. On the other hand, the diffusion on the communication
kernel will still depend on both: the differential operators and the combinatorial
structure. This is an important achievement, because it is consistent with the
nature of available data for the analysis of real world networks. Typically, the data
for central (or highly connected) agents are more reliable than data for marginal
(or low degree) agents.

(v) The central Cesàro convergence hypotheses for data behavior, stated in
Lemma 3.5-(iii), as well as those contained in Hypothesis 4.1, to conclude conver-
gence have probabilistic-statistical nature. This is one of the main accomplishments
of the work, because the hypotheses are mild and adjust to realistic scenarios; unlike
strong hypotheses of topological nature such as periodicity, continuity, differentia-
bility or even Riemann-integrability of the forcing terms (see [10]). This fact is
further illustrated in Example 5.3, where good asymptotic behavior is observed for
a forcing term which is nowhere continuous on the domain ΩG of analysis.

(vi) An important and desirable consequence of the data hypotheses adopted,
is that the method can be extended to more general scenarios, as mentioned in
Remark 4.6, reported in Subsection 5.4 and illustrated in Examples 5.2, 5.4 and
5.5. Moreover, Example 5.5 suggests a probabilistic upscaled model for the com-
munication kernel, to be explored in future work.

(vii) A different line of future research consists in the analysis of the same phe-
nomenon, but using the mixed-mixed variational formulation introduced in [20]
instead of the direct one used in the present analysis. The key motivation in doing
so, is that the mixed-mixed formulation is capable of modeling more general ex-
change conditions than those handled by the direct variational formulation and by
the classic mixed formulations. This advantage can broaden in a significant way the
spectrum of real-world networks that can be successfully modeled and upscaled.

(viii) Finally, the preexistent literature typically analyses the asymptotic be-
havior of diffusion in complex networks, starting from fully discrete models (e.g.,
[15, 13]). The pseudo-discrete treatment that we have introduced here, constitutes
more of a complementary than an alternative approach. Depending on the avail-
ability of data and/or sampling, as well as the scale of interest for a particular
problem, it is natural to consider a “blending” of both techniques.
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