Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 29, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http:ejde.math.unt.edu ftp ejde.math.txstate.edu

HIGHER ORDER BOUNDARY VALUE PROBLEMS AT RESONANCE ON AN UNBOUNDED INTERVAL

ASSIA FRIOUI, ASSIA GUEZANE-LAKOUD, RABAH KHALDI
This corrected version was posted on March 4, 2016.
The original version is attached at on pages 10-18

Abstract

The aim of this paper is the solvability of a class of higher order differential equations with initial conditions and an integral boundary condition on the half line. Using coincidence degree theory by Mawhin and constructing suitable operators, we prove the existence of solutions for the posed resonance boundary value problems.

1. Introduction

In this article, we are concerned with the existence of solutions of the higherorder ordinary differential equation

$$
\begin{equation*}
x^{(n)}(t)=f(t, x(t)), \quad t \in(0, \infty) \tag{1.1}
\end{equation*}
$$

with the integral boundary value conditions

$$
\begin{equation*}
x^{(i)}(0)=0, i=0,1, \ldots, n-2, \quad x^{(n-1)}(\infty)=\frac{n!}{\xi^{n}} \int_{0}^{\xi} x(t) d t \tag{1.2}
\end{equation*}
$$

where $n \geq 3$ is an integer, $\xi>0$ and $f:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ is a given function satisfying certain conditions.

A boundary value problem (BVP for short) is said to be at resonance if the corresponding homogeneous boundary value problem has a non-trivial solution. Resonance problems can be formulated as an abstract equation $L x=N x$, where L is a noninvertible operator. When L is linear, as is known, the coincidence degree theory of Mawhin [19] has played an important role in dealing with the existence of solutions for these problems. For more recent results, we refer the reader to [3, 5, 6, 6, 8, 9, 14, 20, 22, 24, 25] and the references therein.

Moreover boundary value problems on the half line arise in many applications in physics such that in modeling the unsteady flow of a gas through semi-infinite porous media, in plasma physics, in determining the electrical potential in an isolated neutral atom, or in combustion theory. For an extensive literature of results

[^0]as regards boundary value problems on unbounded domains, we refer the reader to the monograph by Agarwal and O'Regan [1].

Recently, there have been many works concerning the existence of solutions for the boundary value problems on the half-line. For instance see [2, 4, 10, 11, 12, 13, 15, 16, 17, 18, 21, 23, and the references therein. By the way, much of work on the existence of solutions for the boundary value problems on unbounded domains involves second or third-order differential equations.

However, for the resonance case, there is no work done for the higher-order boundary value problems with integral boundary conditions on the half-line, such as BVP (1.1)- 1.2).

The remaining part of this paper is organized as follows. We present in Section 2 some notations and basic results involved in the reformulation of the problem. In Section 3, we give the main theorem and some lemmas, then we will show that the proof of the main theorem is an immediate consequence of these lemmas and the coincidence degree of Mawhin.

2. Preliminaries

For the convenience of the readers, we recall some notation and two theorems which will be used later.

Let X, Y be two real Banach spaces and let $L: \operatorname{dom} L \subset X \rightarrow Y$ be a linear operator which is Fredholm map of index zero, and let $P: X \rightarrow X, Q: Y \rightarrow Y$ be continuous projectors such that $\operatorname{Im} P=\operatorname{ker} L$, $\operatorname{ker} Q=\operatorname{Im} L$. Then $X=\operatorname{ker} L \oplus$ ker $P, Y=\operatorname{Im} L \oplus \operatorname{Im} Q$. It follows that $\left.L\right|_{\text {dom } L \cap \operatorname{ker} P}: \operatorname{dom} L \cap \operatorname{ker} P \rightarrow \operatorname{Im} L$ is invertible, we denote the inverse of that map by K_{P}. Let Ω be an open bounded subset of X such that $\operatorname{dom} L \cap \Omega \neq \emptyset$, the map $N: X \rightarrow Y$ is said to be L-compact on $\bar{\Omega}$ if the map $Q N(\bar{\Omega})$ is bounded and $K_{P}(I-Q N): \bar{\Omega} \rightarrow X$ is compact.

Theorem 2.1 ([19). Let L be a Fredholm operator of index zero and N be Lcompact on $\bar{\Omega}$. Assume that the following conditions are satisfied:
(1) $L x \neq \lambda N x$ for every $(x, \lambda) \in[(\operatorname{dom} L \backslash \operatorname{ker} L) \cap \partial \Omega] \times(0,1)$.
(2) $N x \notin \operatorname{Im} L$ for every $x \in \operatorname{ker} L \cap \partial \Omega$.
(3) $\operatorname{deg}\left(\left.Q N\right|_{\operatorname{ker} L}, \Omega \cap \operatorname{ker} L, 0\right) \neq 0$, where $Q: Y \rightarrow Y$ is a projection such that $\operatorname{Im} L=\operatorname{ker} Q$.
Then the equation $L x=N x$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$.
Since the Arzelá-Ascoli theorem fails in the noncompact interval case, we use the following result in order to show that $K_{P}(I-Q N): \bar{\Omega} \rightarrow X$ is compact.

Theorem $2.2([1])$. Let F be a subset of $C_{\infty}=\left\{y \in C([0,+\infty)), \lim _{t \rightarrow \infty} y(t)\right.$ exists $\}$ that is equipped with the norm $\|y\|_{\infty}=\sup _{t \in[0,+\infty)}|y(t)|$. Then F is relatively compact if the following conditions hold:
(1) F is bounded in X.
(2) The functions belonging to F are equi-continuous on any compact subinterval of $[0, \infty)$.
(3) The functions from F are equi-convergent at $+\infty$.

Let

$$
X=\left\{x \in C^{n-1}[0,+\infty), \lim _{t \rightarrow \infty} e^{-t}\left|x^{(i)}(t)\right| \text { exist, } 0 \leq i \leq n-1\right\}
$$

endowed with the norm $\|x\|=\max _{0 \leq i \leq n-1}\left(\sup _{t \in[0,+\infty)} e^{-t}\left|x^{(i)}(t)\right|\right)$. Then X is a Banach space.

Lemma 2.3. Let $M \subset X$, then M is relatively compact in X if the following conditions hold:
(1) M is bounded in X.
(2) The family $V^{i}=\left\{y_{i}: y_{i}(t)=e^{-t} x^{(i)}(t), t \geq 0, x \in M\right\}$ is equicontinuous on any compact subinterval of $[0,+\infty)$ for $i=0, \ldots, n-1$.
(3) The family $V^{i}=\left\{y_{i}: y_{i}(t)=e^{-t} x^{(i)}(t), t \geq 0, x \in M\right\}$ is equiconvergent at ∞ for $i=0, \ldots, n-1$.

Proof. Let $\left(x_{k}\right)_{k}$ be a sequence in M and set $y_{i, k}(t)=e^{-t} x_{k}^{(i)}(t)$. Since the set V^{i}, for every $i=0, \ldots, n-1$ is relatively compact in C_{∞} (see Theorem 2.2 , then from the sequence $\left(y_{0, k}\right)_{k} \subset V^{0}$, we can extract a subsequence denoted also by $\left(y_{0, k}\right)_{k}$, that converges to y_{0}^{*} in C_{∞}. Set $x_{0}^{*}(t)=e^{t} y_{0}^{*}(t)$, then

$$
\lim _{k \rightarrow \infty} \sup _{t \in[0, \infty)} e^{-t}\left|x_{k}(t)-x_{0}^{*}(t)\right|=0 .
$$

Now let $y_{1, k}(t)=e^{-t} x_{k}^{\prime}(t)$ then the sequence $\left(y_{1, k}\right)_{k} \subset V^{1}$ and we can extract from it a subsequence denoted also by $\left(y_{1, k}\right)_{k}$, that converges to y_{1}^{*} in C_{∞}. Set $x_{1}^{*}(t)=e^{t} y_{1}^{*}(t)$, then $\lim _{k \rightarrow \infty} \sup _{t \in[0, \infty)} e^{-t}\left|x_{k}^{\prime}(t)-x_{1}^{*}(t)\right|=0$, from the fact that the convergence is uniform on $[0, T], T>0$, we get that x_{0}^{*} is differentiable on $[0,+\infty)$ and $x_{1}^{*}=\left(x_{0}^{*}\right)^{\prime}$. Reasoning the same way, we obtain $x_{i}^{*}=\left(x_{0}^{*}\right)^{(i)}, i=0, \ldots, n-1$, and $\lim _{k \rightarrow \infty}\left\|x_{k}-x_{0}^{*}\right\|=0$. Then M is relatively compact.

Let $Y=L^{1}[0,+\infty)$ with norm $\|y\|_{1}=\int_{0}^{+\infty}|y(t)| d t$. Denote $A C_{\mathrm{loc}}[0,+\infty)$ the space of locally absolutely continuous functions on the interval $[0,+\infty)$. Define the operator $L: \operatorname{dom} L \subset X \rightarrow Y$ by $L x=x^{(n)}$, where

$$
\begin{gathered}
\operatorname{dom} L=\left\{x \in X, x^{(n-1)} \in A C_{\mathrm{loc}}[0,+\infty), x^{(i)}(0)=0, i=\overline{0, n-2}\right. \\
\left.x^{(n-1)}(\infty)=\frac{n!}{\xi^{n}} \int_{0}^{\xi} x(t) d t, x^{(n)} \in Y\right\} \subset X,
\end{gathered}
$$

then L maps dom L into Y. Let $N: X \rightarrow Y$ be the operator $N x(t)=f(t, x(t))$, $t \in[0,+\infty)$, then (1.1)-(1.2) can be written as $L x=N x$.

3. Main Results

We can now state our results on the existence of a solution for $1.1-1.2$.
Theorem 3.1. Assume that the following conditions are satisfied:
(H1) There exists functions $\alpha, \beta \in L^{1}[0, \infty)$, such that for all $x \in \mathbb{R}$ and $t \in$ $[0, \infty)$,

$$
\begin{equation*}
|f(t, x)| \leq e^{-t} \alpha(t)|x|+\beta(t) \tag{3.1}
\end{equation*}
$$

(H2) There exists a constant $M>0$, such that for $x \in \operatorname{dom} L$, if $\left|x^{(n-1)}(t)\right|>M$, for all $t \in[0, \infty)$, then

$$
\begin{equation*}
\int_{0}^{\infty} f(s, x(s)) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} f(s, x(s)) d s \neq 0 \tag{3.2}
\end{equation*}
$$

(H3) There exists a constant $M^{*}>0$, such that for any $x(t)=c_{0} t^{n-1} \in \operatorname{ker} L$ with $\left|c_{0}\right|>M^{*} /(n-1)!$, either

$$
\begin{equation*}
c_{0}\left[\int_{0}^{\infty} f\left(s, c_{0} s^{n-1}\right) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} f\left(s, c_{0} s^{n-1}\right) d s\right]<0 \tag{3.3}
\end{equation*}
$$

or

$$
\begin{equation*}
c_{0}\left[\int_{0}^{\infty} f\left(s, c_{0} s^{n-1}\right) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} f\left(s, c_{0} s^{n-1}\right) d s\right]>0 . \tag{3.4}
\end{equation*}
$$

Then (1.1)-1.2), has at least one solution in X, provided

$$
\begin{equation*}
1-2 M_{n}\|\alpha\|_{1}>0 \tag{3.5}
\end{equation*}
$$

where $M_{n}=\max _{0 \leq i \leq n-1}\left(\sup _{t \in[0, \infty)} e^{-t} t^{n-1-i}\right)$.
To prove Theorem 3.1, we need to prove some Lemmas.
Lemma 3.2. The operator $L: \operatorname{dom} L \subset X \rightarrow Y$ is a Fredholm operator of index zero. Furthermore, the linear projector operator $Q: Y \rightarrow Y$ can be defined by

$$
Q y(t)=a e^{-t}\left[\int_{0}^{\infty} y(s) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} y(s) d s\right]
$$

where

$$
\frac{1}{a}=1-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} e^{-s} d s=1-\sum_{k=0}^{n}(-1)^{k} \frac{n!}{(n-k)!\xi^{k}}+(-1)^{n} n!\frac{e^{-\xi}}{\xi^{n}}
$$

and the linear operator $K_{P}: \operatorname{Im} L \rightarrow \operatorname{dom} L \cap \operatorname{ker} P$ can be written as

$$
K_{p} y(t)=\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} y(s) d s, \quad y \in \operatorname{Im} L
$$

Furthermore,

$$
\begin{equation*}
\left\|K_{p} y\right\| \leq M_{n}\|y\|_{1}, \quad \text { for every } y \in \operatorname{Im} L \tag{3.6}
\end{equation*}
$$

Proof. It is clear that

$$
\operatorname{ker} L=\left\{x \in \operatorname{dom} L: x=c t^{n-1}, c \in \mathbb{R}, t \in[0, \infty)\right\}
$$

Now we show that

$$
\begin{equation*}
\operatorname{Im} L=\left\{y \in Y: \int_{0}^{\infty} y(s) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} y(s) d s=0\right\} \tag{3.7}
\end{equation*}
$$

The problem

$$
\begin{equation*}
x^{(n)}(t)=y(t) \tag{3.8}
\end{equation*}
$$

has a solution $x(t)$ that satisfies the conditions $x^{(i)}(0)=0$, for $i=0,1, \ldots, n-2$, and $x^{(n-1)}(\infty)=\frac{n!}{\xi^{n}} \int_{0}^{\xi} x(t) d t$ if and only if

$$
\begin{equation*}
\int_{0}^{\infty} y(s) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} y(s) d s=0 \tag{3.9}
\end{equation*}
$$

In fact from (3.8) and the boundary conditions 1.2 we have

$$
\begin{aligned}
x(t) & =\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} y(s) d s+c_{0}+c_{1} t+c_{2} t^{2}+\cdots+c_{n-1} t^{n-1} \\
& =\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} y(s) d s+c t^{n-1}
\end{aligned}
$$

From $x^{(n-1)}(\infty)=\frac{n!}{\xi^{n}} \int_{0}^{\xi} x(t) d t$, we obtain

$$
\int_{0}^{\infty} y(s) d s=\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} y(s) d s
$$

On the other hand, if 3.9 holds, setting

$$
x(t)=\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} y(s) d s+c t^{n-1}
$$

where c is an arbitrary constant, then $x(t)$ is a solution of 3.8. Hence 3.7 holds. Setting

$$
R y=\int_{0}^{\infty} y(s) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} y(s) d s
$$

define $Q y(t)=a e^{-t} R y$, it is clear that $\operatorname{dim} \operatorname{Im} Q=1$. We have

$$
\begin{aligned}
Q^{2} y & =Q(Q y)=a e^{-t}(a . R y)\left(\int_{0}^{\infty} e^{-s} d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} e^{-s} d s\right) \\
& =a e^{-t} R y=Q y
\end{aligned}
$$

which implies the operator Q is a projector. Furthermore, $\operatorname{Im} L=\operatorname{ker} Q$.
Let $y=(y-Q y)+Q y$, where $y-Q y \in \operatorname{ker} Q=\operatorname{Im} L, Q y \in \operatorname{Im} Q$. It follows from $\operatorname{ker} Q=\operatorname{Im} L$ and $Q^{2} y=Q y$ that $\operatorname{Im} Q \cap \operatorname{Im} L=\{0\}$. Then, we have $Y=\operatorname{Im} L \oplus \operatorname{Im} Q$. Thus $\operatorname{dim} \operatorname{ker} L=1=\operatorname{dim} \operatorname{Im} Q=\operatorname{codim} \operatorname{Im} L=1$, this means that L is a Fredholm operator of index zero. Now we define a projector P from X to X by setting

$$
P x(t)=\frac{x^{(n-1)}(0)}{(n-1)!} t^{n-1} .
$$

Then the generalized inverse $K_{P}: \operatorname{Im} L \operatorname{dom} L \cap \operatorname{ker} P$ of L can be written as

$$
K_{p} y(t)=\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} y(s) d s
$$

Obviously, $\operatorname{Im} P=\operatorname{ker} L$ and $P^{2} x=P x$. It follows from $x=(x-P x)+P x$ that $X=\operatorname{ker} P+\operatorname{ker} L . \quad$ By simple calculation, we obtain that $\operatorname{ker} L \cap \operatorname{ker} P=\{0\}$. Hence $X=\operatorname{ker} L \oplus \operatorname{ker} P$.

From the definitions of P and K_{P}, it is easy to see that the generalized inverse of L is K_{P}. In fact, for $y \in \operatorname{Im} L$, we have

$$
\left(L K_{p}\right) y(t)=\left(K_{p} y(t)\right)^{(n)}=y(t)
$$

and for $x \in \operatorname{dom} L \cap \operatorname{ker} P$, we know that

$$
\begin{aligned}
\left(K_{p} L\right) x(t) & =\left(K_{p}\right) x^{(n)}(t)=\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} x^{(n)}(s) d s \\
& =x(t)-\left[x(0)+x^{\prime}(0) t+\cdots+\frac{x^{(n-2)}(0)}{(n-2)!} t^{n-2}+\frac{x^{(n-1)}(0)}{(n-1)!} t^{n-1}\right]
\end{aligned}
$$

In view of $x \in \operatorname{dom} L \cap \operatorname{ker} P, x^{(i)}(0)=0$, for $i=0,1, \ldots, n-2$, and $P x=0$, thus

$$
\left(K_{p} L\right) x(t)=x(t)
$$

This shows that $K_{p}=\left(\left.L\right|_{\text {dom } L \cap \operatorname{ker} P}\right)^{-1}$. From the definition of K_{p}, we have for $i=0, \ldots, n-1$,

$$
e^{-t}\left|\left(K_{p} y\right)^{(i)}(t)\right| \leq \frac{e^{-t}}{(n-1-i)!} \int_{0}^{t}(t-s)^{n-1-i}|y(s)| d s \leq M_{n}\|y\|_{1}
$$

which leads to

$$
\left\|K_{p} y\right\|=\max _{0 \leq i \leq n-1}\left(\sup _{t \in[0, \infty)} e^{-t}\left|\left(K_{p} y\right)^{i}(t)\right|\right) \leq M_{n}\|y\|_{1} .
$$

This completes the proof.
Lemma 3.3. Let $\Omega_{1}=\{x \in \operatorname{dom} L \backslash \operatorname{ker} L: L x=\lambda N x$ for some $\lambda \in[0,1]\}$. Then Ω_{1} is bounded.

Proof. Suppose that $x \in \Omega_{1}$, and $L x=\lambda N x$. Thus $\lambda \neq 0$ and $Q N x=0$, so that

$$
\int_{0}^{\infty} f(s, x(s)) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} f(s, x(s)) d s=0
$$

Thus, by condition (H2), there exists $t_{0} \in \mathbb{R}_{+}$, such that $\left|x^{(n-1)}\left(t_{0}\right)\right| \leq M$. It follows from the absolute continuity of $x^{(n-1)}$ that

$$
\left|x^{(n-1)}(0)\right|=\left|x^{(n-1)}\left(t_{0}\right)-\int_{0}^{t_{0}} x^{(n)}(s) d s\right|,
$$

then, we have

$$
\begin{equation*}
\left|x^{(n-1)}(0)\right| \leq M+\int_{0}^{\infty}|L x(s)| d s \leq M+\int_{0}^{\infty}|N x(s)| d s=M+\|N x\|_{1} \tag{3.10}
\end{equation*}
$$

Again for $x \in \Omega_{1}$ and $x \in \operatorname{dom} L \backslash$ ker L, we have $(I-P) x \in \operatorname{dom} L \cap \operatorname{ker} P$ and $L P x=0$; thus from Lemma 3.2 ,

$$
\begin{align*}
\|(I-P) x\| & =\left\|K_{p} L(I-P) x\right\| \\
& \leq M_{n}\|L(I-P) x\|_{1} \tag{3.11}\\
& =M_{n}\|L x\|_{1} \leq M_{n}\|N x\|_{1} .
\end{align*}
$$

So

$$
\begin{equation*}
\|x\| \leq\|P x\|+\|(I-P) x\|=M_{n}\left|x^{(n-1)}(0)\right|+M_{n}\|N x\|_{1}, \tag{3.12}
\end{equation*}
$$

again from $(3.10$ and 3.11 , 3.12 becomes

$$
\begin{equation*}
\|x\| \leq M_{n} M+M_{n}\|N x\|_{1}+M_{n}\|N x\|_{1} \leq M_{n} M+2 M_{n}\|N x\|_{1} . \tag{3.13}
\end{equation*}
$$

On the other hand by (3.1) we have

$$
\begin{equation*}
\|N x\|_{1}=\int_{0}^{\infty}|f(s, x(s))| d s \leq\|x\|\|\alpha\|_{1}+\|\beta\|_{1} \tag{3.14}
\end{equation*}
$$

Therefore, (3.13) and 3.14, it yield

$$
\|x\| \leq M_{n} M+2 M_{n}\|x\|\|\alpha\|_{1}+2 M_{n}\|\beta\|_{1}
$$

since $1-2 M_{n}\|\alpha\|_{1}>0$, we obtain

$$
\|x\| \leq \frac{M_{n} M}{1-2 M_{n}\|\alpha\|_{1}}+\frac{2 M_{n}\|\beta\|_{1}}{1-2 M_{n}\|\alpha\|_{1}}
$$

So Ω_{1} is bounded.
Lemma 3.4. The set $\Omega_{2}=\{x \in \operatorname{ker} L: N x \in \operatorname{Im} L\}$ is bounded.

Proof. Let $x \in \Omega_{2}$. Then $x \in \operatorname{ker} L$ implies $x(t)=c t^{n-1}, c \in \mathbb{R}$, and $Q N x=0$; therefore

$$
\int_{0}^{\infty} f\left(s, c s^{n-1}\right) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} f\left(s, c s^{n-1}\right) d s=0
$$

From condition (H2), there exists $t_{1} \in \mathbb{R}_{+}$, such as $\left|x^{(n-1)}\left(t_{1}\right)\right| \leq M$. We have $(n-1)!|c| \leq M$ so $|c| \leq \frac{M}{(n-1)!}$. On the other hand

$$
\|x\|=|c| \max _{0 \leq i \leq n-1}\left(\sup _{t \in[0, \infty)} e^{-t}\left(t^{n-1}\right)^{(i)}\right) \leq M M_{n}<\infty
$$

so Ω_{2} is bounded.
Lemma 3.5. Suppose that the first part of Condition (H3) holds. Let

$$
\Omega_{3}=\{x \in \operatorname{ker} L:-\lambda J x+(1-\lambda) Q N x=0, \lambda \in[0,1]\}
$$

where $J: \operatorname{ker} L \rightarrow \operatorname{Im} Q$ is the linear isomorphism given by $J\left(c t^{n-1}\right)=c e^{-t}$, for all $c \in \mathbb{R} t \geq 0$. Then Ω_{3} is bounded.

Proof. In fact $x_{0} \in \Omega_{3}$, means that $x_{0} \in \operatorname{ker} L$ i.e. $x_{0}(t)=c_{0} t^{n-1}$ and $\lambda J x_{0}=$ $(1-\lambda) Q N x_{0}$. Then we obtain

$$
\lambda c_{0}=(1-\lambda) a\left(\int_{0}^{\infty} f\left(s, c_{0} s^{n-1}\right) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} f\left(s, c_{0} s^{n-1}\right) d s\right)
$$

If $\lambda=1$, then $c_{0}=0$. Otherwise, if $\left|c_{0}\right|>M^{*} /(n-1)$!, in view of (3.3) one has

$$
\lambda c_{0}^{2}=(1-\lambda) a c_{0}\left(\int_{0}^{\infty} f\left(s, c_{0} s^{n-1}\right) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} f\left(s, c_{0} s^{n-1}\right) d s\right)<0
$$

which contradicts the fact that $\lambda c_{0}^{2} \geq 0$. So $\left|c_{0}\right| \leq M^{*} /(n-1)$!, moreover

$$
\left\|x_{0}\right\|=\left|c_{0}\right| \max _{0 \leq i \leq n-1}\left(\sup _{t \in[0, \infty)} e^{-t}\left|\left(t^{n-1}\right)^{(i)}\right|\right) \leq M^{*} M_{n}
$$

Therefore Ω_{3} is bounded.
Lemma 3.6. Suppose that the second part of Condition (H3) holds. Let

$$
\Omega_{3}=\{x \in \operatorname{ker} L: \lambda J x+(1-\lambda) Q N x=0, \lambda \in[0,1]\}
$$

where $J: \operatorname{ker} L \rightarrow \operatorname{Im} Q$ is the linear isomorphism given by $J\left(c t^{n-1}\right)=c e^{-t}$, for all $c \in \mathbb{R}, t \geq 0$. Then Ω_{3} is bounded, here J is as in Lemma 3.5.

Proof. Similar to the above argument, we can verify that Ω_{3} is bounded.
Lemma 3.7. Suppose that Ω is an open bounded subset of X such that $\operatorname{dom}(L) \cap$ $\bar{\Omega} \neq \emptyset$. Then N is L-compact on $\bar{\Omega}$.

Proof. Suppose that $\Omega \subset X$ is a bounded set. Without loss of generality, we may assume that $\Omega=B(0, r)$, then for any $x \in \bar{\Omega},\|x\| \leq r$. For $x \in \bar{\Omega}$, and by condition (3.1), we obtain

$$
\begin{aligned}
|Q N x| \leq & a e^{-t}\left[\int_{0}^{\infty}|f(s, x(s))| d s+\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n}|f(s, x(s))| d s\right] \\
\leq & a e^{-t}\left[\int_{0}^{\infty} e^{-s} \alpha(s)|x(s)|+\beta(s) d s\right. \\
& \left.+\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n}\left(e^{-s} \alpha(s)|x(s)|+\beta(s)\right) d s\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leq a e^{-t}\left[r \int_{0}^{\infty} \alpha(s) d s+\int_{0}^{\infty} \beta(s) d s+r \int_{0}^{\xi} \alpha(s) d s+\int_{0}^{\xi} \beta(s) d s\right] \\
& \leq a e^{-t}\left[2 r\|\alpha\|_{1}+2\|\beta\|_{1}\right] \\
& \leq 2 a\left[r\|\alpha\|_{1}+\|\beta\|_{1}\right]
\end{aligned}
$$

thus,

$$
\begin{equation*}
\|Q N x\|_{1} \leq 2 a\left[r\|\alpha\|_{1}+\|\beta\|_{1}\right] \tag{3.15}
\end{equation*}
$$

which implies that $Q N(\bar{\Omega})$ is bounded. Next, we show that $K_{P}(I-Q) N(\bar{\Omega})$ is compact, for this we use Lemma 2.3. Let $x \in \bar{\Omega}$, by 3.1) we have

$$
\begin{equation*}
\|N x\|_{1}=\int_{0}^{\infty}|f s, x(s)| d s \leq\left[r\|\alpha\|_{1}+\|\beta\|_{1}\right] \tag{3.16}
\end{equation*}
$$

on the other hand, from the definition of K_{P} and together with 3.6, 3.15 and (3.16) one obtain

$$
\begin{aligned}
\left\|K_{P}(I-Q) N x\right\| & \leq M_{n}\|(I-Q) N x\|_{1} \leq M_{n}\left[\|N x\|_{1}+\|Q N x\|_{1}\right] \\
& \leq M_{n}\left[r(1+2 a)\|\alpha\|_{1}+(1+2 a)\|\beta\|_{1}\right]
\end{aligned}
$$

It follows that $K_{P}(I-Q) N(\bar{\Omega})$ is uniformly bounded.
Let us prove that T is equicontinuous. For any $x \in \bar{\Omega}$ and any $t_{1}, t_{2} \in[0, T]$ with $t_{1}<t_{2}$ and $T \in[0, \infty)$, we have for $0 \leq i \leq n-2$:

$$
\begin{aligned}
& \left|e^{-t_{1}}\left(K_{P}(I-Q) N x\right)^{(i)}\left(t_{1}\right)-e^{-t_{2}}\left(K_{P}(I-Q) N x\right)^{(i)}\left(t_{2}\right)\right| \\
& =\left|\int_{t_{1}}^{t_{2}}\left[e^{-s}\left(K_{P}(I-Q) N x\right)^{(i)}(s)\right]^{\prime} d s\right| \\
& =\left|\int_{t_{1}}^{t_{2}}\left[-e^{-s}\left(K_{P}(I-Q) N x\right)^{(i)}(s)+e^{-s}\left(K_{P}(I-Q) N x\right)^{(i+1)}(s)\right] d s\right| \\
& \leq 2\left(t_{2}-t_{1}\right)\left\|K_{P}(I-Q) N x\right\| \\
& \leq 2\left(t_{2}-t_{1}\right) M_{n}\left[r(1+2 a)\|\alpha\|_{1}+(1+2 a)\|\beta\|_{1}\right] \rightarrow 0, \quad \text { as } t_{1} \rightarrow t_{2} .
\end{aligned}
$$

For $i=n-1$, we obtain

$$
\begin{aligned}
& \left|e^{-t_{1}}\left(K_{P}(I-Q) N x\right)^{(n-1)}\left(t_{1}\right)-e^{-t_{2}}\left(K_{P}(I-Q) N x\right)^{(n-1)}\left(t_{2}\right)\right| \\
& =\left|e^{-t_{1}} \int_{0}^{t_{1}}(I-Q) N x(s) d s-e^{-t_{2}} \int_{0}^{t_{2}}(I-Q) N x(s) d s\right| \\
& \leq \int_{0}^{t_{1}}\left(e^{-t_{1}}-e^{-t_{2}}\right)|(I-Q) N x(s)| d s+\int_{t_{1}}^{t_{2}} e^{-t_{2}}|(I-Q) N x(s)| d s \\
& \leq\left(t_{2}-t_{1}\right) \int_{0}^{t_{1}}|(I-Q) N x(s)| d s+\int_{t_{1}}^{t_{2}}|(I-Q) N x(s)| d s \rightarrow 0,
\end{aligned}
$$

as $t_{1} \rightarrow t_{2}$. So $K_{P}(I-Q) N(\bar{\Omega})$ is equicontinuous on every compact subinterval of $[0, \infty)$. In addition, we claim that $K_{P}(I-Q) N(\bar{\Omega})$ is equiconvergent at infinity. In fact, for $x \in \bar{\Omega}, i=0, \ldots, n-1$, we have

$$
\begin{aligned}
& \left|e^{-t}\left(K_{p}(I-Q) N x\right)^{(i)}(t)\right| \\
& \leq \frac{e^{-t}}{(n-1-i)!} \int_{0}^{t}(t-s)^{n-1-i}|(I-Q) N x(s)| d s \\
& \leq e^{-t} t^{n-1-i} \int_{0}^{t}|(I-Q) N x(s)| d s \leq e^{-t} t^{n-1-i}\|(I-Q) N x\|_{1}
\end{aligned}
$$

$$
\leq e^{-t} t^{n-1-i}\left[\|N x\|_{1}+\|Q N x\|_{1}\right] \leq e^{-t} t^{n-1-i}(1+2 a)\left[r\|\alpha\|_{1}+\|\beta\|_{1}\right]
$$

thus, $\lim _{t \rightarrow \infty} e^{-t}\left(K_{p}(I-Q) N x\right)^{(i)}(t)=0$, for every $i=0, \ldots, n-1$, which means that $K_{P}(I-Q) N(\bar{\Omega})$ is equiconvergent at infinity.

Now we are able to give the proof of Theorem 3.1, which is an immediate consequence of Theorem 2.1 and the above lemmas.

Proof of Theorem 3.1. We shall prove that all conditions of Theorem 2.1 are satisfied. Set Ω to be an open bounded subset of X such that $\cup_{i=1}^{3} \bar{\Omega}_{i} \subset \Omega$. We know that L is a Fredholm operator of index zero and N is L-compact on $\bar{\Omega}$. By the definition of Ω we have
(i) $L x \neq \lambda N x$ pour tout $(x, \lambda) \in[(\operatorname{dom} L \backslash \operatorname{ker} L) \cap \partial \Omega] \times(0,1)$;
(ii) $N x \notin \operatorname{Im} L$ pour tout $x \in \operatorname{ker} L \cap \partial \Omega$.

At last we prove that condition (iii) of Theorem 2.1 is satisfied. To this end, let

$$
H(x, \lambda)= \pm \lambda J x+(1-\lambda) Q N x
$$

By the definition of Ω we know that $\bar{\Omega}_{3} \subset \Omega$, thus $H(x, \lambda) \neq 0$ for every $x \in$ ker $L \cap \partial \Omega$. Then, by the homotopy property of degree, we obtain

$$
\begin{aligned}
\operatorname{deg}\left(\left.Q N\right|_{\text {ker } L}, \Omega \cap \operatorname{ker} L, 0\right) & =\operatorname{deg}(H(\cdot, 0), \Omega \cap \operatorname{ker} L, 0) \\
& =\operatorname{deg}(H(\cdot, 1), \Omega \cap \operatorname{ker} L, 0) \\
& =\operatorname{deg}(\pm J, \Omega \cap \operatorname{ker} L, 0) \neq 0 .
\end{aligned}
$$

So, the third assumption of Theorem 2.1 is fulfilled and $L x=N x$ has at least one solution in dom $L \cap \bar{\Omega}$; i.e. (1.1)- 1.2 has at least one solution in X. The prove is complete.

Acknowledgements. The authors would like to thank the anonymous reader for pointing out several mistakes in the original article, and for checking the corrections. We want to also to thank the managing editor Prof. Julio G. Dix for allowing us to correct our article.

References

[1] R. P. Agarwal, D. O'Regan; Infinity Interval Problems for Difference and Integral Equations, Kluwer Academic Publisher Dordrecht, 2001
[2] R. P. Agarwal, D. O'Regan; Infinite interval problems modeling phenomena which arise in the theory of plasma and electrical potential theory. Stud. Appl. Math., 111(3) (2003), 339-358.
[3] Y. Cui; Solvability of second-order boundary-value problems at resonance involving integral conditions. Electron. J. Differ. Equ., 2012 (2012), 45, 1-9.
[4] G. Cupini, C. Marcelli, F. Papalini; On the solvability of a boundary value problem on the real line. Bound. Value Probl., 2011 (2011), no. 26,
[5] Z. Du, F. Meng; Solutions to a second-order multi-point boundary value problem at resonance. Acta Math. Sci. 30(5) (2010), 1567-1576.
[6] W. Feng, J. R. L. Webb; Solvability of three-point boundary value problems at resonance. Nonlinear Anal. Theory, Methods and Appl., 30 (1997), 3227-3238.
[7] D. Franco, G. Infante, M. Zima; Second order nonlocal boundary value problems at resonance. Math. Nachr., 284(7) (2011), 875-884.
[8] A. Guezane-Lakoud, A. Frioui, R. Khaldi; Third Order Boundary Value Prolem with Integral Condition at Resonance, Theory and Applications of Mathematics \& Computer Sciencesm 3(1) 2013), 56-64.
[9] C. P. Gupta, S. K. Ntouyas, P. Ch. Tsamatos; On an m-point boundary-value problem for second-order ordinary differential equations, Nonlinear Anal., 23 (1994), 1427-1436.
[10] W. Jiang; Solvability for p-Laplacian boundary value problem at resonance on the half-line. Bound. Value Probl., 2013 (2013), 207.
[11] W. Jiang, B. Wang, Z.Wang; Solvability of a second-order multi-point boundary-value problems at resonance on a half-line with dim ker $L=2$. Electron. J. Differ. Equ., 2011 (2011), 120, 1-11.
[12] C-G. Kim; Existence and iteration of positive solutions for multi-point boundary value problems on a half-line. Comput. Math. Appl., 61(7) (2011), 1898-1905.
[13] N. Kosmatov; Multi-point boundary value problems on an unbounded domain at resonance. Nonlinear Anal., 68 (8) (2008), 2158-2171.
[14] N. Kosmatov; A multi-point boundary value problem with two critical conditions. Nonlinear Anal., 65(3) 2006), 622-633.
[15] H. Lian, W. Ge; Solvability for second-order three-point boundary value problems on a halfline. Appl. Math. Lett., 19(10) (2006), 1000-1006.
[16] S. Liang, J. Zhang; Positive solutions for singular third-order boundary value problem with dependence on the first order derivative on the half-line. Acta Appl. Math., 111(1) (2010), 27-43.
[17] L. Liu, Y. Wang, X. Hao, Y. Wu; Positive solutions for nonlinear singular differential systems involving parameter on the half-line. Abstr. Appl. Anal., 2012, (2012) Article ID 161925.
[18] R. Ma; Existence of positive solutions for second-order boundary value problems on infinity intervals. Appl. Math. Lett., 16(1) (2003), 33-39.
[19] J. Mawhin; Topological degree methods in nonlinear boundary value problems, NSFCBMS Regional Conference Series in Mathematics. Am. Math. Soc, Providence, 1979.
[20] F. Meng, Z. Du; Solvability of a second-order multi-point boundary value problem at resonance. Appl. Math. Comput., 208(1) (2009), 23-30.
[21] D. O'Regan, B. Yan, R. P. Agarwal; Solutions in weighted spaces of singular boundary value problems on the half-line, J. Comput. Appl. Math., 205 (2007), 751-763.
[22] F. Wang, F. Zhang; Existence of n positive solutions to second-order multi-point boundary value problem at resonance. Bull. Korean Math. Soc., 49(4) (2012), 815-827.
[23] J. Xu, Z. Yang; Positive solutions for singular Sturm-Liouville boundary value problems on the half line, Electron. J. Differential Equations, 2010 (2010) no. 171, 1-8.
[24] X. Zhang, M. Feng, W. Ge; Existence result of second-order differential equations with integral boundary conditions at resonance. J. Math. Anal. Appl., 353(1) (2009), 311-319.
[25] M. Zima, P. Dryga's; Existence of positive solutions for a kind of periodic boundary value problem at resonance. Bound. Value Probl., 2013 (2013), 19, 10 pp.

Next, for record keeping we include the original article that has several mistakes.

11. Introduction

In this paper, we are concerned with the existence of solutions of the higher-order ordinary differential equation

$$
\begin{equation*}
x^{(n)}(t)=f(t, x(t)), \quad t \in(0, \infty) \tag{11.1}
\end{equation*}
$$

with the integral boundary value conditions

$$
\begin{equation*}
x^{(i)}(0)=0, i=0,1, \ldots, n-2, \quad x^{(n-1)}(\infty)=\frac{n!}{\xi^{n}} \int_{0}^{\xi} x(t) d t \tag{11.2}
\end{equation*}
$$

where $n \geq 3$ is an integer, $\xi>0$ and $f \in C([0, \infty) \times \mathbb{R}, \mathbb{R})$.
A boundary value problem (BVP for short) is said to be at resonance if the corresponding homogeneous boundary value problem has a non-trivial solution. Resonance problems can be formulated as an abstract equation $L x=N x$, where L is a noninvertible operator. When L is linear, as is known, the coincidence degree theory of Mawhin [19] has played an important role in dealing with the existence of solutions for these problems. For more recent results, we refer the reader to [3, 5, 6, 6, 8, 9, 14, 20, 22, 24, 25] and the references therein.

Moreover boundary value problems on the half line arise in many applications in physics such that in modeling the unsteady flow of a gas through semi-infinite porous media, in plasma physics, in determining the electrical potential in an isolated neutral atom, or in combustion theory. For an extensive literature of results as regards boundary value problems on unbounded domains, we refer the reader to the monograph by Agarwal and O'Regan [1].

Recently, there have been many works concerning the existence of solutions for the boundary value problems on the half-line. For instance see [2, 4, 10, 11, 12 , 13, 15, 16, 17, 18, 21, 23, and the references therein. By the way, much of work on the existence of solutions for the boundary value problems on unbounded domains involves second or third-order differential equations.

However, for the resonance case, there is no work done for the higher-order boundary value problems with integral boundary conditions on the half-line, such as BVP 11.1- 11.2 .

The remaining part of this paper is organized as follows. We present in Section 2 some notations and basic results involved in the reformulation of the problem. In Section 3, we give the main theorem and some lemmas, then we will show that the proof of the main theorem is an immediate consequence of these lemmas and the coincidence degree of Mawhin.

12. Preliminaries

For the convenience of the readers, we recall some notation and two theorems which will be used later.

Let X, Y be two real Banach spaces and let $L: \operatorname{dom} L \subset X \rightarrow Y$ be a linear operator which is Fredholm map of index zero, and let $P: X \rightarrow X, Q: Y \rightarrow Y$ be continuous projectors such that $\operatorname{Im} P=\operatorname{ker} L$, $\operatorname{ker} Q=\operatorname{Im} L$. Then $X=\operatorname{ker} L \oplus$ ker $P, Y=\operatorname{Im} L \oplus \operatorname{Im} Q$. It follows that $\left.L\right|_{\operatorname{dom} L \cap \operatorname{ker} P}: \operatorname{dom} L \cap \operatorname{ker} P \rightarrow \operatorname{Im} L$ is invertible, we denote the inverse of that map by K_{P}. Let Ω be an open bounded subset of X such that dom $L \cap \Omega \neq \emptyset$, the map $N: X \rightarrow Y$ is said to be L-compact on $\bar{\Omega}$ if the map $Q N(\bar{\Omega})$ is bounded and $K_{P}(I-Q N): \bar{\Omega} \rightarrow X$ is compact.

Theorem 12.1 ([19]). Let L be a Fredholm operator of index zero and N be L compact on $\bar{\Omega}$. Assume that the following conditions are satisfied:
(1) $L x \neq \lambda N x$ for every $(x, \lambda) \in[(\operatorname{dom} L \backslash \operatorname{ker} L) \cap \partial \Omega] \times(0,1)$.
(2) $N x \notin \operatorname{Im} L$ for every $x \in \operatorname{ker} L \cap \partial \Omega$.
(3) $\operatorname{deg}\left(\left.Q N\right|_{\operatorname{ker} L}, \Omega \cap \cap \operatorname{ker} L, 0\right) \neq 0$, where $Q: Y \rightarrow Y$ is a projection such that $\operatorname{Im} L=\operatorname{ker} Q$.
Then the equation $L x=N x$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$.
Since the Arzelá-Ascoli theorem fails in the noncompact interval case, we use the following result in order to show that $K_{P}(I-Q N): \bar{\Omega} \rightarrow X$ is compact.

Theorem 12.2 ([1]). Let $F \subset X$. Then F is relatively compact if the following conditions hold:
(1) F is bounded in X.
(2) The functions belonging to F are equi-continuous on any compact interval of $[0, \infty)$.
(3) The functions from F are equi-convergent at $+\infty$.

Let $A C[0,+\infty)$ denote the space of locally absolutely continuous functions on the interval $[0,+\infty)$. Let

$$
X=\left\{x \in C^{n-1}[0,+\infty): x^{(n-1)} \in A C_{\mathrm{loc}}[0,+\infty), \lim _{t \rightarrow \infty} e^{-t}|x(t)| \text { exists }\right\}
$$

endowed with the norm $\|x\|=\sup _{t \in[0,+\infty)} e^{-t}|x(t)|$. Let $Y=L^{1}[0,+\infty)$ with norm $\|y\|_{1}=\int_{0}^{+\infty}|y(t)| d t$.

Define the operator L : $\operatorname{dom} L \subset X \rightarrow Y$ by $L x=x^{(n)}$, where

$$
\operatorname{dom} L=\left\{x \in X: x^{(i)}(0)=0, i=\overline{0, n-2}, x^{(n-1)}(\infty)=\frac{n!}{\xi^{n}} \int_{0}^{\xi} x(t) d t\right\}
$$

Let $N: X \rightarrow Y$ be the operator $N x=f(t, x(t)), t \in[0,+\infty)$, then the BVP (11.1)-11.2 can be written as $L x=N x$.

13. Main Results

We can now state our results on the existence of a solution for $11.10-11.2$.
Theorem 13.1. Assume that the following conditions are satisfied:
(H1) There exists functions $\alpha, \beta \in L^{1}[0, \infty)$, such that for all $x \in \mathbb{R}$ and $t \in$ $[0, \infty)$,

$$
\begin{equation*}
|f(t, x)| \leq e^{-t} \alpha(t)|x|+\beta(t) \tag{13.1}
\end{equation*}
$$

(H2) There exists a constant $M>0$, such that for $x \in \operatorname{dom} L$, if $\left|x^{(n-1)}(t)\right|>M$, for all $t \in[0, \infty)$, then

$$
\begin{equation*}
\int_{0}^{\infty} f(s, x(s)) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} f(s, x(s)) d s \neq 0 \tag{13.2}
\end{equation*}
$$

(H3) There exists a constant $M^{*}>0$, such that for any $x(t)=c_{0} t^{n-1} \in \operatorname{ker} L$ with $\left|c_{0}\right|>M^{*} /(n-1)!$, either
$c_{0}\left[\int_{0}^{\infty} f\left(s, c_{0} s^{n-1}\right) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} f\left(s, c_{0} s^{n-1}\right) d s\right]<0$,
or
$c_{0}\left[\int_{0}^{\infty} f\left(s, c_{0} s^{n-1}\right) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} f\left(s, c_{0} s^{n-1}\right) d s\right]>0$.
Then (11.1)-(11.2), has at least one solution in $C[0, \infty)$, provided

$$
\begin{equation*}
1-2 M_{n}\|\alpha\|_{1}>0 \tag{13.5}
\end{equation*}
$$

where $M_{n}=\sup _{t \in[0, \infty)} e^{-t} t^{n-1}=\left(\frac{n-1}{e}\right)^{n-1}$.
To prove Theorem 13.1, we need to prove some Lemmas.
Lemma 13.2. The operator $L: \operatorname{dom} L \subset X \rightarrow Y$ is a Fredholm operator of index zero. Furthermore, the linear projector operator $Q: Y \rightarrow Y$ can be defined by

$$
Q y(t)=a e^{-t}\left[\int_{0}^{\infty} y(s) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} y(s) d s\right]
$$

where

$$
1 / a=1-\sum_{k=0}^{n}(-1)^{k} \frac{n!}{(n-k)!\xi^{k}}
$$

and the linear operator $K_{P}: \operatorname{Im} L \rightarrow \operatorname{dom} L \cap \operatorname{ker} P$ can be written as

$$
K_{p} y(t)=\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} y(s) d s, y \in \operatorname{Im} L
$$

Furthermore

$$
\begin{equation*}
\left\|K_{p} y\right\| \leq \frac{M_{n}}{(n-1)!}\|y\|_{1}, \quad \text { for every } y \in \operatorname{Im} L \tag{13.6}
\end{equation*}
$$

Proof. It is clear that

$$
\operatorname{ker} L=\left\{x \in \operatorname{dom} L: x=c t^{n-1}, c \in \mathbb{R}, t \in[0, \infty)\right\}
$$

Now we show that

$$
\begin{equation*}
\operatorname{Im} L=\left\{y \in Y: \int_{0}^{\infty} y(s) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} y(s) d s=0\right\} \tag{13.7}
\end{equation*}
$$

The problem

$$
\begin{equation*}
x^{(n)}(t)=y(t) \tag{13.8}
\end{equation*}
$$

has a solution $x(t)$ that satisfies the conditions $x^{(i)}(0)=0$, for $i=0,1, \ldots, n-2$, and $x^{(n-1)}(\infty)=\frac{n!}{\xi^{n}} \int_{0}^{\xi} x(t) d t$ if and only if

$$
\begin{equation*}
\int_{0}^{\infty} y(s) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} y(s) d s=0 \tag{13.9}
\end{equation*}
$$

In fact from 13.8 and the boundary conditions 11.2 we have

$$
\begin{aligned}
x(t) & =\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} y(s) d s+c_{0}+c_{1} t+c_{2} t^{2}+\cdots+c_{n-1} t^{n-1} \\
& =\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} y(s) d s+c t^{n-1}
\end{aligned}
$$

From $x^{(n-1)}(\infty)=\frac{n!}{\xi^{n}} \int_{0}^{\xi} x(t) d t$, we obtain

$$
\int_{0}^{\infty} y(s) d s=\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} y(s) d s
$$

On the other hand, if 13.9 holds, setting

$$
x(t)=\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} y(s) d s+c t^{n-1}
$$

where c is an arbitrary constant, then $x(t)$ is a solution of 13.8 . Hence 13.7) holds. Setting

$$
R y=\int_{0}^{\infty} y(s) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} y(s) d s
$$

define $Q y(t)=a e^{-t} R y$, it is clear that $\operatorname{dim} \operatorname{Im} Q=1$. We have

$$
\begin{aligned}
Q^{2} y & =Q(Q y)=a e^{-t}(a \cdot R y)\left(\int_{0}^{\infty} e^{-s} d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} e^{-s} d s\right) \\
& =a e^{-t} R y=Q y
\end{aligned}
$$

that implies the operator Q is a projector. Furthermore, $\operatorname{Im} L=\operatorname{ker} Q$.
Let $y=(y-Q y)+Q y$, where $y-Q y \in \operatorname{ker} Q=\operatorname{Im} L, Q y \in \operatorname{Im} Q$. It follows from $\operatorname{ker} Q=\operatorname{Im} L$ and $Q^{2} y=Q y$ that $\operatorname{Im} Q \cap \operatorname{Im} L=\{0\}$. Then, we have $Y=\operatorname{Im} L \oplus \operatorname{Im} Q$. Thus $\operatorname{dim} \operatorname{ker} L=1=\operatorname{dim} \operatorname{Im} Q=\operatorname{codim} \operatorname{Im} L=1$, this means
that L is a Fredholm operator of index zero. Now we define a projector P from X to X by setting

$$
P x(t)=\frac{x^{(n-1)}(0)}{(n-1)!} t^{n-1}
$$

Then the generalized inverse $K_{P}: \operatorname{Im} L \rightarrow \operatorname{dom} L \cap \operatorname{ker} P$ of L can be written as

$$
K_{p} y=\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} y(s) d s
$$

Obviously, $\operatorname{Im} P=\operatorname{ker} L$ and $P^{2} x=P x$. It follows from $x=(x-P x)+P x$ that $X=\operatorname{ker} P+\operatorname{ker} L . \quad$ By simple calculation, we obtain that $\operatorname{ker} L \cap \operatorname{ker} P=\{0\}$. Hence $X=\operatorname{ker} L \oplus \operatorname{ker} P$.

From the definitions of P and K_{P}, it is easy to see that the generalized inverse of L is K_{P}. In fact, for $y \in \operatorname{Im} L$, we have

$$
\left(L K_{p}\right) y(t)=\left(K_{p} y(t)\right)^{(n)}=y(t)
$$

and for $x \in \operatorname{dom} L \cap \operatorname{ker} P$, we know that

$$
\begin{aligned}
\left(K_{p} L\right) x(t) & =\left(K_{p}\right) x^{(n)}(t)=\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} x^{(n)}(s) d s \\
& =x(t)-\left[x(0)+x^{\prime}(0) t+\ldots \cdots \cdot \frac{x^{(n-2)}(0)}{(n-2)!} t^{n-2}+\frac{x^{(n-1)}(0)}{(n-1)!} t^{n-1}\right]
\end{aligned}
$$

In view of $x \in \operatorname{dom} L \cap \operatorname{ker} P, x^{(i)}(0)=0$, for $i=0,1, \ldots, n-2$, and $P x=0$, thus

$$
\left(K_{p} L\right) x(t)=x(t)
$$

This shows that $K_{p}=\left(\left.L\right|_{\text {dom } L \cap \operatorname{ker} P}\right)^{-1}$. From the definition of K_{p}, we have

$$
\begin{aligned}
\left\|K_{p} y\right\| & =\sup _{t \in[0, \infty)} e^{-t}\left|K_{p} y\right| \leq \sup _{t \in[0, \infty)} \frac{e^{-t}}{(n-1)!} \int_{0}^{t}(t-s)^{n-1}|y(s)| d s \\
& <\frac{M_{n}}{(n-1)!} \int_{0}^{\infty}|y(s)| d s=\frac{M_{n}}{(n-1)!}\|y\|_{1}
\end{aligned}
$$

This completes the proof.
Lemma 13.3. Let $\Omega_{1}=\{x \in \operatorname{dom} L \backslash \operatorname{ker} L: L x=\lambda N x$ for some $\lambda \in[0,1]\}$. Then Ω_{1} is bounded.

Proof. Suppose that $x \in \Omega_{1}$, and $L x=\lambda N x$. Thus $\lambda \neq 0$ and $Q N x=0$, so that

$$
\int_{0}^{\infty} f(s, x(s)) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} f(s, x(s)) d s=0
$$

Thus, by condition (H2), there exists $t_{0} \in \mathbb{R}_{+}$, such that $\left|x^{(n-1)}\left(t_{0}\right)\right| \leq M$. It follows from the absolute continuity of $x^{(n-1)}$ that

$$
\left|x^{(n-1)}(0)\right|=\left|x^{(n-1)}\left(t_{0}\right)-\int_{0}^{t_{0}} x^{(n)}(s) d s\right|
$$

then, we have

$$
\begin{equation*}
\left|x^{(n-1)}(0)\right| \leq M+\int_{0}^{\infty}|L x(s)| d s \leq M+\int_{0}^{\infty}|N x(s)| d s=M+\|N x\|_{1} \tag{13.10}
\end{equation*}
$$

Again for $x \in \Omega_{1}$ and $x \in \operatorname{dom} L \backslash \operatorname{ker} L$, we have $(I-P) x \in \operatorname{dom} L \cap \operatorname{ker} P$ and $L P x=0$; thus from Lemma 13.2 ,

$$
\begin{align*}
\|(I-P) x\| & =\left\|K_{p} L(I-P) x\right\| \\
& \leq \frac{M_{n}}{(n-1)!}\|L(I-P) x\|_{1} \tag{13.11}\\
& =\frac{M_{n}}{(n-1)!}\|L x\|_{1} \leq \frac{M_{n}}{(n-1)!}\|N x\|_{1}
\end{align*}
$$

So

$$
\begin{equation*}
\|x\| \leq\|P x\|+\|(I-P) x\|=M_{n}\left|x^{(n-1)}(0)\right|+\frac{M_{n}}{(n-1)!}\|N x\|_{1} \tag{13.12}
\end{equation*}
$$

again from 13.10 and $13.11,13.12$ becomes

$$
\begin{equation*}
\|x\| \leq M_{n} M+M_{n}\|N x\|_{1}+\frac{M_{n}}{(n-1)!}\|N x\|_{1} \leq M_{n} M+2 M_{n}\|N x\|_{1} \tag{13.13}
\end{equation*}
$$

On the other hand by 13.1 we have

$$
\begin{equation*}
\|N x\|_{1}=\int_{0}^{\infty}|f(s, x(s))| d s \leq\|x\|\|\alpha\|_{1}+\|\beta\|_{1} \tag{13.14}
\end{equation*}
$$

Therefore, 13.13 and 13.14 , it yield

$$
\|x\| \leq M_{n} M+2 M_{n}\|x\|\|\alpha\|_{1}+2 M_{n}\|\beta\|_{1}
$$

since $1-2 M_{n}\|\alpha\|_{1}>0$, we obtain

$$
\|x\| \leq \frac{M_{n} M}{1-2 M_{n}\|\alpha\|_{1}}+\frac{2 M_{n}\|\beta\|_{1}}{1-2 M_{n}\|\alpha\|_{1}}
$$

So Ω_{1} is bounded.
Lemma 13.4. The set $\Omega_{2}=\{x \in \operatorname{ker} L: N x \in \operatorname{Im} L\}$ is bounded.
Proof. Let $x \in \Omega_{2}$, then $x \in \operatorname{ker} L$ implies $x(t)=c t^{n-1}, c \in \mathbb{R}$, and $Q N x=0$; therefore

$$
\int_{0}^{\infty} f\left(s, c s^{n-1}\right) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} f\left(s, c s^{n-1}\right) d s=0
$$

From condition $\left(H_{2}\right)$, there exists $t_{1} \in \mathbb{R}_{+}$, such as $\left|x^{(n-1)}\left(t_{1}\right)\right| \leq M$. We have

$$
(n-1)!|c| \leq M
$$

so $|c| \leq \frac{M}{(n-1)!}$. On the other hand

$$
\|x\|=\sup _{t \in[0 \infty)} e^{-t}|x(t)|=|c| \sup _{t \in[0 \infty)} e^{-t} t^{n-1}=|c| M_{n}
$$

i.e. $\|x\| \leq \frac{M_{n} M}{(n-1)!}<\infty$, so Ω_{2} is bounded.

Lemma 13.5. Suppose that the first part of Condition (H3) holds. Let

$$
\Omega_{3}=\{x \in \operatorname{ker} L:-\lambda J x+(1-\lambda) Q N x=0, \lambda \in[0,1]\}
$$

where $J: \operatorname{ker} L \rightarrow \operatorname{Im} Q$ is the linear isomorphism given by $J\left(c t^{n-1}\right)=c t^{n-1}$, for all $c \in \mathbb{R} t \geq 0$. Then Ω_{3} is bounded.

Proof. In fact $x_{0} \in \Omega_{3}$, means that $x_{0} \in \operatorname{ker} L$ i.e. $x_{0}(t)=c_{0} t^{n-1}$ and $\lambda J x_{0}=$ $(1-\lambda) Q N x_{0}$. Then we obtain

$$
\lambda c_{0} t^{n-1}=(1-\lambda) a e^{-t}\left(\int_{0}^{\infty} f\left(s, c_{0} s^{n-1}\right) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} f\left(s, c_{0} s^{n-1}\right) d s\right)
$$

If $\lambda=1$, then $c_{0}=0$. Otherwise, if $\left|c_{0}\right|>M^{*}$, in view of 13.3 one has

$$
\lambda c_{0}^{2} t^{n-1}=(1-\lambda) a e^{-t} c_{0}\left(\int_{0}^{\infty} f\left(s, c_{0} s^{n-1}\right) d s-\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n} f\left(s, c_{0} s^{n-1}\right) d s\right)<0
$$

which contradicts the fact that $\lambda c_{0}^{2} \geq 0$. So $\left|c_{0}\right| \leq M^{*}$, moreover

$$
\left\|x_{0}\right\|=\sup e^{-t}\left|c_{0}\right| t^{n-1}=\left|c_{0}\right| M_{n} \leq M^{*} M_{n}
$$

Therefore Ω_{3} is bounded.
Lemma 13.6. Suppose that the second part of Condition (H3) holds. Let

$$
\Omega_{3}=\{x \in \operatorname{ker} L: \lambda J x+(1-\lambda) Q N x=0, \lambda \in[0,1]\}
$$

where $J: \operatorname{ker} L \rightarrow \operatorname{Im} Q$ is the linear isomorphism given by $J\left(c t^{n-1}\right)=c t^{n-1}$, for all $c \in \mathbb{R}, t \geq 0$. Then Ω_{3} is bounded here J as in Lemma 13.5. Similar to the above argument, we can verify that Ω_{3} is bounded.
Lemma 13.7. Suppose that Ω is an open bounded subset of X such that $\operatorname{dom}(L) \cap$ $\bar{\Omega} \neq \emptyset$. Then N is L-compact on $\bar{\Omega}$.

Proof. Suppose that $\Omega \subset X$ is a bounded set. Without loss of generality, we may assume that $\Omega=B(0, r)$, then for any $x \in \bar{\Omega},\|x\| \leq r$. For $x \in \bar{\Omega}$, and by condition (13.1), we obtain

$$
\begin{aligned}
e^{-t}|Q N x| \leq & a e^{-2 t}\left[\int_{0}^{\infty}|f(s, x(s))| d s+\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n}|f(s, x(s))| d s\right] \\
\leq & a e^{-2 t}\left[\int_{0}^{\infty} e^{-s} \alpha(s)|x(s)|+\beta(s) d s\right. \\
& \left.+\frac{1}{\xi^{n}} \int_{0}^{\xi}(\xi-s)^{n}\left(e^{-s} \alpha(s)|x(s)|+\beta(s)\right) d s\right] \\
\leq & a e^{-2 t}\left[r \int_{0}^{\infty} \alpha(s) d s+\int_{0}^{\infty} \beta(s) d s+r \int_{0}^{\xi} \alpha(s) d s+\int_{0}^{\xi} \beta(s) d s\right] \\
\leq & a e^{-2 t}\left[2 r\|\alpha\|_{1}+2\|\beta\|_{1}\right] \\
\leq & 2 a\left[r\|\alpha\|_{1}+\|\beta\|_{1}\right]
\end{aligned}
$$

thus,

$$
\begin{equation*}
\|Q N x\|_{1} \leq 2 a\left[r\|\alpha\|_{1}+\|\beta\|_{1}\right] \tag{13.15}
\end{equation*}
$$

which implies that $Q N(\bar{\Omega})$ is bounded. Next, we show that $K_{P}(I-Q) N(\bar{\Omega})$ is compact. For $x \in \bar{\Omega}$, by 13.1 we have

$$
\begin{equation*}
\|N x\|_{1}=\int_{0}^{\infty}|f s, x(s)| d s \leq\left[r\|\alpha\|_{1}+\|\beta\|_{1}\right] \tag{13.16}
\end{equation*}
$$

on the other hand, from the definition of K_{P} and together with $13.6,13.15$ and 13.16) one gets

$$
\begin{aligned}
\left\|K_{P}(I-Q) N\right\| & \leq M_{n}\|(I-Q) N\|_{1} \leq M_{n}\left[\|N x\|_{1}+\|Q N x\|_{1}\right] \\
& \leq M_{n}\left[r(1+2 a)\|\alpha\|_{1}+(1+2 a)\|\beta\|_{1}\right]
\end{aligned}
$$

It follows that $K_{P}(I-Q) N(\bar{\Omega})$ is uniformly bounded.
Let us prove that T is equicontinuous. For any $x \in \bar{\Omega}$ and any $t_{1}, t_{2} \in[0, T]$ with $t_{1}<t_{2}$ and $T \in[0, \infty)$, we have

$$
\begin{aligned}
&\left|e^{-t_{1}} K_{P}(I-Q) N x\left(t_{1}\right)-e^{-t_{2}} K_{P}(I-Q) N x\left(t_{2}\right)\right| \\
&= \left.\frac{1}{(n-1)!} \right\rvert\, \int_{0}^{t_{1}} e^{-t_{1}}\left(t_{1}-s\right)^{n-1}(I-Q) N x(s) d s \\
&-\int_{0}^{t_{2}} e^{-t_{2}}\left(t_{2}-s\right)^{n-1}(I-Q) N x(s) d s \mid \\
& \leq \frac{1}{(n-1)!}\left[\int_{0}^{t_{1}} e^{-t_{2}}\left(t_{2}-s\right)^{n-1}-e^{-t_{1}}\left(t_{1}-s\right)^{n-1}|(I-Q) N x(s)| d s\right. \\
&\left.+\int_{t_{1}}^{t_{2}} e^{-t_{2}}\left(t_{2}-s\right)^{n-1}|(I-Q) N x(s)| d s\right] \\
& \leq \frac{1}{(n-1)!}\left[\int_{0}^{t_{1}}\left(e^{-\left(t_{2}-s\right)}\left(t_{2}-s\right)^{n-1}-e^{-\left(t_{1}-s\right)}\left(t_{1}-s\right)^{n-1}\right)\right. \\
& \times e^{-s}|(I-Q) N x(s)| d s \\
&\left.+\int_{t_{1}}^{t_{2}} e^{-\left(t_{2}-s\right)}\left(t_{2}-s\right)^{n-1} e^{-s}|(I-Q) N x(s)| d s\right] \\
& \leq \frac{1}{(n-1)!}\left[M_{n}^{\prime}\left(t_{2}-t_{1}\right) \int_{0}^{t_{1}} e^{-s}|(I-Q) N x(s)| d s\right. \\
&\left.+e^{-t_{2}}\left(t_{2}-t_{1}\right)^{n-1} \int_{t_{1}}^{t_{2}}|(I-Q) N x(s)| d s\right] \rightarrow 0, \quad \text { as } t_{1} \rightarrow t_{2}
\end{aligned}
$$

So $K_{P}(I-Q) N(\bar{\Omega})$ is equicontinuous on every compact subset of $[0, \infty)$. In addition, we claim that $K_{P}(I-Q) N(\bar{\Omega})$ is equiconvergent at infinity. In fact,

$$
\begin{aligned}
& \left|e^{-t} K_{p}(I-Q) N x(t)\right| \\
& \leq \frac{1}{(n-1)!} \int_{0}^{t} e^{-(t-s)}(t-s)^{n-1} e^{-s}|(I-Q) N x(s)| d s \\
& \leq \frac{M_{n}}{(n-1)!} \int_{0}^{t}|(I-Q) N x(s)| d s \leq \frac{M_{n}}{(n-1)!}\|(I-Q) N x\|_{1} \\
& \leq \frac{M_{n}}{(n-1)!}\left[\|N x\|_{1}+\|Q N x\|_{1}\right]<\infty
\end{aligned}
$$

thus, $\lim _{t \rightarrow \infty}\left|e^{-t} K_{p}(I-Q) N x(t)\right|<\infty$. Which means that $K_{P}(I-Q) N(\bar{\Omega})$ is equiconvergent

Now we are able to give the proof of Theorem 13.1, which is an immediate consequence of Theorem 12.1 and the above lemmas.

Proof of Theorem 13.1. We shall prove that all conditions of Theorem 12.1 are satisfied. Set Ω to be an open bounded subset of X such that $\cup_{i=1}^{3} \bar{\Omega}_{i} \subset \Omega$. We know that L is a Fredholm operator of index zero and N is L-compact on $\bar{\Omega}$. By the definition of Ω we have
(i) $L x \neq \lambda N x$ pour tout $(x, \lambda) \in[(\operatorname{dom} L \backslash \operatorname{ker} L) \cap \partial \Omega] \times(0,1)$;
(ii) $N x \notin \operatorname{Im} L$ pour tout $x \in \operatorname{ker} L \cap \partial \Omega$.

At last we prove that condition (iii) of Theorem 12.1 is satisfied. To this end, let

$$
H(x, \lambda)= \pm \lambda J x+(1-\lambda) Q N x
$$

By the definition of Ω we know that $\bar{\Omega}_{3} \subset \Omega$, thus $H(x, \lambda) \neq 0$ for every $x \in$ ker $L \cap \partial \Omega$. Then, by the homotopy property of degree, we obtain

$$
\begin{aligned}
\operatorname{deg}\left(\left.Q N\right|_{\operatorname{ker} L}, \Omega \cap \cap \operatorname{ker} L, 0\right) & =\operatorname{deg}(H(\cdot, 0), \Omega \cap \cap \operatorname{ker} L, 0) \\
& =\operatorname{deg}(H(\cdot, 1), \Omega \cap \cap \operatorname{ker} L, 0) \\
& =\operatorname{deg}(\pm J, \Omega \cap \cap \operatorname{ker} L, 0) \neq 0
\end{aligned}
$$

So, the third assumption of Theorem 12.1 is fulfilled and $L x=N x$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$; i.e. 11.1 - 11.2 has at least one solution in X. The prove is complete.

Assia Frioui

Laboratory of applied mathematics and modeling, University 08 Mai 45-Guelma, P.O. Box 401, Guelma 24000, Algeria

E-mail address: frioui.assia@yahoo.fr
Assia Guezane-Lakoud
Laboratory of Advanced Materials, Faculty of Sciences, University Badji MokhtarAnnaba, P.O. Box 12, 23000, Annaba, Algeria

E-mail address: a_guezane@yahoo.fr
Rabah Khaldi
Laboratory of Advanced Materials. Faculty of Sciences, University Badji MokhtarAnnaba, P.O. Box 12, 23000, Annaba, Algeria

E-mail address: rkhadi@yahoo.fr

[^0]: 2010 Mathematics Subject Classification. 34B40, 34B15.
 Key words and phrases. Boundary value problem at resonance; existence of solution;
 coincidence degree; integral condition.
 (C) 2016 Texas State University.

 Submitted October 20, 2015. Published January 19, 2016.

