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MULTIPLE SOLUTIONS FOR BIHARMONIC ELLIPTIC
PROBLEMS WITH THE SECOND HESSIAN

FEI FANG, CHAO JI, BINLIN ZHANG

Abstract. In this article, we study the biharmonic elliptic problem with the
secondnd Hessian

∆2u = S2(D2u) + λf(x)|u|p−1u, in Ω ⊂ R3,

u =
∂u

∂n
= 0, on ∂Ω,

where f(x) ∈ C(Ω̄) is a sign-changing weight function. By using variational
methods and some properties of the Nehari manifold, we prove that the bihar-

monic elliptic problem has at least two nontrivial solutions.

1. Introduction

Let Ω be a bounded domain in R3, 0 < p < 1. In this work, we consider the
problem

∆2u = S2(D2u) + λf(x)|u|p−1u, in Ω,

u =
∂u

∂n
= 0, on ∂Ω,

(1.1)

where f(x) ∈ C(Ω̄) is a sign-changing weight function,

S2(D2u)(x) =
∑

1≤i<j≤N

λi(x)λj(x),

λi, (i = 1, · · · , N) are the solutions of the equation

det(λI −D2u(x)) = 0,

and ∆2 the bi-Laplacian operator.
The case N = 2 appears as the stationary part of a model of epitaxial growth of

crystals (see [6, 15]) initially studied in [7]. In dimension N = 3 the model can be
seen as the stationary part of a 3-dimensional growth problem driven by the scalar
curvature.

For the case n = 2, the equation is expressed by the formula

∆2u = det(D2u) + λf(x)u, in Ω ⊂ R2. (1.2)

In this case, (1.2) was studied by Escudero and Peral [7]. For a Dirichlet bound-
ary condition, they used variational methods to prove that (1.2) has at least two
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solutions. However under the Navier boundary condition, (1.2) does not have a
variational characteristic, so the authors used fixed point arguments to obtain ex-
istence of solutions.

For the evolution formula of problem (1.2), Escudero, Gazzola, and Peral [9]
proved existence of local solutions for arbitrary data and existence of global so-
lutions for small data. Moreover, by exploiting the boundary conditions and the
variational structure of the equation, according to the size of the data the authors
proved finite time blow-up of the solution and (or) convergence to a stationary
solution for global solutions.

For problem (1.1), Ferrari, Medina and Peral [12] obtained the following results
for f(x) ≡ 1:

(1) If p < 1 there exists a λ0 > 0 such that if 0 < λ < λ0, problem (1.1) has at
least two nontrivial solutions.

(2) If p > 1 problem (1.1) has at least one nontrivial solution for every λ ≥ 0.
(3) If p = 1 problem (1.1) has at least one nontrivial solution whenever 0 <

λ < λ1, where λ1 denotes the first eigenvalue of ∆2 in Ω with Dirichlet
boundary conditions.

In the high dimensional case, Escudero and Torres [11] proved the existence of
radial solutions for the problem

∆2u = (−1)kSk[u] + λf(x), in B1(0) ⊂ RN ,

provided either with Dirichlet boundary conditions or Navier boundary conditions,
where the k-Hessian Sk[u] is the k-th elementary symmetric polynomial of eigen-
values of the Hessian matrix.

We can state now the following result.

Theorem 1.1. Let 0 < p < 1. There exists λ0 > 0 such that for each λ ∈ (0, λ0),
problem (1.1) has at least two nontrivial solutions.

As in [12], we will use variational methods and some properties of the Nehari
manifold to obtain two nontrivial solutions. For a study on variational methods and
their applications, we refer the reader to [4, 17, 18, 20, 21]. The Nehari manifold
was introduced by Nehari in [19] and has been widely used; see [1, 2, 3, 13, 14, 16,
22, 23, 24, 25].

The main idea for the proof or theorem 1.1 is dividing the Nehari manifold into
two parts and then considering the minimum of the functional on each part. This
article is organized as follows. In Section 2, we give some preliminary lemmas. In
Section 3, we present the proof of Theorem 1.1.

2. Preliminaries

To use variational methods and some properties of the Nehari manifold, we firstly
define the corresponding functional and Nehari manifold with respect to problem
(1.1). The energy functional for problem (1.1) is

I(u) =
1
2

∫
Ω

|∆u|2dx−
∫

Ω

∑
1≤i<j≤N

∂iju∂iu∂ju dx−
λ

p+ 1

∫
Ω

f(x)|u|p+1dx, (2.1)
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u ∈W 2,2
0 (Ω). From [12], we know that

(I ′(u), v) =
∫

Ω

∆u∆v dx−
∫

Ω

∑
1≤i<j≤N

(∂iu∂ju∂ijv + ∂ju∂iju∂iv + ∂iu∂jiu∂jv) dx

−
∫

Ω

λf(x)|u|pv

J(u) = (I ′(u), u) =
∫

Ω

|∆u|2dx− 3
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx−
∫

Ω

λf(x)|u|p+1dx,

(J ′(u), u) = 2
∫

Ω

|∆u|2dx− 9
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx− (p+ 1)
∫

Ω

λf(x)|u|p+1dx.

As the energy functional I is not bounded on W 2,2
0 (Ω), it is useful to consider the

functional on the Nehari manifold

N = {u : (I ′(u), u) = 0}.

Furthermore, we consider the minimization problem: for λ > 0

α = inf{I(u) : u ∈ N}.

The Nehari manifold N can be split three parts:

N+ = {u : (J ′(u), u) > 0}, N 0 = {u : (J ′(u), u) = 0}N− = {u : (J ′(u), u) < 0}.

Lemma 2.1. There exists λ1 > 0 such that for each λ ∈ (0, λ1), N 0 = ∅

Proof. We consider the following two cases.

Case 1. Assume that u ∈ N and
∫

Ω
λf(x)|u|p+1dx = 0. This implies

(I ′(u), u) =
∫

Ω

|∆u|2dx− 3
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx = 0.

Hence,

(J ′(u), u) = −
∫

Ω

|∆u|2dx < 0

and so u 6∈ N 0

Case 2. u ∈ N and
∫

Ω
λf(x)|u|p+1dx 6= 0. Assume that N 0 6= ∅ for all λ > 0. If

u ∈ N 0, then

0 = (J ′(u), u) = 2
∫

Ω

|∆u|2dx− 9
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx

− (p+ 1)
∫

Ω

λf(x)|u|p+1dx

= (1− p)
∫

Ω

|∆u|2dx− (6− 3p)
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx.

(2.2)

Therefore, ∫
Ω

|∆u|2dx =
(6− 3p)
(1− p)

∫
Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx, (2.3)
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λf(x)|u|p+1dx =
∫

Ω

|∆u|2dx− 3
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx

=
3

1− p

∫
Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx.

(2.4)

Moreover, using Hölder’s inequality, one has

1
(2− p)

∫
Ω

|∆u|2dx =
∫

Ω

|∆u|2dx− 3
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx

= λ

∫
Ω

f(x)|u|p+1dx ≤ λ‖f‖Lm‖u‖p+1
1+q

≤ λ‖f‖LmSp+1
(∫

Ω

|∆u|2dx
) p+1

2
,

(2.5)

where m = 1+q
q−p (so the conjugate index m′ = 1+q

p+1 ), q + 1 < 2N
N−4 . By (2.5), we

have (∫
Ω

|∆u|2dx
) 1−p

2 ≤ λ(2− p)‖f‖LmSp+1. (2.6)

or (∫
Ω

|∆u|2dx
)
≤
(
λ(2− p)‖f‖LmSp+1

) 2
p−1 .

Define the following functional on W 2,2
0 (Ω),

A(u) = K(p, q)
[ (

∫
Ω
|∆u|2dx)q∫

Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx

] 1
q−1 −

∫
Ω

λf(x)|u|p+1dx,

where

K(p, q) =
3

1− p

( 1− p
6− 3p

) q
q−1

.

Then by (2.3) and (2.4), we have A(u) = 0.
On the other hand, for u ∈W 2,2

0 (Ω), we have∫
Ω

∑
1≤i<j≤N

∂iju∂iu∂ju dx ≤ C
(∫

Ω

|∆u|2dx
)1/2(∫

Ω

|∇u|4dx
)1/2

≤ C
(∫

Ω

|∆u|2dx
)3/2

(2.7)

Then using (2.5), (2.6), the Holder inequality and Sobolev inequality, for u ∈ N 0,
we deduce

A(u) ≥ K(p, q)
[ ( ∫

Ω
|∆u|2dx

)q∫
Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx

] 1
q−1 − λ‖f‖Lm‖u‖p+1

1+q

≥ K(p, q)
[ ( ∫

Ω
|∆u|2dx

)q
C
( ∫

Ω
|∆u|2dx

)3/2 ] 1
q−1 − Cλ‖f‖Lm

(∫
Ω

|∆u|2dx
) p+1

2

≥
(∫

Ω

|∆u|2dx
) p+1

2
[
K(p, q)

(∫
Ω

|∆u|2dx
) q−2−pq+p

2(q−1) − Cλ‖f‖Lm

]
≥
(∫

Ω

|∆u|2dx
) p+1

2
[
K(p, q)

(
(λ(2− p)‖f‖LmSp+1)

2
p−1

) q(1−p)+p−2
2(q−1)
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− Cλ‖f‖Lm

]
.

Since
q(1− p) + p− 2

2(q − 1)
· 2
p− 1

< 0,

for λ sufficiently small, we have A(u) > 0. This contradicts A(u) = 0. Hence we
can conclude that there exits λ1 > 0 such that for λ ∈ (0, λ1), N 0 = ∅. �

Lemma 2.2. If u ∈ N+, then
∫

Ω
λf(x)|u|p+1dx > 0.

Proof. For u ∈ N+, we have∫
Ω

|∆u|2dx− 3
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx−
∫

Ω

λf(x)|u|p+1dx = 0,

2
∫

Ω

|∆u|2dx− 9
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx− (p+ 1)
∫

Ω

λf(x)|u|p+1dx > 0.

Combining the above two formulas, we have

(2− p)
∫

Ω

λf(x)|u|p+1dx >

∫
Ω

|∆u|2dx > 0.

This completes the proof. �

According to Lemma 2.2, for λ ∈ (0, λ1), we can write N = N+∪N− and define

α+ = inf
u∈N+

I(u), α− = inf
u∈N−

I(u).

Next we show that the minimizers on N are the critical points for I. We denote
the dual space of W 2,2

0 (Ω) by
(
W 2,2

0 (Ω)
)∗.

Lemma 2.3. For λ ∈ (0, λ1), if u0 is a local minimizer for I(u) on N , then
I ′(u0) = 0 in

(
(W 2,2

0 (Ω)
)∗.

Proof. If u0 is a local minimizer for I(u) on N , then u0 is a solution of the opti-
mization problem

minimize I(u) subject to J(u) = 0.
Hence, by the theory of Lagrange multipliers, there exists θ ∈ R such that

I ′(u0) = θJ ′(u0) in
(
W 2,2

0 (Ω)
)∗

Thus,
(I ′(u0), u0) = θ(J ′(u0), u0). (2.8)

Since u0 ∈ N , (I ′(u0), u0) = 0. Moreover, since N = ∅, (J ′(u0), u0) 6= 0 and by
(2.8), θ = 0. This completes the proof. �

For u ∈W 2,2
0 (Ω), we write

tmax =
(1− p)

∫
Ω
|∆u|2dx

(6− 3p)
∫

Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx

.

Lemma 2.4. (1) If
∫

Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx < 0 (≥ 0), then there exits a

unique t− > 0 (t+ > 0) such that t−u ∈ N+ (t+u ∈ N−) and I(t−u) =
mint>0 I(tu) (I(t−u) = maxt>0 I(tu));

(2) t−(u) is a continuous function for nonzero u;
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(3)

N+ =
{
u ∈W 2,2

0 (Ω) \ {0} : t−
( u

‖u‖

) 1
‖u‖

= 1
}
.

Proof. (1) We firstly define

i(t) := I(tu) =
t2

2

∫
Ω

|∆u|2dx− t3
∫

Ω

∑
1≤i<j≤N

∂iju∂iu∂ju dx

− tp+1

∫
Ω

λf(x)
p+ 1

|u|p+1dx .

(2.9)

We easily compute

i′(t) := I ′(tu) = t

∫
Ω

|∆u|2dx− 3t2
∫

Ω

∑
1≤i<j≤N

∂iju∂iu∂ju dx

− tp
∫

Ω

λf(x)|u|p+1dx

(2.10)

and
(I ′(tu), tu)

= t2
∫

Ω

|∆u|2dx− 3t3
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx− tp+1

∫
Ω

λf(x)|u|p+1dx

= ti′(t)

(2.11)

We distinguish the following two cases.
Case i.

∫
Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx < 0. In this case, i(t) is convex and achieves

its minimum at t− and t− 6= 0. Thus, using (2.9) and (2.11), we obtain t−u ∈ N+

and
I ′′(t) > 0 for t = t−.

Case ii.
∫

Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx > 0. Let

s(t) = t1−p
∫

Ω

|∆u|2dx− 3t2−p
∫

Ω

∑
1≤i<j≤N

∂iju∂iu∂ju dx.

It is easy to show that s(0) = 0, s(t)→ −∞ as t→ +∞ is convex and achieves its
maximum at

tmax =
(1− p)

∫
Ω
|∆u|2dx

(6− 3p)
∫

Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx

.

Then, using (2.7) we obtain

s(tmax)

= s(t)

=
( (1− p)

∫
Ω
|∆u|2dx

(6− 3p)
∫

Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx

)1−p ∫
Ω

|∆u|2dx

− 3
( (1− p)

∫
Ω
|∆u|2dx

(6− 3p)
∫

Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx

)2−p ∫
Ω

∑
1≤i<j≤N

∂iju∂iu∂ju dx.
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= (3p− 2)
∫

Ω

|∆u|2dx
( (1− p)

∫
Ω
|∆u|2dx

(6− 3p)
∫

Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx

)1−p

≥ C1

(∫
Ω

|∆u|2dx
) 1+p

2
.

From the above inequality, there exists a λ0 such that for λ ∈ (0, λ0) small,

s(0) = 0 < λ

∫
Ω

f(x)|u|p+1dx

= λ

∫
Ω

f(x)|u|p+1dx ≤ λ‖f‖Lm‖u‖p+1
1+q

≤ λ‖f‖LmSp+1
(∫

Ω

|∆u|2dx
) p+1

2 ≤ s(tmax).

(2.12)

where m = 1+q
q−p (so the conjugate index m′ = 1+q

p+1 ), q + 1 < 2N
N−4 .

Using (2.12), we easily deduce that there are unique values t+ and t− such that
0 < t+ < tmax < t−,

s(t+) = λ

∫
Ω

f(x)|u|p+1dx = s(t−),

s′(t+) > 0 > s′(t−).

We have t+u ∈ N+, t−u ∈ N−, and I(t−u) ≥ I(tu) ≥ I(t+u) for each t ∈ [t+, t−]
and I(t+u) ≤ I(tu) for each t ∈ [0, t+]. Thus

I(t−u) = max
t≥tmax

I(tu), I(t+u) = min
0≤t≤t−

I(tu).

In this case, i(t) is concave and achieves its maximum at t+ and t+ 6= 0. Thus,
using (2.9) and (2.11), we obtain t+u ∈ N− and

I ′′(t) < 0 for t = t+.

(2) By the uniqueness of t−(u) and the external property of t−(u), we have that
t−(u) is a continuous function of u 6= 0.

(3) For u ∈ N+, let v = u
‖u‖ . Using the discussion (1), there exists an t− >

0 such that t−v ∈ N+, that is t−
(

u
‖u‖

)
u
‖u‖ ∈ N

+. Since u ∈ N+, we obtain

t−
(
u
‖u‖
)

1
‖u‖ = 1. This shows that

N+ ⊂
{
u ∈W 2,2

0 (Ω) \ {0} : t−
( u

‖u‖

) 1
‖u‖

= 1
}
.

Conversely, let u ∈W 2,2
0 (Ω) \ {0} such that t−

(
u
‖u‖

)
1
‖u‖ = 1, then

t−
( u

‖u‖

) u

‖u‖
∈ N+.

Hence,

N+ =
{
u ∈W 2,2

0 (Ω) \ {0} : t−
( u

‖u‖

) 1
‖u‖

= 1
}
.

�
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Now we consider the degenerate equation

∆2u = S2(D2u), in Ω,

u =
∂u

∂n
= 0, on ∂Ω.

(2.13)

The functional corresponding to (2.13) is

H(u) =
1
2

∫
Ω

|∆u|2dx−
∫

Ω

∑
1≤i<j≤N

∂iju∂iu∂ju dx .

We consider the minimization problem

β = inf{H(u) : u ∈ N},

where N = {u : u ∈ W 2,2
0 (Ω) \ {0} : (H ′(u), u) = 0}. Next we show that problem

(2.13) has a nontrivial solution ω0 such that H(ω0) = β > 0.

Lemma 2.5. For any u ∈ W 2,2
0 (Ω) \ {0}, there exits an unique t(u) > 0 such

t(u)u ∈ N . The maximum of H(tu) for t ≥ 0 is achieved at t = t(u). The function

W 2,2
0 (Ω)\{0} → (0,+∞) : u→ t(u)

is continuous and defines a homeomorphism of the unit sphere of W 2,2
0 (Ω) with N .

Proof. Let u ∈ W 2,2
0 (Ω)\{0} be fixed and define the function g(t) := H(tu) on

[0,∞). Obviously, we obtain

g′(t) = 0⇔ tu ∈ N (2.14)

⇔
∫

Ω

|∆u|2dx = 3t
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx = 0. (2.15)

If for all u ∈ W 2,2
0 (Ω), it holds

∫
Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx ≤ 0, then 0 is an

unique critical point of H(u). And if
∫

Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx > 0, using the

mountain pass theorem, we can show that H(u) has a nontrivial critical point. So
for each u ∈ W 2,2

0 (Ω)\{0}, it is easy to verify that g(0) = 0 and g(t) > 0 for
t > 0 small and g(t) < 0 for t > 0 large. Therefore max[0,∞) g(t) is achieved at
an unique t = t(u) such that g′(t(u)) = 0 and t(u)u ∈ N . To prove the continuity
of t(u), assume that un → u in W 2,2

0 (Ω)\{0}. It is easy to verify that {t(un)} is
bounded. If a subsequence of {t(un)} converges to t0, it follows from (2.14) that
t0 = t(u), but then t(un)→ t(u). Finally the continuous map from the unit sphere
of W 2,2

0 (Ω)\{0} → N , u→ t(u)u, is inverse of the retraction u→ u
‖u‖a

. �

Define

c1 := inf
u∈W 2,2

0 (Ω)\{0}
max
t≥0

H(tu), c := inf
r∈Γ

max
t∈[0,1]

H(γ(tu)),

where
Γ :=

{
γ ∈ C[0, 1],W 2,2

0 (Ω) : γ(0) = 0, H(γ(1)) < 0
}
.

Lemma 2.6. c1 = c = β > 0 and c is a critical value of H(u).

Proof. From Lemma 2.5, we easily know that β = c1. Since H(tu) < 0 for u ∈
W 2,2

0 (Ω)\{0} and t large, we have c ≤ c1. The manifold N separates W 2,2
0 (Ω)

into two components. The component containing the origin also contains a small
ball around the origin. Moreover H(u) ≥ 0 for all u in this component, because
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(H(tu), u) ≥ 0 for all 0 ≥ t ≥ t(u). Thus every γ ∈ Γ has to cross N and β ≤ c.
Since the embedding W 2,2

0 (Ω) ↪→ Lm(Ω) (m < 2∗) is compact, it is easy to prove
that c > 0 is a critical value of H(u) and ω0 a nontrivial solution corresponding to
c. �

Lemma 2.7. (1) There exist t̂ > 0 such that

α ≤ α+ <
p− 1
6p+ 6

t̂2β < 0.

(2) I(u) is coercive and bounded below on N for λ sufficiently small.

Proof. (1) Let ω0 be a nontrivial solution of problem (2.13)) such that H(ω0) =
β > 0. Then ∫

Ω

|∆ω0|2dx− 3
∫

Ω

∑
1≤i<j≤N

∂iω0∂jω0∂ijω0dx = 0.

Set t̂ = t+(Ω) as defined by Lemma 2.4. Hence t̂ω0 ∈ N+ and

I(t̂ω0) =
t̂2

2

∫
Ω

|∆ω0|2dx− t̂3
∫

Ω

∑
1≤i<j≤N

∂ijω0∂iω0∂jω0dx

− t̂p+1

∫
Ω

λf(x)
p+ 1

|ω0|p+1dx

=
(1

2
− 1
p+ 1

)
t̂2
∫

Ω

|∆ω0|2dx

+
( 3
p+ 1

− 1
)
t̂3
∫

Ω

∑
1≤i<j≤N

∂ijω0∂iω0∂jω0dx

<
p− 1
6p+ 6

t̂2β.

(2.16)

This yields

α ≤ α+ <
p− 1
6p+ 6

t̂2β < 0.

(2) For u ∈ N , we have

J(u) = (I ′(u), u)

=
∫

Ω

|∆u|2dx− 3
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx− λ
∫

Ω

f(x)|u|p+1dx = 0.

Then by Hölder and Young inequalities,

I(u) =
1
2

∫
Ω

|∆u|2dx−
∫

Ω

∑
1≤i<j≤N

∂iju∂iu∂ju dx−
λ

p+ 1

∫
Ω

f(x)|u|p+1dx

=
1
6

∫
Ω

|∆u|2dx−
( λ

p+ 1
− λ

3
) ∫

Ω

f(x)|u|p+1dx

≥ 1
6

∫
Ω

|∆u|2dx−
( λ

p+ 1
− λ

3
)
‖f‖LmSp+1

(∫
Ω

|∆u|2dx
) p+1

2

≥
(1

6
− 2λ(2− p)

3(p+ 1)2

)∫
Ω

|∆u|2dx− λ(2− p)
3(p+ 1)

(
‖f‖LmSp+1

) 2
1−p .

(2.17)
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In (2.17), since p < 1, for λ small, we have I(u) > 0 on N . So we easily know that
I(u) is coercive and bounded below on N for λ sufficiently small. �

3. Proof of Theorem 1.1

We need the following lemmas.

Lemma 3.1. For each u ∈ N , there exist ε > 0 and a differentiable function
ξ : B(0, ε) ⊂W 2,2

0 (Ω)→ R+ such that ξ(0) = 1, the function ξ(v)(u− v) ∈ N and

(ξ′(0), v)

=
2
∫

Ω
|∆u|2dx− 9

∫
Ω

∑
1≤i<j≤N ∂iu∂ju∂iju dx− λ(p+ 1)

∫
Ω
f(x)|u|p+1dx

(1− p)
∫

Ω
|∆u|2dx− (6− 3p)

∫
Ω

∑
1≤i<j≤N ∂iu∂ju∂iju dx

,

for all v ∈W 2,2
0 (Ω)

Proof. For u ∈ N , define a function by F : R×W 2,2
0 (Ω)→ R by

Fu(ξ, ω)

= (I(ξ(u− ω), ξ(u− ω)))

= ξ2

∫
Ω

|∆(u− ω)|2dx− 3ξ3

∫
Ω

∑
1≤i<j≤N

∂i(u− ω)∂j(u− ω)∂ij(u− ω)dx

− λξp+1

∫
Ω

f(x)|(u− ω)|p+1dx.

(3.1)

Then Fu(1, 0) = (I ′(u), u) = 0 and

d

dt
Fu(1, 0) = 2

∫
Ω

|∆u|2dx− 9
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx

− λ(p+ 1)
∫

Ω

f(x)|u|p+1dx.

= (1− p)
∫

Ω

|∆u|2dx− (6− 3p)
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx 6= 0.

(3.2)

According to the implicit function theorem, there exist ε > 0 and a differentiable
function ξ : B(0, ε) ⊂W 2,2

0 (Ω)→ R+ such that ξ(0) = 1 and

(ξ′(0), v)

=
2
∫

Ω
|∆u|2dx− 9

∫
Ω

∑
1≤i<j≤N ∂iu∂ju∂iju dx− λ(p+ 1)

∫
Ω
f(x)|u|p+1dx

(1− p)
∫

Ω
|∆u|2dx− (6− 3p)

∫
Ω

∑
1≤i<j≤N ∂iu∂ju∂iju dx

and
Fu(ξ(v), v) = 0 for all v ∈ B(0, ε);

that is, ξ(v)(u− v) ∈ N . �

Similarity, we have the following result.

Lemma 3.2. For each u ∈ N−, there exist ε > 0 and a differentiable function
ξ− : B(0, ε) ⊂W 2,2

0 (Ω)→ R+ such that ξ−(0) = 1, the function ξ−(v)(u−v) ∈ N−
and

(ξ′(0), v)
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=
2
∫

Ω
|∆u|2dx− 9

∫
Ω

∑
1≤i<j≤N ∂iu∂ju∂iju dx− λ(p+ 1)

∫
Ω
f(x)|u|p+1dx

(1− p)
∫

Ω
|∆u|2dx− (6− 3p)

∫
Ω

∑
1≤i<j≤N ∂iu∂ju∂iju dx

,

for all v ∈W 2,2
0 (Ω).

Proof. As in the proof in Lemma 3.1, there exist ε > 0 and a differentiable function
ξ− : B(0, ε) ⊂ W 2,2

0 (Ω) → R+ such that ξ0 = 1 and ξ−(v)(u − v) ∈ N for all
v ∈ B(0, ε). Since

(J ′(u), u) = (1− p)
∫

Ω

|∆u|2dx− (6− 3p)
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx < 0.

Thus, by the continuity of the function J ′(u) and ξ−, we have

(J ′(ξ−(v)(u− v)), ξ−(v)(u− v))

= (1− p)
∫

Ω

|∆
(
ξ−(v)(u− v)

)
|2dx

− (6− 3p)
∫

Ω

∑
1≤i<j≤N

∂i
(
ξ−(v)(u− v)

)
∂j
(
ξ−(v)(u− v)

)
× ∂ij

(
ξ−(v)(u− v)

)
dx < 0.

(3.3)

For ε sufficiently small, this implies ξ−(v)(u− v) ∈ N−. �

Lemma 3.3. Let λ0 = inf{λ1, λ2}.
(1) There exists a minimizing sequences {un} ⊂ N such that

I(un) = α+ o(1), I ′(un) = o(1) for
(
W 2,2

0 (Ω)
)∗
. (3.4)

(2) There exists a minimizing sequences {un} ⊂ N− such that

I(un) = α− + o(1), I ′(un) = o(1) for
(
W 2,2

0 (Ω)
)∗
. (3.5)

Proof. Using Lemma 2.7 and Ekeland variational principle [5], there exists a mini-
mizing sequence {un} ⊂ N such that

I(un) < α+
1
n
, (3.6)

I(un) < I(ω) +
1
n
‖ω − un‖ for each ω ∈ N . (3.7)

By taking n enough large, from Lemma 2.7 (1), we have

I(un) =
1
2

∫
Ω

|∆un|2dx−
(2− p)λ
p+ 1

∫
Ω

f(x)|un|p+1dx

< α+
1
n
<

p− 1
6p+ 6

t̂2β < 0.
(3.8)

This implies

‖f‖LmSp+1
(∫

Ω

|∆un|2dx
) p+1

2 ≥
∫

Ω

f(x)|un|p+1dx >
1− p

6λ(2− p)
t̂2β. (3.9)

Consequently un 6= 0 and combining the above two estimates and the Holder in-
equality, we obtain∫

Ω

|∆un|2dx >
[ 1− p

6λ(2− p)
t̂2β‖f‖−1

LmS
−p−1

] 2
p+1

, (3.10)
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Ω

|∆un|2dx <
[ (4− 2p)λ

(p+ 1)
‖f‖LmSp+1

] 2
1−p

. (3.11)

Next we show that

‖I ′(un)‖(W 2,2
0 (Ω))∗ → 0 as n→ +∞.

Applying Lemma 3.1 with un to obtain the function ξn : B(0, εn) ⊂W 2,2
0 (Ω)→ R+

for some εn > 0, such that ξn(ω)(un−ω) ∈ N . Choose 0 < ρ < εn. Let u ∈W 2,2
0 (Ω)

with u 6≡ 0 and let ωρ = ρu
‖u‖ . We set ηρ = ξn(ξρ)(u−ωρ). Since ηρ ∈ N , we deduce

that from (3.7) that

I(ηρ)− I(un) ≥ − 1
n
‖ηρ − un‖,

and by the mean value theorem, we have

(I ′(un), ηρ − un) + o(‖ηρ − un‖ ≥
−1
n
‖ηρ − un‖). (3.12)

Thus
(I ′(un),−ωρ) + (ξn(ωρ)− 1)(I ′(un), (un − ωρ))

≥ − 1
n
‖ηρ − un‖+ o(‖ηρ − un‖).

(3.13)

It follows from (ξn(ωρ))(un − ωρ) ∈ N and (3.13) that

− ρ
(
I ′(un),

u

‖u‖
)

+ (ξn(ωρ)− 1)(I ′(un)− I ′(ηρ), (un − ωρ))

≥ − 1
n
‖ηρ − un‖+ o(‖ηρ − un‖).

(3.14)

Thus (
I ′(un),

u

‖u‖
)
≤ (ξn(ωρ)− 1)

ρ
(I ′(un)− I ′(ηρ), (un − ωρ))

+
1
nρ
‖ηρ − un‖+

o(‖ηρ − un‖)
ρ

.

(3.15)

Since ‖ηρ − un‖ ≤ |ξn(ωρ − 1)|‖un‖+ ρ|ξn(ωρ)| and

lim
ρ→0

|ξn(ωρ − 1)|
ρ

≤ ‖ξ′n(0)‖.

If we let ρ→ 0 in (3.15) for a fixed n, then by (3.11) we can find a constant C > 0,
independent of ρ, such that(

I ′(un),
u

‖u‖
)
≤ C

n
(1 + ‖ξ′n(0)‖). (3.16)

We are done once we show that ‖ξ′n(0)‖ is uniformly bounded in n. By (3.11) and
Lemma 3.1 and Hölder inequality, we have

(ξ′(0), v) =
b‖v‖∣∣(1− p) ∫

Ω
|∆u|2dx− (6− 3p)

∫
Ω

∑
1≤i<j≤N ∂iu∂ju∂iju dx

∣∣ ,
for some b > 0. We only need to show that∣∣∣(1− p)∫

Ω

|∆u|2dx− (6− 3p)
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx
∣∣∣ > 0, (3.17)
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for some c > 0 and n large enough. We argue by contradiction. Assume that there
exists a subsequence {un} such that

(1− p)
∫

Ω

|∆u|2dx− (6− 3p)
∫

Ω

∑
1≤i<j≤N

∂iu∂ju∂iju dx = o(1). (3.18)

Using (2.7), (3.18) and (3.10), we can find a constant d > 0 such that∣∣∣ ∫
Ω

∑
1≤i<j≤N

∂iun∂jun∂ijundx
∣∣∣ ≥ d (3.19)

for n sufficiently large. In addition (3.18), and the fact {un} ⊂ N also give

λ

∫
Ω

f(x)|un|p+1dx =
∫

Ω

|∆un|2dx− 3
∫

Ω

∑
1≤i<j≤N

∂iun∂jun∂ijundx (3.20)

=
3

1− p

∫
Ω

∑
1≤i<j≤N

∂iun∂jun∂ijundx+ o(1) (3.21)

and ∫
Ω

|∆un|2dx <
[ (4− 2p)λ

(p+ 1)
‖f‖LmSp+1

] 2
1−p + o(1). (3.22)

This implies

A(u) = K(p, q)
[ (∫

Ω
|∆u|2dx

)q∫
Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx

] 1
q−1 −

∫
Ω

λf(x)|u|p+1dx,

≤ 3
1− p

( 1− p
6− 3p

) q
q−1
[( 6−3p

1−p
∫

Ω

∑
1≤i<j≤N ∂iu∂ju∂iju dx

)q∫
Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx

] 1
q−1

− 3
1− p

∫
Ω

∑
1≤i<j≤N

∂iun∂jun∂ijundx+ o(1) = o(1).

(3.23)

However, from (3.19) and (3.22), for λ small, we have

A(u) ≥ K(p, q)
[ ( ∫

Ω
|∆u|2dx

)q∫
Ω

∑
1≤i<j≤N ∂iju∂iu∂ju dx

] 1
q−1 − λ‖f‖Lm‖u‖p+1

1+q

≥ K(p, q)
[ ( ∫

Ω
|∆u|2dx

)q
C
( ∫

Ω
|∆u|2dx

)3/2 ] 1
q−1 − Cλ‖f‖Lm

(∫
Ω

|∆u|2dx
) p+1

2

≥
(∫

Ω

|∆u|2dx
) p+1

2
[
K(p, q)

(∫
Ω

|∆u|2dx
) q−2−pq+p

2(q−1) − Cλ‖f‖Lm

]
≥
(∫

Ω

|∆u|2dx
) p+1

2
[
K(p, q)

((
λ(2− p)‖f‖LmSp+1

) 2
p−1
) q(1−p)+p−2

2(q−1)

− Cλ‖f‖Lm

]
.

(3.24)

This contradicts (3.23). We deduce that(
I ′(un),

u

‖u‖

)
≤ C

n
. (3.25)

The proof is complete.
(2) Similar to the proof of (1), we may prove (2). �

Now we establish the existence of a local minimum for I on N+.
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Lemma 3.4. For λ small, the functional I has a minimizer u+
0 ∈ N+ and it

satisfies

(1) I(u+
0 ) = α = α+;

(2) u+
0 is a nontrivial nonnegative solution of problem (1.1);

(3) I(u+
0 )→ 0 as λ→ 0.

Proof. Let {un} ⊂ N be a minimizing sequence for I on N such that

I(un) = α+ o(1), I ′(un) = o(1), for
(
W 2,2

0 (Ω)
)∗
. (3.26)

Then by Lemma 2.7 and the compact embedding theorem, there exists a subse-
quence {un} and u+

0 ∈W
2,2
0 (Ω) such that

un ⇀ u+
0 in W 2,2

0 (Ω),

un → u+
0 in Lh(Ω),

where 1 < h < 2∗. We now show that
∫

Ω
f(x)|u0|p+1dx 6= 0. If not, by (3.26), we

can conclude that ∫
Ω

f(x)|un|p+1dx = 0,∫
Ω

f(x)|un|p+1dx→ 0 as n→∞.

Thus, ∫
Ω

|∆un|2dx = 3
∫

Ω

∑
1≤i<j≤N

∂iun∂jun∂ijundx+ o(1),

and

I(un) =
1
2

∫
Ω

|∆un|2dx−
∫

Ω

∑
1≤i<j≤N

∂ijun∂iun∂jundx

− λ

p+ 1

∫
Ω

f(x)|un|p+1dx

=
1
2

∫
Ω

∑
1≤i<j≤N

∂ijun∂iun∂jundx+ o(1)

→ 1
2

∫
Ω

∑
1≤i<j≤N

∂iju0∂iu0∂ju0dx as n→ +∞,

(3.27)

Similar to Lemma 2.5, we can see that
∫

Ω

∑
1≤i<j≤N ∂iju0∂iu0∂ju0dx > 0. So

(3.27) contradicts I(un) → α < 0 as n → +∞. In particular, u+
0 ∈ N+ is a

nontrivial solution of problem (1.1) and I(u+
0 ) ≥ α. Similar to the proof of [12,

Lemma 3.1], we can prove that un → u+
0 strongly in W 2,2

0 Ω). In fact, if u+
0 ∈ N−,

by Lemma 2.4, there are unique t+0 and t−0 such that t+0 u
+
0 ∈ N+ and t−0 u

+
0 ∈ N−,

we have t+0 < t−0 = 1. Since

d

dt
I(t+0 u

+
0 ) = 0 and

d2

dt2
I(t+0 u

+
0 ) > 0,

there exists t+0 < t̄ ≤ t−0 such that I(t+0 u
+
0 ) < I(t̄u+

0 ). By

I(t+0 u
+
0 ) < I(t̄u+

0 ) ≤ I(t−0 u
+
0 ) = I(u+

0 ),
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which is a contradiction. By Lemma 2.3, we know that u+
0 is a nontrivial solution.

Moreover, from (2.17), we know that

0 > I(u+
0 ) ≥ −λ(2− p)

3(p+ 1)
(
‖f‖LmSp+1

) 2
1−p .

It is clear that I(u+
0 )→ 0 as λ→ 0. �

As in the proof of Lemma 3.4, we establish the existence of a local minimum for
I on N−.

Lemma 3.5. For λ small, the functional I has a minimizer u−0 ∈ N− and it
satisfies

(1) I(u−0 ) = α−;
(2) u−0 is a nontrivial nonnegative solution of problem (1.1).

Combining Lemma 3.4 and 3.5, for problem (1.1), there exist two nontrivial
solutions u+

0 and u0
− such that u+

0 ∈ N+, u−0 ∈ N−. Since N+ ∩ N− = ∅, this
shows that u+

0 and u0
− are different.
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