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WEIGHTED PSEUDO ALMOST AUTOMORPHIC SOLUTIONS
TO FUNCTIONAL DIFFERENTIAL EQUATIONS WITH

INFINITE DELAY

YONG-KUI CHANG, SHAN ZHENG

Abstract. In this article, we first establish some results on composition of

Stepanov-like weighted pseudo almost automorphic functions so called class

r and class infinity under a uniform continuity condition with respect to Lp-
norm. And then, we study the existence and uniqueness of weighted pseudo

almost automorphic solutions to an abstract partial neutral functional differ-

ential equation with infinite delay with a Stepanov-like nonlinear term.

1. Introduction

The concept of almost automorphy, which was introduced by Bochner [4], as a
generalization of the classical almost periodicity in the sense of Bohr; see for ex-
ample [13, 23, 25]. N’Guérékata and Pankov introduced the concept of Stepanov-
like almost automorphy in [24]. Diagana [11] introduced the concept of Stepanov-
like pseudo almost automorphy as a natural generalization of the pseudo almost
automorphy and an implement of the Stepanov-like almost automorphy due to
N’Guérékata and Pankov [24]. Blot et al [5] introduced the notion of weighted
pseudo almost automorphic functions with values in a Banach space. Xia and Fan
presented the notion of Stepanov-like (or Sp-) weighted pseudo almost automor-
phic function in [30]. To study differential equations with delay, Zhang, Chang
and N’Guérékata [33] further studied new types of functions so called Stepanov-
like weighted pseudo almost automorphic functions of class r, and Stepanov-like
weighted pseudo almost automorphic functions of class infinity. The above men-
tioned concepts have been considerably investigated and applied to various differ-
ential equations, see [1, 2, 3, 7, 9, 10, 14, 15, 17, 19, 27, 28, 29] and the references
therein.

The main purpose of this article is to study composition results for Stepanov-
like weighted pseudo almost automorphic functions of class r and Stepanov-like
weighted pseudo almost automorphic functions of class infinity [33]. Considering
the space of Stepanov-like weighted pseudo almost automorphic functions of class
r and Stepanov-like weighted pseudo almost automorphic functions of class infinity
with an integral norm coming from Lp-norm, we first prove new composition the-
orems for Stepanov-like weighted pseudo almost automorphic functions of class r
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under a uniform continuity condition with respect to the Lp-norm suggested by [16].
Similarly, we can arrive at new composition theorems for Stepanov-like weighted
pseudo almost automorphic functions of class infinity. And then, we apply the ob-
tained results to prove the existence and uniqueness of weighted pseudo almost au-
tomorphic solutions for the following abstract partial neutral functional-differential
equation with infinite delay under Stepanov-like nonlinear forcing term

d

dt
(u(t) + f(t, ut)) = A(t)u(t) + g(t, ut), t ∈ R, (1.1)

where A(t) : D(A(t)) ⊂ X→ X is a family of densely defined closed linear operators
on the domain D = D(A(t)), which is independent of t, the history ut : (0,∞] →
X defined by ut(θ) = u(t + θ), belongs to some abstract phase space B defined
axiomatically, and f, g : R×B→ X are some suitable functions.

The rest of this paper is organized as follows. In Section 2, we recall some basic
definitions, lemmas, and notation which will be used throughout this paper. In
Section 3, we establish some new results on composition of Stepanov-like weighted
pseudo almost automorphic functions of class r and Stepanov-like weighted pseudo
almost automorphic functions of class infinity under Lp-norm uniform continuity
condition. In Section 4, we prove the existence and uniqueness of weighted pseudo
almost automorphic solutions to the equation (1.1) under Stepanov-like nonlinear
forcing term. An example is also given to illustrate the main results.

2. Preliminaries

Let (X, ‖ · ‖) and (Y, ‖ · ‖Y) be two Banach spaces and N,R stand for sets of
natural numbers and real numbers, respectively. To facilitate discussions later, we
introduce the following notation:
• BC(R,X) (respectively, BC(R × Y,X)): The Banach spaces of bounded con-

tinuous function from R to X (respectively, from R× Y to X) with the sup norm.
• Lp(R,X): The space of all classes of equivalence (with respect to the equality

almost everywhere on R) of measurable function f : R → X such that ‖f‖ ∈
Lp(R,R).
• Lploc(R,X): The space of all classes of equivalence of measurable function f :

R → X such that the restriction of f to every bounded subinterval of R is in
Lp(R,X).
• L(X,Y): Stands for the Banach space of bounded linear operators from X to

Y equipped with its natural topology.

Definition 2.1 ([25]). A continuous function f : R→ X is said to be almost auto-
morphic if for every sequence of real numbers {s′n}n∈N there exists a subsequence
{sn}n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R. The collection of all such functions will be denoted by AA(X).

Definition 2.2 ([22, 25]). A continuous function f : R × X → X is said to be
almost automorphic if f(t, x) is almost automorphic for each t ∈ R uniformly for
all x ∈ B, where B is any bounded subset of X. The collection of all such functions
will be denoted by AA(R× X,X).
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Definition 2.3 ([32]). A continuous function f(t, x) : R × R → X is called bi-
almost automorphic if for every sequence of real numbers {s′n}n∈N, there exists a
subsequence {sn}n∈N such that

g(t, s) := lim
n→∞

f(t+ sn, s+ sn)

is well-defined for each t, s ∈ R, and

lim
n→∞

g(t− sn, s− sn) = f(t, s)

for each t, s ∈ R. The collection of all functions will be denoted by bAA(R×R,X).

Let U denote the set of all functions ρ : R→ (0,∞), which are locally integrable
over R such that ρ > 0 almost everywhere. For a given T > 0 and for each ρ ∈ U,
we set m(T, ρ) :=

∫ T
−T ρ(t)dt.

Thus the space of weights U∞ is defined by

U∞ := {ρ ∈ U : lim
T→∞

m(T, ρ) =∞}.

For a given ρ ∈ U∞, we define

PAA0(X, ρ) :=
{
f ∈ BC(R,X) : lim

T→∞

1
m(T, ρ)

∫ T

−T
‖f(t)‖ρ(t)dt = 0

}
;

PAA0(Y,X, ρ) :=
{
f ∈ C(R× Y,X) : f(·, y) is bounded for each y ∈ Y and

lim
T→∞

1
m(T, ρ)

∫ T

−T
‖f(t, y)‖ρ(t)dt = 0 uniformly for y ∈ Y

}
.

To study the delay case, we introduce spaces of functions defined for each r > 0 by

W(T, f, r, ρ) =
1

m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
ρ(t)dt ,

PAA0(X, r, ρ) :=
{
f ∈ BC(R,X) : lim

T→∞

1
m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
ρ(t)dt = 0

}
,

PAA0(Y,X, r, ρ)

:=
{
f ∈ C(R× Y,X) : f(·, y) is bounded for each y ∈ Y and

lim
T→∞

1
m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
‖f(θ, y)‖

)
ρ(t)dt = 0 uniformly for y ∈ Y

}
.

Definition 2.4 ([5]). Let ρ ∈ U∞. A function f ∈ BC(R,X) (respectively, f ∈
BC(R×Y,X)) is called weighted pseudo almost automorphic if it can be expressed
as f = g + φ, where g ∈ AA(X) (respectively, AA(R× Y,X)) and φ ∈ PAA0(X, ρ)
(respectively, PAA0(Y,X, ρ)). We denote by WPAA(X) (respectively, WPAA(R×
Y,X)) the set of all such functions.

Definition 2.5 ([33]). Let ρ ∈ U∞. A function f ∈ BC(R,X) (respectively,
f ∈ BC(R × Y,X)) is called weighted pseudo almost automorphic of class r if it
can be expressed as f = g+ φ, where g ∈ AA(X) (respectively, AA(R×Y,X)) and
φ ∈ PAA0(X, r, ρ) (respectively, PAA0(Y,X, r, ρ)). We denote by WPAA(X, r)
(respectively, WPAA(R× Y,X, r)) the set of all such functions.
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Definition 2.6 ([12, 24]). The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a
function f : R→ X is defined by

f b(t, s) := f(t+ s).

Remark 2.7 ([12]). (i) A function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform
of a certain function f , ϕ(t, s) = f b(t, s), if and only if ϕ(t+ τ, s− τ) = ϕ(s, t) for
all t ∈ R, s ∈ [0, 1] and τ ∈ [s− 1, s].

(ii) Note that if f = h+ ϕ, then f b = hb + ϕb. Moreover, (λf)b = λf b for each
scalar λ.

Definition 2.8 ([12]). The Bochner transform f b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ X of
a function f : R× X→ X is defined by

f b(t, s, u) := f(t+ s, u) for each u ∈ X.

We always denote by ‖ · ‖p the norm of space Lp(0, 1; X) for p ∈ [1,∞).

Definition 2.9 ([21, 24]). Let p ∈ [1,∞). The space BSp(X) of all Stepanov
bounded functions, with the exponent p, consists of all measurable functions f :
R→ X such that f b ∈ L∞ (R, Lp(0, 1; X)). This is a Banach space with the norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t

‖f(τ)‖pdτ
)1/p

= sup
t∈R
‖f(t+ ·)‖p.

Lemma 2.10 ([33]). Let ρ ∈ U∞. Suppose that PAA0(X, r, ρ) is translation in-
variant. Then the decomposition of weighted pseudo almost automorphic functions
of class r is unique.

Lemma 2.11 ([33]). Let ρ ∈ U∞ and PAA0(X, r, ρ) be translation invariant, then
WPAA(X, r) is a Banach space with norm ‖ · ‖∞.

Definition 2.12 ([21, 24]). The space ASp(X) of Stepanov-like almost automorphic
(or Sp-almost automorphic) functions consists of all f ∈ BSp(X) such that f b ∈
AA (Lp(0, 1; X)). In other words, a function f ∈ Lploc(R,X) is said to be Sp-almost
automorphic if its Bochner transform f b : R→ Lp(0, 1; X) is almost automorphic in
the sense that for every sequence of real numbers {s′n}n∈N, there exist a subsequence
{sn}n∈N and a function g ∈ Lploc(R,X) such that

lim
n→∞

(∫ t+1

t

‖f(s+ sn)− g(s)‖pds
)1/p

= 0,

lim
n→∞

(∫ t+1

t

‖g(s− sn)− f(s)‖pds
)1/p

= 0.

pointwise on R.

Definition 2.13 ([21, 24]). A function f : R×Y→ X, (t, u)→ f(t, u) with f(·, u) ∈
Lploc(R,X) for each u ∈ Y, is said to be Sp-almost automorphic in t ∈ R uniformly
in u ∈ Y if t → f(t, u) is Sp-almost automorphic for each u ∈ Y. That means, for
every sequence of real numbers {s′n}n∈N, there exist a subsequence {sn}n∈N and a
function g(·, u) ∈ Lploc(R,X) such that

lim
n→∞

(∫ t+1

t

‖f(s+ sn, u)− g(s, u)‖pds
)1/p

= 0,
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lim
n→∞

(∫ t+1

t

‖g(s− sn, u)− f(s, u)‖pds
)1/p

= 0,

pointwise on R and for each u ∈ Y. We denote by ASp(R×Y,X) the set of all such
functions.

Definition 2.14 ([6]). Let ρ ∈ U∞. A function f ∈ BSp(X) is said to be
Stepanov-like weighted pseudo almost automorphic (or Sp-weighted pseudo al-
most automorphic) if it can be expressed as f = g + φ, where g ∈ ASp(X) and
φb ∈ PAA0 (Lp(0, 1; X), ρ). In other words, a function f ∈ Lploc(R,X) is said to be
Stepanov-like weighted pseudo almost automorphic relatively to the weight ρ ∈ U∞,
if its Bochner transform f b : R → Lp(0, 1; X) is weighted pseudo almost automor-
phic in the sense that there exist two functions g, φ : R → X such that f = g + φ,
where g ∈ ASp(X) and φb ∈ PAA0 (Lp(0, 1; X), ρ). We denote by WPAASp(X)
the set of all such functions.

Definition 2.15 ([6]). Let ρ ∈ U∞. A function f : R × Y → X, (t, u) → f(t, u)
with f(·, u) ∈ Lploc(R,X) for each u ∈ Y, is said to be Stepanov-like weighted
pseudo almost automorphic (or Sp-weighted pseudo almost automorphic) if it can be
expressed as f = g+φ, where g ∈ ASp(R×Y,X) and φb ∈ PAA0 (Y, Lp(0, 1; X), ρ).
We denote by WPAASp(R× Y,X) the set of all such functions.

Definition 2.16 ([33]). Let ρ ∈ U∞. A function f ∈ BSp(X) is said to be
Stepanov-like weighted pseudo almost automorphic of class r (or Sp-weighted pseudo
almost automorphic of class r) if it can be expressed as f = g+φ, where g ∈ ASp(X)
and φb ∈ PAA0 (Lp(0, 1; X), r, ρ). In other words, a function f ∈ Lploc(R,X, r) is said
to be Stepanov-like weighted pseudo almost automorphic of class r relatively to the
weight ρ ∈ U∞, if its Bochner transform f b : R→ Lp(0, 1; X) is weighted pseudo al-
most automorphic of class r in the sense that there exist two functions g, φ : R→ X
such that f = g + φ, where g ∈ ASp(X) and φb ∈ PAA0 (Lp(0, 1; X), r, ρ). We
denote by WPAASp(X, r) the set of all such functions.

Definition 2.17 ([33]). Let ρ ∈ U∞. A function f : R × Y → X, (t, u) → f(t, u)
with f(·, u) ∈ Lploc(R,X) for each u ∈ Y, is said to be Stepanov-like weighted
pseudo almost automorphic of class r (or Sp-weighted pseudo almost automorphic
of class r) if it can be expressed as f = g + φ, where g ∈ ASp(R × Y,X) and
φb ∈ PAA0 (Y, Lp(0, 1; X), r, ρ). We denote by WPAASp(R×Y,X, r) the set of all
such functions.

Lemma 2.18 ([33]). Let ρ ∈ U∞. The space WPAASp(X, r) equipped with the
norm ‖ · ‖Sp is a Banach space.

Concerning infinite delays, we introduce the following spaces of functions as in
[33]:

PAA0(X,∞, ρ) := ∩r>0PAA0(X, r, ρ),

PAA0(X,Y,∞, ρ) := ∩r>0PAA0(X,Y, r, ρ),

PAA0(Lp(0, 1; X),∞, ρ) := ∩r>0PAA0(Lp(0, 1; X), r, ρ),

PAA0(Y, Lp(0, 1; X),∞, ρ) := ∩r>0PAA0(Y, Lp(0, 1; X), r, ρ).

Obviously, PAA0(X,∞, ρ) and PAA0(X,Y,∞, ρ) are, respectively, closed subspaces
of PAA0(X, r, ρ) and PAA0(X,Y, r, ρ), and hence both are Banach spaces. By
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the same way, PAA0(Lp(0, 1; X),∞, ρ) and PAA0(Y, Lp(0, 1; X),∞, ρ) are, respec-
tively, closed subspaces of PAA0 (Lp(0, 1; X), r, ρ) and PAA0(Y, Lp(0, 1; X), r, ρ),
and thus both are Banach spaces.

Definition 2.19 ([33]). Let ρ ∈ U∞. A function f ∈ BC(R,X) (respectively,
f ∈ BC(R×Y,X)) is called weighted pseudo almost automorphic of class infinity if
it can be expressed as f = g+φ, where g ∈ AA(X) (respectively, AA(R×Y,X)) and
φ ∈ PAA0(X,∞, ρ) (respectively, PAA0(Y,X,∞, ρ)). We denote by WPAA(X,∞)
(respectively, WPAA(R× Y,X,∞)) the set of all such functions.

Definition 2.20 ([33]). Let ρ ∈ U∞. A function f ∈ BSp(X) is said to be
Stepanov-like weighted pseudo almost automorphic of class infinity (or Sp-weighted
pseudo almost automorphic of class infinity) if it can be expressed as f = g + φ,
where g ∈ ASp(X) and φb ∈ PAA0 (Lp(0, 1; X),∞, ρ). In other words, a func-
tion f ∈ Lploc(R,X) is said to be Stepanov-like weighted pseudo almost automor-
phic of class infinity relatively to the weight ρ ∈ U∞, if its Bochner transform
f b : R → Lp(0, 1; X) is weighted pseudo almost automorphic of class infinity in
the sense that there exist two functions g, φ : R → X such that f = g + φ, where
g ∈ ASp(X) and φb ∈ PAA0 (Lp(0, 1; X),∞, ρ). We denote by WPAASp(X,∞)
the set of all such functions.

Definition 2.21 ([33]). Let ρ ∈ U∞. A function f : R × Y → X, (t, u) → f(t, u)
with f(·, u) ∈ Lploc(R,X) for each u ∈ Y, is said to be Stepanov-like weighted pseudo
almost automorphic of class infinity (or Sp-weighted pseudo almost automorphic of
class infinity) if it can be expressed as f = g + φ, where g ∈ ASp(R × Y,X) and
φb ∈ PAA0 (Y, Lp(0, 1; X),∞, ρ). We denote by WPAASp(R× Y,X,∞) the set of
all such functions.

Using similar ideas to those in [16, Lemma2.7], we can easily show the following
results.

Lemma 2.22. (i) Assume PAA0(Lp(0, 1,X), r, ρ) is translation invariant, then the
decomposition of an Sp-weighted pseudo almost automorphic function of class r is
unique.

(ii) The space WPAASp(X, r) equipped with ‖ · ‖Sp is a Banach space.
(iii) WPAA(X, r) is continuously embedded in WPAASp(X, r).

Lemma 2.23. (i) Assume that PAA0(Lp(0, 1,X),∞, ρ) is translation invariant,
then the decomposition of an Sp-weighted pseudo almost automorphic function of
class infinity is unique.

(ii) The space WPAASp(X,∞) equipped with ‖ · ‖Sp is a Banach space.
(iii) WPAA(X,∞) is continuously embedded in WPAASp(X,∞).

In this work we use an axiomatic definition of the phase space B, which is similar
to the one introduce in ([20]). B is a vector space of functions mapping (−∞, 0]
into X endowed with a seminorm ‖ · ‖B such that the next axioms hold by ([33]).

(A1) If x : (−∞, σ + a) 7→ X, a > 0, σ ∈ R, is continuous on [σ, σ + a) and
xσ ∈ B, then for every t ∈ [σ, σ + a) the following hold:
(i) xt is in B;

(ii) ‖x(t)‖ ≤ H‖xt‖B;
(iii) ‖xt‖B ≤ K̃(t − σ) sup{‖x(s)‖ : σ ≤ s ≤ t} + M̃(t − σ)‖xσ‖B, where

H > 0 is a constant; K̃, M̃ : [0,∞) 7→ [1,∞), K̃ is continuous, M̃ is
locally bounded and H, K̃, M̃ are independent of x(·).
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(A1’) For the function x(·) appearing in (A1), the function t→ xt is continuous
from [σ, σ + a) into B.

(A2) The space B is complete.
(A3) If (ϕn)n∈N is a bounded sequence in BC((−∞, 0],X) given by functions

with compact support and ϕn → ϕ in the compact-open topology, then
ϕ ∈ B and ‖ϕn − ϕ‖B → 0 as n→∞.

Definition 2.24. [18] Let B0 = {ϕ ∈ B : ϕ(0) = 0} and S(t) : B → B be the
C0-semigroup defined by S(t)ϕ(θ) = ϕ(0) on [−t, 0] and S(t)ϕ(θ) = ϕ(t + θ) on
(−∞,−t]. The phase space B is called a fading memory space if ‖S(t)ϕ‖B → 0
as t → ∞ for every ϕ ∈ B0. We said that B is a uniform fading memory space if
‖S(t)‖L(B0) → 0 as t→∞.

Remark 2.25 ([18]). In this article we assume ς > 0 and ‖ϕ‖B ≤ ς supθ≤0 ‖ϕ (θ)‖
for each ϕ ∈ B ∩ BC((−∞, 0],X), see [20] for details. Moreover, if B is a fading
memory, we assume that max{K̃(t), M̃(t)} ≤ < for all t ≥ 0, see[20].

Lemma 2.26 ([20]). The phase B is a uniform fading memory space if, and only
if, axiom (A3) holds, the function K̃ is bounded and limt→∞ M̃(t) = 0.

3. Results on composition theorems

The aim of this section is to establish some new results on composition of
Stepanov-like weighted pseudo almost automorphic functions of class infinity. We
first list the following “uniform continuity condition” with respect to the Lp-norm
for a function h : R × X → X with h(·, u) ∈ LpLoc(R,X) for each u ∈ X, which was
initially adopted in [16]:

(A4) For any ε > 0, there exists σ > 0 such that x, y ∈ Lp(0, 1,X) and ‖x−y‖p <
σ imply that

‖h(t+ ·, x(·))− h(t+ ·, y(·))‖p < ε, t ∈ R.

In the sequel, we say that a function ψ satisfies (A4) if ψ replaces h in (A4).
Let f ∈ ASp(R×X,X), then for a sequence {sn} ⊂ R, there exist a subsequence

{τn} and a function g : R × X → X with g(·, x) ∈ Lploc(R,X), x ∈ X such that for
each t ∈ R,

lim
n→∞

‖f(t+ τn + ·, x)− g(t+ ·, x)‖p = lim
n→∞

‖g(t− τn + ·, x)− f(t+ ·, x)‖p = 0.

(A5) f ∈ ASp(R×X,X) satisfies (A4), and for a sequence {sn} ⊂ R, there exist
a subsequence {τn} and a function g given above such that g satisfies (A4).

Lemma 3.1 ([16]). Let h be the function in (A4), and x: R → X with x(R)
compact. For ε > 0, there exist a finite set {xk}mk=1 ⊂ x(R) such that

‖h(t+ ·, x(t+ ·))‖p < ε+m sup
1≤k≤m

‖h(t+ ·, xk)‖p, t ∈ R.

Lemma 3.2 ([33]). Let ρ ∈ U∞ and f ∈ BSp(X), then f b ∈ PAA0(Lp(0, 1,X), r, ρ)
if and only if for any ε > 0,

lim
T→∞

1
m(T, ρ)

∫
MT,ε(f)

ρ(t)dt = 0,



8 Y. K. CHANG, S. ZHENG EJDE-2016/286

where

MT,ε(f) =
{
t ∈ [−T, T ] : sup

θ∈[t−r,t]

(∫ θ+1

θ

‖f(s)‖pds
)1/p

≥ ε
}
.

Lemma 3.3 ([16]). Assume that f satisfies (A5) and x ∈ ASp(X) with x(R) com-
pact. Then f(·, x(·)) ∈ ASp(X).

Next, we give results in the compositions of Sp-weighted pseudo almost auto-
morphic functions of class r.

Theorem 3.4. Let ρ ∈ U∞, f = g + φ ∈ WPAASp(R × X,X, r), u = u1 +
u2 ∈ WPAASp(X, r), g ∈ ASp(R × X,X), φb ∈ PAA0(X, Lp(0, 1,X), r, ρ), u1 ∈
ASp(X), ub2 ∈ PAA0(Lp(0, 1,X), r, ρ), Q = {u1(t) : t ∈ R} compact and there exist
a continuous function Lf (·) : R→ [0,∞) satisfying(∫ t+1

t

‖f(s, x1)− f(s, x2)‖pds
)1/p

≤ Lf (t)‖x1 − x2‖. (3.1)

If ξb ∈ PAA0(R, Lp(0, 1,X), ρ), then

lim
T→∞

sup
1

m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
Lf (θ + ·)

)
ρ(t)dt <∞, (3.2)

lim
T→∞

1
m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
Lf (θ + ·)

)
ξ(t)ρ(t)dt <∞ . (3.3)

If
(i) g(t, x) satisfies (A5) and

(ii) φ satisfies (A4),
Then f(·, u(·)) ∈WPAASp(X, r).

Proof. Let G(t) = g (t, u1(t)), H(t) = f (t, u(t)) − f (t, u1(t)), Λ(t) = φ (t, u1(t)),
t ∈ R. Then

f(t, u(t)) = g (t, u1(t)) + f (t, u(t))− f (t, u1(t)) + φ (t, u1(t)) = G(t) +H(t) + Λ(t).

We have G(t) ∈ ASp(X) by Lemma 3.3, then it remains to show that Hb,Λb is in
PAA0(Lp(0, 1,X), r, ρ).

Indeed, for T > 0, using (3.1), we see that

1
m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]

(∫ θ+1

θ

‖H(s)‖pds
)1/p)

ρ(t)dt

=
1

m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]

(∫ θ+1

θ

‖f(t, u(t))− f(t.u1(t))‖pds
)1/p)

ρ(t)dt

≤ 1
m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
Lf (θ)‖u2(θ)‖

)
ρ(t)dt

≤ 1
m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
Lf (θ)

)(
sup

θ∈[t−r,t]

(∫ θ+1

θ

‖u2(s)‖pds
)1/p)

ρ(t)dt

=
1

m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
Lf (θ)

)(
sup

θ∈[t−r,t]
u2(θ + ·)

)
ρ(t)dt.

This implies that Hb(t) ∈ PAA0(Lp(0, 1,X), r, ρ) by (3.3).
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Next, we prove Λb ∈ PAA0(Lp(0, 1,X), r, ρ). For ε > 0, let σ be given by (A4)
with φ in the place of h, by Lemma 3.1, there is a finite set {xk}mk=1 ⊂ {u1(t), t ∈ R}
such that for t ∈ R,

‖φ(t+ ·, u1(t+ ·))‖p < ε+m sup
1≤k≤m

‖φ(t+ ·, xk)‖p.

Since φb ∈ PAA0(X, Lp(0, 1,X), r, ρ), for each x ∈ X, there is T > T0, 1 ≤ k ≤ m,

W(T, φb(·, xk), r, ρ) =
1

m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
‖φ(θ + ·, xk)‖p

)
ρ(t)dt <

ε

m
.

Then for T > T0,

W(T,Λb, r, ρ) =W(T,Λb(·, u1(·)), r, ρ)

=
1

m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
‖φ(θ + ·, u1(t+ ·))‖p

)
ρ(t)dt

≤ ε+m sup
1≤k≤m

1
m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
‖φ(θ + ·, xk)‖p

)
ρ(t)dt

= ε+mW(T, φb(·, xk), r, ρ)

= ε+m
ε

m
= 2ε.

This yields limT→∞W(T,Λb, r, ρ) = 0. That is Λb ∈ PAA0(Lp(0, 1,X), r, ρ). The
proof is complete. �

Theorem 3.5. Let ρ ∈ U∞, F = F1 + F2 ∈ WPAASp(R × X,X, r), φ =
φ1 + φ2 ∈WPAASp(X, r) with Q = {φ1(t) : t ∈ R} compact, F1 ∈ ASp(R×X,X),
F b2 ∈ PAA0 (X, Lp(0, 1,X), r, ρ), φ1 ∈ ASp(X), φb2 ∈ PAA0(Lp(0, 1,X), r, ρ). As-
sume that F1 satisfies (A5), F2 satisfies (A4) and {F (·, z) : z ∈ J} is bounded in
WPAASp(X, r) for any bounded J ⊂ X, then t→ F (t, φ(·)) ∈WPAASp(X, r).

Proof. Let Υ(t) = F1 (t, φ1(t)), Ψ(t) = F (t, φ(t))−F (t, φ1(t)), Φ(t) = F2 (t, φ1(t)),
t ∈ R. Then

F (t, φ(t)) = F1 (t, φ1(t))+F (t, φ(t))−F (t, φ1(t))+F2 (t, φ1(t)) = Υ(t)+Ψ(t)+Φ(t).

We have Υ(t) ∈ ASp(X) by Lemma 3.3, so we need only to prove Ψb,Φb ∈ PAA0(Lp

(0, 1,X), r, ρ).
It is easy to see that Ψ ∈ BSp(X) since φ and φ1 are bounded and {F (·, z) : z ∈ J}

is bounded in WPAASp(X, r) for any bounded J ⊂ X. Noticing that F satisfies
(A4) since F1 and F2 satisfies (A4), for ε > 0, let σ > 0 be given by (A4), then

‖Ψ(t+ ·)‖p = ‖F (t+ ·, φ(t+ ·))− F (t+ ·, φ1(t+ ·))‖p < ε,

for ‖φ2(t+·)‖p < σ, where φ2(s) = φ(s)−φ1(s). Hence, for each t ∈ R, ‖φ2(s)‖ < σ,
s ∈ [t, t+ 1] implies that(∫ t+1

t

‖Ψ(s)‖pds
)1/p

=
(∫ t+1

t

‖F (s, φ(s))− F (s, φ1(s))‖pds
)1/p

= ‖F (t+ ·, φ(t+ ·))− F (t+ ·, φ1(t+ ·))‖p < ε.

We can obtain

sup
θ∈[t−r,t]

(∫ θ+1

θ

‖Ψ(s)‖pds
)1/p
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= sup
θ∈[t−r,t]

(∫ θ+1

θ

‖F (s, φ(s))− F (s, φ1(s))‖pds
)1/p

< ε.

Let

MT,σ(φ2) =
{
t ∈ [−T, T ] : sup

θ∈[t−r,t]

(∫ θ+1

θ

‖φ2(s)‖pds
)1/p

≥ σ
}
.

So we obtain
MT,ε(φ2) = MT,ε(F (·,φ(·))−F (·,φ1(·))) ⊆MT,σ(φ2).

Since φb2 ∈ PAA0(Lp(0, 1,X), r, ρ) by Lemma 3.2, we obtain

lim
T→∞

∫
MT,σ(φ2)

ρ(t)dt = 0.

Thus

lim
T→∞

∫
MT,ε(Ψ)

ρ(t)dt = 0.

This shows that Ψb ∈ PAA0(Lp(0, 1,X), r, ρ).
For ε > 0, let σ be given by (A4) with F2 in the place of h, by Lemma 3.1, there

is a finite set {xk}mk=1 ⊂ {φ1(t) : t ∈ R} such that for t ∈ R

‖F2(t+ ·, φ1(t+ ·))‖p < ε+m sup
1≤k≤m

‖F2(t+ ·, xk)‖p.

Since F b2 ∈ PAA0(X, Lp(0, 1,X), r, ρ) for each x ∈ X, there is T > T0, 1 ≤ k ≤ m,

W(T, F b2 (·, xk), r, ρ) =
1

m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
‖F2(θ + ·, xk)‖p

)
ρ(t)dt <

ε

m
.

Then for T > T0,

W(T,Φb, r, ρ) =W(T, F b2 (·, φ1(·)), r, ρ)

=
1

m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
‖F2(θ + ·, φ1(t+ ·))‖p

)
ρ(t)dt

≤ ε+m sup
1≤k≤m

1
m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
‖φ(θ + ·, xk)‖p

)
ρ(t)dt

= ε+mW(T, F b2 (·, xk), r, ρ)

= ε+m
ε

m
= 2ε.

This implies limT→∞W(T,Φb, r, ρ) = 0. That is Φb ∈ PAA0(Lp(0, 1,X), r, ρ). The
proof is complete. �

Lemma 3.6 ([33]). Let u ∈ WPAA(X,∞) where ρ ∈ U∞. Assume that B is a
uniform fading memory space. Then the function t→ ut belongs to WPAA(B,∞).

Lemma 3.7 ([33]). Let ρ ∈ U∞, u ∈WPAASp(X,∞) and assume that B is a uni-
form fading memory space. Then the function t→ ut belongs to WPAASp(B,∞).

One of the consequence of Lemma 3.7 is the following modified version of The-
orems 3.4 and 3.5.



EJDE-2016/286 BOUNDED SOLUTIONS 11

Corollary 3.8. Let ρ ∈ U∞, f ∈WPAASp(R×X,X,∞) and u ∈WPAASp(X,∞).
Assume that the condition of (i) and (ii) in the Theorem 3.4 is satisfied and there
exists a continuous function L(·) : R→ [0,∞), such that (3.1) holds. If conditions
(3.2) and (3.3) hold for every r > 0, then the function f(t, u(t)) ∈WPAASp(X,∞).

Corollary 3.9. Let ρ ∈ U∞, F = F1 + F2 ∈ WPAASp(R × X,X,∞), φ = φ1 +
φ2 ∈ WPAASp(X,∞) with Q = {φ1(t) : t ∈ R} compact, F1 ∈ ASp(R × X,X),
F b2 ∈ PAA0 (X, Lp(0, 1,X),∞, ρ), φ1 ∈ ASp(X), φb2 ∈ PAA0(Lp(0, 1,X),∞, ρ).
Assume that F1 satisfies (A5), F2 satisfies (A4) and {F (·, z) : z ∈ J} is bounded in
WPAASp(X,∞) for any bounded J ⊂ X, then t→ F (t, φ(·)) ∈WPAASp(X,∞).

By Lemma 2.22 (iii) and Theorem 3.5, Lemma 2.23 (iii) and Corollary 3.9, we
have the following corollaries:

Corollary 3.10. Let ρ ∈ U∞, F = F1 + F2 ∈ WPAASp(R × X,X, r) and φ ∈
WPAA(X, r). Assume that F1 satisfies (A5), F2 satisfies (A4) and {F (·, z) : z ∈
J} is bounded in WPAASp(X, r) for any bounded J ⊂ X, then t → F (t, φ(·)) ∈
WPAASp(X, r).

Corollary 3.11. Let ρ ∈ U∞, F = F1 + F2 ∈ WPAASp(R × X,X,∞) and φ ∈
WPAA(X,∞). Assume that F1 satisfies (A5), F2 satisfies (A4) and {F (·, z) : z ∈
J} is bounded in WPAASp(X,∞) for any bounded J ⊂ X, then t → F (t, φ(·)) ∈
WPAASp(X,∞).

Corollary 3.12 ([33]). Let ρ ∈ U∞, f ∈WPAA(R×X,X,∞) and u ∈WPAA(X,
∞). Assume that the following conditions are satisfied

(i) There exist a constant L > 0 such that ‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖ for
all x, y ∈ X and t ∈ R.

(ii) g(t, x) is uniformly continuous in any bounded subset K ′ ⊂ X uniformly for
t ∈ R.

Then the function t→ f(t, u(t)) belongs to WPAA(X,∞).

4. Weighted pseudo almost automorphic mild solution

In this section, we study weighted pseudo almost automorphic mild solutions to
the neutral equation (1.1). We list the following basic assumptions:

(A6) The system

u′(t) = A(t)u(t), t ≥ s, u(s) = φ ∈ X.
has an associated evolution family of operators {U(t, s) : t ≥ s with t, s ∈
R}. Further, we assume that the domains of operators A(t) are constant
in t, that is, D(A(t)) = D = Y for all t ∈ R and that the evolution family
U(t, s) is asymptotically stable in the sense that there exist some constants
M, δ > 0 such that

‖U(t, s)‖ ≤Me−δ(t−s)

for all t, s ∈ R with t ≥ s.
(A7) The function s→ A(s)U(t, s) defined from (−∞, t) into L(R×Y) is strongly

measurable and there exist a nonincreasing function H : [0,∞) → [0,∞)
and δ > 0 with e−δsH(s) ∈ L1([0,∞)) such that

‖A(s)U(t, s)‖L(Y,X) ≤ e−δsH(t− s), t > s.
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(A8) g ∈ WPAASp(R,X,∞) and there exist a positive constant Lg such that
for ψi ∈ B, i = 1, 2, ‖g(t, ψ1)− g(t, ψ2)‖p ≤ Lg‖ψ1 − ψ2‖B.

(A9) f ∈ WPAA(R,X,∞) and there exist a positive constant Lf such that for
ψi ∈ B, i = 1, 2, ‖f(t, ψ1)− f(t, ψ2)‖ ≤ Lf‖ψ1 − ψ2‖B.

(A10) The series

∞∑
k=1

(∫ t−k+1

t−k
e−δq(t−s)Hq(t− s)ds

)1/q

converges, q > 1, and let K =
( ∫ t
−∞ e−δq(t−s)Hq(t− s)ds

)1/q

.

Let q > 1 such that 1
p + 1

q = 1. Denote

α0 = M
(eqδ−1

qδ

)1/q

, α = α0

∞∑
k=1

e−δk.

(A11) The function R× R 7→ X, (t, s) 7→ U(t, s)x ∈ bAA(R× R,Y) uniformly for
x ∈ X.

(A12) The function R×R 7→ X, (t, s) 7→ A(s)U(t, s)x ∈ bAA(R×R,X) uniformly
for x ∈ Y.

Definition 4.1 ([9]). A continuous function u : [σ, σ + a) → X, a > 0, is a mild
solution of neutral system (1.1) on [σ, σ+a), if the function s→ A(s)U(t, s)f(s, us)
is integrable on [σ, t) for every σ < t < σ + a, uσ = ϕ, and

u(t) = U(t, σ)(ϕ(0) + f(σ, ϕ))− f(t, ut)−
∫ t

σ

A(s)U(t, s)f(s, us)ds

+
∫ t

σ

U(t, s)g(s, us)ds, t ∈ [σ, σ + a).

Under assumptions (A6) and (A7), it can be easily shown that the function

u(t) = −f(t, ut) +
∫ t

−∞
U(t, s)g(s, us)ds−

∫ t

−∞
A(s)U(t, s)f(s, us)ds,

for each t ∈ R is a mild solution of (1.1).

Lemma 4.2 ([33]). Assume that conditions (A6), (A7), (A11) hold. Let ρ ∈ U∞
and u ∈WPAASp(X,∞), and

v(t) :=
∫ t

−∞
U(t, s)u(s)ds, t ∈ R.

Then v ∈WPAA(X,∞).

Lemma 4.3. Assume that conditions (A6), (A7), (A12) hold. Let ρ ∈ U∞ and
u ∈WPAASp(X,∞), and

v(t) :=
∫ t

−∞
A(s)U(t, s)u(s)ds, t ∈ R.

Then v ∈WPAA(X,∞).
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Proof. Since u ∈ WPAASp(X,∞), there exist functions ψ in ASp(X) and ωb in
PAA0(Lp(0, 1; X),∞, ρ) such that u = ψ + ω.

v(t) :=
∫ t

−∞
A(s)U(t, s)ψ(s)ds+

∫ t

−∞
A(s)U(t, s)ω(s)ds = x(t) + y(t).

To prove that v is a weighted pseudo almost automorphic function of class infinity,
we only need to verify x(t) ∈ AA(X) and y(t) ∈ PAA0(X,∞, ρ).

First, let us prove that x(t) ∈ AA(X). We consider for each n = 1, 2, · · · , the
integrals

xn(t) =
∫ t−n+1

t−n
A(σ)U(t, σ)ψ(σ)dσ.

Now, let us show that each xn(t) ∈ AA(X). Using the Hölder inequality and the
exponential dissipation property of the evolution family U(t, s), it follows that

‖xn(t)‖ ≤
∫ t−n+1

t−n
‖A(σ)U(t, σ)ψ(σ)‖dσ

≤
∫ t−n+1

t−n
‖A(σ)U(t, σ)‖‖ψ(σ)‖dσ

≤
∫ t−n+1

t−n
H(t− σ)e−δ(t−σ)‖ψ(σ)‖dσ

≤
(∫ t−n+1

t−n
e−δq(t−σ)Hq(t− σ)dσ

)1/q(∫ t−n+1

t−n
‖ψ(σ)‖p

)1/p

dσ

≤
(∫ t−n+1

t−n
e−δq(t−σ)Hq(t− σ)dσ

)1/q

‖ψ(σ)‖Sp .

Using the fact the series
∞∑
n=1

(∫ t−n+1

t−n
e−δq(t−σ)Hq(t− σ)dσ

)1/q

converges, we deduce from the well-known Weierstrass test that the series
∑∞
n=1

xn(t) is uniformly convergent on R. Let

x(t) =
∞∑
n=1

xn(t) for each t ∈ R.

Observe that

x(t) =
∫ t

−∞
A(s)U(t, s)ψ(s)ds t ∈ R.

Clearly, x(t) ∈ C(R,X) and

‖x(t)‖ ≤
∞∑
n=1

‖xn(t)‖ ≤
∞∑
n=1

(∫ t−n+1

t−n
e−δq(t−σ)Hq(t− σ)dσ

)1/q

‖ψ(σ)‖Sp .

Since ψ ∈ ASp(X) and A(s)U(t, s)x ∈ bAA(R,X), then for every sequence of
real numbers {sn}n∈N there exist a subsequence {sm}m∈N and a function ψ̃(·) ∈
Lploc(R,X) such that for each t ∈ R,

lim
m→∞

(∫ t+1

t

‖ψ(s+ sm)− ψ̃(s)‖pds
)1/p

= 0, (4.1)
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lim
m→∞

(∫ t+1

t

‖ψ̃(s− sm)− ψ(s)‖pds
)1/p

= 0, (4.2)

lim
n→∞

A(s+ sn)U(t+ sn, s+ sn)x = U ′(t, s)x, t, s ∈ R, x ∈ X, (4.3)

lim
n→∞

U ′(t− sn, s− sn)x = A(s)U(t, s)x, t, s ∈ R, x ∈ X. (4.4)

Let x̃n =
∫ t−n+1

t−n A(σ)U(t, σ)ψ̃(σ)dσ. Then using Hölder inequality, we have

‖xn(t+ sm)− x̃n(t)‖

=
∥∥ ∫ t−n+1

t−n
[A(σ + sm)U(t+ sm, σ + sm)ψ(σ + sm)−A(σ)U(t, σ)ψ̃(σ)]dσ

∥∥
≤
∥∥∥ ∫ t−n+1

t−n
A(σ + sm)U(t+ sm, σ + sm)(ψ(σ + sm)− ψ̃(σ))

∥∥∥
+
∥∥∥∫ t−n+1

t−n
[A(σ + sm)U(t+ sm, σ + sm)ψ̃(σ)−A(σ)U(t, σ)ψ̃(σ)]dσ

∥∥∥
= In(t) + Jn(t),

where

In(t) =
∥∥∥∫ t−n+1

t−n
A(σ + sm)U(t+ sm, σ + sm)(ψ(σ + sm)− ψ̃(σ))

∥∥∥,
Jn(t) =

∥∥∥∫ t−n+1

t−n
[A(σ + sm)U(t+ sm, σ + sm)−A(σ)U(t, σ)ψ̃(σ)]dσ

∥∥∥.
Then using the Hölder inequality, we obtain

In(t) ≤
∫ t−n+1

t−n
e−δ(t−σ)H(t− σ)‖ψ(σ + sm)− ψ̃(σ)‖dσ

≤
(∫ t−n+1

t−n
e−δq(t−σ)Hq(t− σ)dσ

)1/q(∫ t−n+1

t−n
‖ψ(σ + sm)− ψ̃(σ)‖pdσ

)1/p

.

Now using (4.1) it follows that In(t)→ 0 as m→∞ for each t ∈ R. Similarly, using
the Lebesgue Dominated convergence Theorem and (4.3) it follows that Jn(t)→ 0
as m→∞ for each t ∈ R. Now,

‖xn(t+ sm)− x̃n(t)‖ → 0, as m→∞.
Similarly, using (4.2) and (4.4), it can be shown that

‖x̃n(t− sm)− xn(t)‖ → 0, as m→∞.
Thus, we can conclude that each xn ∈ AA(X) and consequently their uniform limit
x(t) ∈ AA(X).

Next we verify that y(t) ∈ PAA0(X,∞, ρ). For each n=1,2· · · , we consider the
integral

yn(t) =
∫ t−n+1

t−n
‖A(t, s)U(t, s)‖ ‖ω(s)‖ds.

For this we have the following estimates:

sup
θ∈[t−r,t]

‖yn(θ)‖

≤ sup
θ∈[t−r,t]

∫ θ−n+1

θ−n
‖A(θ, s)U(θ, s)‖‖ω(s)‖ds
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≤ sup
θ∈[t−r,t]

∫ θ−n+1

θ−n
e−δ(θ−s)H(θ − s)‖ω(s)‖ds

≤
(∫ t−n+1

t−n
e−δq(t−s)Hq(t− s)ds

)1/q(
sup

θ∈[t−r,t]

∫ θ−n+1

θ−n
‖ω(s)‖pds)1/p

)
.

Then for r > 0, we see that

1
m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
‖yn((θ)‖

)
ρ(t)dt

≤ Z 1
m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]

(∫ θ−n+1

θ−n
‖ω(s)‖pds

)1/p)
ρ(t)dt,

where Z =
( ∫ t−n+1

t−n e−δq(t−s)Hq(t− s)ds
)1/q

.

Since ωb ∈ PAA0(Lp(0, 1,X),∞, ρ), we have yn(t) ∈ PAA0(X,∞, ρ) from above
inequality. Then we deduce from the Weierstrass test that the series

∑∞
n=1 yn(t) is

uniformly convergent on R, Moreover,

y(t) =
∫ t

−∞
A(t, s)U(t, s)ds =

∞∑
n=1

yn(t).

and clearly y(t) ∈ C(R,X) and

‖y(t)‖ ≤
∞∑
n=1

‖yn(t)‖ ≤
∞∑
n=1

Z‖ω‖Sp .

Applying yn ∈ PAA0(X,∞, ρ) and the inequality

1
m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
‖y(θ)‖

)
ρ(t)dt

≤ 1
m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
‖y(θ)−

n∑
k=1

yk(θ)‖
)
ρ(t)dt

+
∞∑
k=1

1
m(T, ρ)

∫ T

−T

(
sup

θ∈[t−r,t]
‖yk(θ)‖

)
ρ(t)dt.

We deduce that the uniformly limit y(·) =
∑∞
n=1 yn(t) ∈ PAA0(X,∞, ρ). Therefore

v(t) = x(t) + y(t) is weighted pseudo almost automorphic of class infinity. �

Theorem 4.4. If conditions (A6)–(A12) hold, then (1.1) admits a unique weighted
pseudo almost automorphic mild solution of class infinity provided that

Θ = ς
(
Lf + sup

t∈R

(∫ t

−∞
e−δq(t−s)Hq(t− s)ds

)1/q

Lf + αLg

)
< 1,

where ς is defined as in Remark (2.25).

Proof. Define F : WPAA(X,∞)→WPAA(X,∞) as

(Fu)(t) = −f(t, ut) +
∫ t

−∞
U(t, s)g(s, us)ds−

∫ t

−∞
A(s)U(t, s)f(s, us)ds.

If u ∈WPAA(X,∞) by Lemma 3.6 and Corollary 3.11, g(s, us) ∈WPAASp(X,∞).
By Lemma 3.6 and Corollary 3.12, f(s, us) ∈WPAA(X,∞). Owing to Lemma 4.2
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and Lemma 4.3, it is not difficult to see that F(WPAA(X,∞)) ⊆ WPAA(X,∞).
For any u, v ∈WPAA(X,∞), we have

‖(Fu)(t)− (Fv)(t)‖

=
∥∥∥− f(t, ut) +

∫ t

−∞
U(t, s)g(s, us)ds−

∫ t

−∞
A(s)U(t, s)f(s, us)ds

+ f(t, vt)−
∫ t

−∞
U(t, s)g(s, vs)ds+

∫ t

−∞
A(s)U(t, s)f(s, vs)ds

∥∥∥
≤ Lf‖vt − ut‖B +

∥∥∥∫ ∞
0

U(t, t− s)(g(t− s, ut−s)− g(t− s, vt−s))ds
∥∥∥

+
(∫ t

−∞
e−δq(t−s)Hq(t− s)ds

)1/q

Lf‖vt − ut‖B

≤ Lf‖vt − ut‖B +
(∫ t

−∞
e−δq(t−s)Hq(t− s)ds

)1/q

Lf‖vt − ut‖B

+M

∞∑
k=1

(∫ k

k−1

e−δqsds
)1/q(∫ k

k−1

‖g(s, us)− g(s, vs)‖pds
)1/p

= Lf‖vt − ut‖B +
(∫ t

−∞
e−δq(t−s)Hq(t− s)ds

)1/q

Lf‖vt − ut‖B

+ α0

∞∑
k=1

e−δk‖g(t+ k − 2 + ·, ut+k−2+·)− g(t+ k − 2 + ·, vt+k−2+·)‖p

= Lf‖vt − ut‖B +
(∫ t

−∞
e−δq(t−s)Hq(t− s)ds

)1/q

Lf‖vt − ut‖B

+ αLg‖ut+k−2+· − vt+k−2+·‖B

≤ ς
(
Lf + sup

t∈R

(∫ t

−∞
e−δq(t−s)Hq(t− s)ds

)1/q

Lf + αLg

)
‖u− v‖∞

= Θ‖u− v‖∞.

Consequently,

‖Fu−Fv‖∞ ≤ Θ‖u− v‖∞.

Then F is a contraction since Θ < 1. By the Banach contraction mapping principle,
F has a unique fixed point in WPAA(X,∞), which is the unique WPAA mild
solution to the problem. �

We end this paper with a simple example. Consider the first-order boundary-
value problem which was used in [8],

∂

∂t

[
u(t, ξ) +

∫ 0

−∞

∫ π

0

b(s, η, ξ)u(t+ s, η)dηds
]

=
∂2

∂ξ2
u(t, ξ) + a0(ξ)u(t, ξ) +

∫ 0

−∞
a(s)u(t+ s, ξ)ds,

u(0, t) = u(π, t) = 0,

(4.5)

for t ∈ R and ξ ∈ I = [0, π].
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Note that equations of type (4.5) arise in control systems described by abstract
retarded functional-differential equations with feedback control governed by pro-
portional integro-diffential law, see [18] for details.

To analize (4.5), we let X = L2([0, π]) and B = C((−∞, 0],X). In addition, we
suppose that the function a, a0, a1 are continuous and satisfy the following condi-
tions:

(i) The function b(·), ∂
i

∂ςi b(τ , η, ς), i=1,2, are (Lebesgue) measurable, b(τ, η, π) =
0, b(τ , η, 0) = 0 for every (τ, η) and

N1 = max
{∫ π

0

∫ 0

−∞

∫ π

0

( ∂i
∂ςi

b(τ, η, ς)
)2

dηdτdς : i = 0, 1, 2
}
<∞.

Define f, g : C((−∞, 0],X) by

f(t, ψ)(ξ) =
∫ 0

−∞

∫ π

0

b(s, η, ξ)ψ(s, η)dηds,

g(t, ψ)(ξ) = a0(ξ)u(t, ξ) +
∫ 0

−∞
a(s)ψ(s, ξ)ds.

In view of above arguments, it is clear that (4.5) can be rewritten in the abstract
form of (1.1). By direct estimation from (i), we can show that f takes values in
D(A) and that f(t, ·) : C((−∞, 0] : X)→ [D(A)] is a bounded linear operator with
‖Af(t, ·)‖ ≤ (N1p)

1
2 for each t ∈ R. Furthermore, g is a bounded linear operator

on X with

g(t, ·) ≤ ‖a0‖∞ +
(
p
(∫ 0

−∞
a2(s)ds

))1/2

,

for every t ∈ R.
As a consequence of Theorem 4.4, system (4.5) has a unique weighted pseudo

almost automorphic mild solution of class infinity whenever

2
√
N1p+ ‖a0‖∞ +

(
p
(∫ 0

−∞
a2(s)ds

))1/2

< 1.
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