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IDENTIFICATION OF AN UNKNOWN SOURCE TERM FOR A
TIME FRACTIONAL FOURTH-ORDER PARABOLIC EQUATION

SARA AZIZ, SALMAN A. MALIK

Abstract. In this article, we considered two inverse source problems for
fourth-order parabolic differential equation with fractional derivative in time.

Determination of a space dependent source term from the data given at some

time t = T is considered in one problem while other addresses the recovery of a
time dependent source term from the integral type over-determination condi-

tion. Existence and uniqueness of the solution of both inverse source problems

are proved. The stability results for the inverse problems are presented.

1. Introduction

We are concerned with the fourth-order parabolic equation

Dα,γ
0+
u(x, t) + uxxxx(x, t) = F (x, t), (x, t) ∈ Ω := [0, 1]× (0, T ], (1.1)

with initial condition

I1−γ
0+

u(x, t)|t=0 = ϕ(x), x ∈ [0, 1], (1.2)

and nonlocal boundary conditions

ux(0, t) = ux(1, t), u(0, t) = 0, (1.3)

uxxx(0, t) = uxxx(1, t), uxx(1, t) = 0, t ∈ (0, T ], (1.4)

where Dα,γ
0+

(·) stands for the generalized left sided fractional derivative of order
α and type γ in the time variable (also known as Hilfer fractional derivative),
introduced by Hilfer [12] and is given by

Dα,γ
0+
w(t) :=

[
I
(γ−α)
0+

d

dt

(
I
(1−γ)
0+

)]
w(t), 0 < α ≤ γ < 1. (1.5)

The left sided fractional integral is defined by

Iβ0+
w(t) =

1
Γ(β)

∫ t

0

(t− τ)β−1w(τ)dτ, t > 0, β > 0, (1.6)

where w ∈ L1
loc[0, T ], 0 < t < T ≤ ∞, is a locally integrable real-valued function and

Γ(·) is the Euler gamma function. The fractional derivative in (1.1) interpolates the
Riemann-Liouville fractional derivative and Caputo fractional derivative for γ = α
and γ = 1, respectively. The Riemann-Liouville fractional derivative may has
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singularity at t = 0 and usually has initial conditions in terms of fractional integral
whereas Caputo fractional derivative are used more frequently in the literature
because with Caputo derivative the initial conditions are more natural [24]. Both
Riemann-Liouville and Caputo fractional derivatives can be used in the modelling
of anomalous diffusion and the fractional derivative Dα,γ

0+
(·) has the properties of

both of these fractional derivatives.
The nonlocal boundary conditions such as in (1.3)-(1.4) arise when we cannot

measure data directly at the boundary. Such type of boundary conditions usually
known as Samarskii-Ionkin boundary conditions which arise from particle diffu-
sion in turbulent plasma and in heat propagation where the law of variation of
total quantity of the heat is given [13]. For applications of more general nonlocal
boundary conditions see [7, 36, 35].

The direct problem for (1.1)-(1.4) is the unique determination of u(x, t) in Ω̄ such
that u(·, t) ∈ C4[0, 1], Dα,γ

0+
u(x, ·) ∈ C(0, T ], when the initial condition ϕ(x) and

the source term F (x, t) are given and continuous. The direct problem with γ = 1
of homogenous equation (1.1), i.e., F (x, t) = 0 with initial condition u(x, 0) =
au(x, 1) + φ(x) and boundary conditions (1.3)-(1.4) was considered by Berdyshev
et al. in [3]. They proved existence and uniqueness of the regular solution of the
direct problem. The main concern of this paper are the following inverse problems
related to (1.1)-(1.4).

Inverse source problem I (ISP-I): For the first problem, we suppose the source
term F (x, t) depends only on the space variable, i.e., F (x, t) = f(x). The inverse
problem is to determine the source term f(x) and u(x, t) such that u(x, t) satisfies
the equation (1.1)-(1.4) from u(x, T ) = ψ(x). Indeed, we are looking for the map

ψ(x)→ {f(x), u(x, t)}, t < T.

By a regular solution of the ISP-I we mean a pair of functions {u(x, t), f(x)} such
that u(·, t) ∈ C4[0, 1], Dα,γ

0+
u(x, ·) ∈ C(0, T ] and f(x) ∈ C[0, 1].

Inverse source problem II (ISP-II): For the second problem, we consider the
source term as F (x, t) = a(t)f(x, t). We are interested in recovering the time
dependent source term a(t) and u(x, t). The inverse source problems of determi-
nation of a time dependent source term was considered by many, for example see
[37, 28, 41]. Physically, such type of source; that is, a(t)f(x, t) arise in microwave
heating process, in which the external energy is supplied to a target at a controlled
level, represented by a(t) and f(x, t) is the local conversion rate of the microwave
energy.

For problem (1.1)-(1.4) the ISP-II is not uniquely solvable an over-determination
condition of integral type given by∫ 1

0

xu(x, t)dx = g(t), t ∈ [0, T ], (1.7)

is considered, where g(t) ∈ AC[0, T ], the space of absolutely continuous functions.
The integral type condition arise naturally as over-determination condition for re-
covering the time dependent source term, in chemical engineering [6], fluid flow in
porous medium [8] and in some other applications see for example [32, 17]. A regular
solution for the ISP-II is a pair of functions {u(x, t), a(t)} such that u(·, t) ∈ C4[0, 1],
Dα,γ

0+
u(x, ·) ∈ C(0, T ] and a(t) ∈ C[0, T ].
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The spectral problem for (1.1)-(1.4) is not self-adjoint and a bi-orthogonal system
of functions is constructed from eigenfunctions of spectral and its adjoint problem.
We proved that both inverse problems are well posed in the sense of Hadamard (see
Section 3 and 4).

It is well known that the inverse problems for the parabolic equations are ill-
posed apart from this the inverse problems considered here are not easy to handle
due to the nonlocal boundary conditions (1.3)-(1.4) and the presence of generalized
fractional derivative in time. The fourth order parabolic differential equations have
been considered in applications to combustion theory [2], image smoothing and
denoising [25, 10], incompressible elasticity problem, phase transition and surface
tension problem [5], thin film theory, lubrication theory [1].

The calculus of arbitrary order integrals and derivative usually known as frac-
tional calculus could be considered as old as integer order calculus. For the history
of the subject the interested readers are referred to [26]. Fractional calculus got con-
siderable attention in mathematics and other fields of science, because fractional
integrals and derivatives were used in the modeling of many physical, chemical,
biological process (see the monographs [27, 38]).

Let us dwell with some of the articles which considered the inverse problems re-
lated to time fractional parabolic equations. A stable algorithm using mollification
techniques has been proposed by Murio [30] for the inverse problem of boundary
function for time fractional diffusion equation from a given noisy temperature dis-
tribution.

Kirane et al [19] considered two dimensional inverse source problem for time frac-
tional diffusion equation and prove the well posedness of the inverse source problem.
Jin and Rundell [16] consider the problem of recovering a spatially varying potential
for a one dimensional time fractional diffusion equation from the flux measurements
at a particular time. Li et al [21] propose algorithms for simultaneous inversion of
order of fractional derivative and a space dependent diffusion coefficient for a one
dimensional time fractional diffusion equation. Li and Yamamoto [20] considered
the recovery of orders of fractional derivatives for a multi term time fractional diffu-
sion equation. The determination of orders of space and time fractional derivatives
for space-time fractional diffusion equation was considered by Tatar et al [39]. Fu-
rati et al [9] proved existence and uniqueness results for the solution of the inverse
source problem posed for the heat equation involving generalized fractional deriva-
tive given by (1.5). Direct and inverse problems for fourth order parabolic equation
with fractional derivative in time was considered in [4]. For time fractional diffusion
equation, determination of a time dependent source was considered in [15]. Liu et
al [22] considered reconstruction of time dependent boundary sources for time frac-
tional diffusion equation. The inverse problems of recovering the space dependent
sources for time fractional diffusion equations were considered in [23], [40].

The rest of the paper is organized as follows: in Section 2, we recall some basic
definitions needed in the sequel and provide the statements of our main results.
Section 3, presents our results concerning the existence, uniqueness and continuous
dependence of the solution of ISP-I. In Section 4 we give the solution of ISP-II. In
the last section we provide some examples.
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2. Preliminaries and statements of the main results

In this section, we provide some basic definitions, notations from fractional cal-
culus (for more details see [34]) and statements of our main results.

The left sided Riemann-Liouville fractional derivative of order 0 < α < 1 is
defined by

Dα
0+
f(t) :=

d

dt
I1−α
0+

f(t) =
1

Γ(1− α)
d

dt

∫ t

0

f(τ)
(t− τ)α

dτ. (2.1)

The Riemann-Liouville fractional derivative of a constant is not equal to zero.
For f ∈ AC[0, T ] the left-hand sided Caputo fractional derivative of order 0 <

α < 1 is defined by

CDα
0+
f(t) := I1−α

0+

d

dt
f(t) =

1
Γ(1− α)

∫ t

0

f ′(τ)
(t− τ)α

dτ. (2.2)

Notice that the generalized fractional derivative Dα,γ
0+

reduces to the Riemann-
Liouville fractional derivative and Caputo fractional derivative for γ = α and γ = 1,
respectively,

Dα,α
0+

w(t) := Dα
0+
w(t), Dα,1

0+
w(t) := CDα

0+
w(t),

where Dα
0+
w(t) and CDα

0+
w(t) are the left sided Riemann-Liouville and Caputo

fractional derivatives of order 0 < α < 1 given by (2.1) and (2.2), respectively. The
Laplace transform of the generalized fractional derivative (1.5) is given by [12],

L{Dα,γ
0+
f(t)} = sαL{f(t)} − sα−γI1−γ

0+
f(t)

∣∣∣
t=0

, 0 < α ≤ γ < 1. (2.3)

Let H be a Hilbert space with the inner product 〈·, ·〉. A set of functions F in
H is called complete in the interval I if there exists no function f in H, essentially
different from zero, which is orthogonal to all the functions of the set F in the
interval I. Two sets S1 and S2 of functions of H form a bi-orthogonal system of
functions if a one-to-one correspondence can be established between them such that
the scalar product of two corresponding functions is equal to unity and the scalar
product of two non-corresponding functions is equal to zero, i.e.,

〈fi, gj〉 = δij =

{
1 i = j

0 i 6= j

where fi ∈ S1, gi ∈ S2 and δij is the Kronecker symbol. The bi-orthogonal system
is complete in H if the sets S1 and S2 forming bi-orthogonal system are complete
in H.

The Mittag-Leffler function for any z ∈ C with parameter ξ is given by

Eξ(z) =
+∞∑
k=0

zk

Γ(ξk + 1)
Re ξ > 0. (2.4)

Notice that for ξ = 1, we have E1(z) = ez.
The Mittag-Leffler type function of two parameters Eξ,β(z) which is a general-

ization of (2.4) is defined by

Eξ,β(z) =
+∞∑
k=0

zk

Γ(ξk + β)
, z, β ∈ C; Re ξ > 0. (2.5)
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The Mittag-Leffler type functions Eξ(−µtξ) and tβ−1Eξ,β(−µtξ) for µ > 0, 0 <
ξ ≤ β ≤ 1 are completely monotone functions, i.e.,

(−1)n[Eξ(−µtξ)](n) ≥ 0, (−1)n[tβ−1Eξ,β(−µtξ)](n) ≥ 0, n ∈ N ∪ {0}. (2.6)

The function Eξ,β is an entire function [33] and thus is bounded in any finite
interval, that is

Eξ,β(µtξ) ≤M, t ∈ [b, c], b ≥ 0,
for some positive constant M and furthermore, we have∫ t

0

τβ−1Eξ,β(µτ ξ)dτ <∞, for t ∈ [b, c], (2.7)

(see [33, page 9]). The Mittag-Leffler type function tβ−1Eξ,β(z) whose fractional
integral is

I1−γ
0+

[tβ−1Eξ,β(λtξ)] = tβ−γEξ,β−γ+1(λtξ), 0 ≤ γ ≤ 1, ξ, β > 0, λ ∈ R, (2.8)

plays an important role in the forthcoming sections.
The Laplace transform of tβ−1Eξ,β(λtξ) is

L{tβ−1Eξ,β(λtξ)} =
sξ−β

(sξ − λ)
, Re s > 0, |λs−ξ| < 1, (2.9)

where ξ, β, λ ∈ C, Re ξ > 0 and Reβ > 0. Also from [31], we have

λtξ|Eξ,β(−λtξ)| ≤ M, 0 < ξ < 2, β ∈ C, t ≥ 0, λ ≥ 0, (2.10)

for some constant M > 0.
For ISP-I we have the following results:

Theorem 2.1. Suppose following conditions hold:
(1) ϕ(x) ∈ C5[0, 1] be such that ϕ(0) = 0, ϕ′(0) = ϕ′(1), ϕ′′(1) = 0 = ϕiv(0)

and ϕ′′′(0) = ϕ′′′(1).
(2) ψ(x) ∈ C5[0, 1] be such that ψ(0) = 0, ψ′(0) = ψ′(1), ψ′′(1) = 0 = ψiv(0)

and ψ′′′(0) = ψ′′′(1).
Then, there exist a regular solution of the ISP-I.

Theorem 2.2. A regular solution of the ISP-I (if it exists) is unique.

Theorem 2.3. The solution of the ISP-I, under the assumptions of Theorem 2.1,
depends continuously on the given data.

For second inverse problem (ISP-II), we have the following results:

Theorem 2.4. Suppose the following conditions hold:
(1) ϕ(x) ∈ C4[0, 1] be such that ϕ(0) = 0, ϕ′(0) = ϕ′(1), ϕ′′(1) = 0 and

ϕ′′′(0) = ϕ′′′(1).
(2) f(·, t) ∈ C4[0, 1] be such that f(0, t) = 0, fx(0, t) = fx(1, t), fxx(1, t) = 0

and fxxx(0, t) = fxxx(1, t). Furthermore
∫ 1

0
xf(x, t) dx 6= 0 and

0 <
1
M∗
≤ |
∫ 1

0

xf(x, t) dx|, where M∗ > 0.

(3) g(t) ∈ AC[0, T ] and g(t) satisfies the consistency condition
∫ 1

0
xϕ(x) dx =

I1−γ
0+

g(t)|t=0. Then, the ISP-II has a regular solution, furthermore the reg-
ular solution of the ISP-II is unique.
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Theorem 2.5. A regular solution of the ISP-II (under the assumptions of Theorem
2.4) is unique.

Theorem 2.6. The solution of the ISP-II, under the assumptions of Theorem 2.4,
depends continuously on the given data.

3. Inverse Source Problem I

In this section, we present proofs of our main results. Before we proceed further
let us construct a bi-orthogonal system of functions consisting of eigenfunctions of
the spectral problem (1.1)–(1.4) and its adjoint problem.

3.1. Construction of two Riesz basis for the space L2(0, 1). The spectral
problem for the initial boundary value problem (1.1)–(1.4) given by

Xiv(x) = λX(x), x ∈ (0, 1), (3.1)

X(0) = X ′′(1) = 0, X ′(0) = X ′(1), X ′′′(0) = X ′′′(1). (3.2)

is non-self-adjoint and the adjoint problem of the spectral problem (3.1)–(3.2) is

Y iv(x) = λY (x), x ∈ (0, 1), (3.3)

Y (0) = Y (1), Y ′′(0) = Y ′′(1), Y ′(0) = Y ′′′(1) = 0. (3.4)

The set of eigenfunctions for the boundary value problem (3.1)–(3.2), corre-
sponding to eigenvalues λ0 = 0 and λn = (2πn)4, is

{X0(x) = 2x, X2n−1(x) = 2 sin 2πnx, X2n(x) =
e2πnx − e2πn(1−x)

e2πn − 1
+ cos 2πnx}

for n ∈ N and is a complete set of functions in L2(0, 1). Furthermore, this set forms
a Riesz basis for the space L2(0, 1) (see [3, Lemma 2, and Proposition 1]). The set
of eigenfunctions is not orthogonal as∫ 1

0

X0(x)X2n−1dx 6= 0.

For the adjoint problem (3.3)–(3.4), the eigenfunctions corresponding to eigenvalues
λ0 = 0 and λn = (2πn)4 are given by

{Y0(x) = 1, Y2n−1(x) =
e2πnx + e2πn(1−x)

e2πn − 1
+ sin 2πnx, Y2n(x) = 2 cos 2πnx}.

The set of functions form a bi-orthogonal system of functions under the following
one-to-one correspondence

{X0(x)︸ ︷︷ ︸
↓

, X2n−1(x)︸ ︷︷ ︸
↓

, X2n(x)︸ ︷︷ ︸
↓

},

{Y0(x), Y2n−1(x), Y2n(x)},

i.e., 〈Xi, Yj〉 = δij for i, j = 0, 2n− 1, 2n, for n ∈ N, where

〈g1, g2〉 :=
∫ 1

0

g1(x)g2(x) dx.

We are in a position to present the proof of the Theorem 2.1.
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Proof of Theorem 2.1. Expanding u(x, t) and f(x) using bi-orthogonal system of
functions, we have

u(x, t) = u0(t)X0(x) +
∞∑
n=1

u2n−1(t)X2n−1(x) +
∞∑
n=1

u2n(t)X2n(x), (3.5)

f(x) = f0X0(x) +
∞∑
n=1

f2n−1X2n−1(x) +
∞∑
n=1

f2nX2n(x), (3.6)

where u0(t), u2n−1(t), u2n(t), f0, f2n−1, and f2n for n ∈ N, are unknowns to be
determined.

From the expansion of u(x, t) given by (3.5) and using properties of the bi-
orthogonal system of functions, we have

u0(t) = 〈u(x, t), Y0(x)〉, u2n−1(t) = 〈u(x, t), Y2n−1(x)〉,
u2n(t) = 〈u(x, t), Y2n(x)〉.

Consider

u2n−1(t) = 〈u(x, t), Y2n−1(x)〉 :=
∫ 1

0

u(x, t)Y2n−1 dx .

Taking the fractional derivative under the integral and using (1.1) with F (x, t) =
f(x), we have

Dα,γ
0+
u2n−1(t) = −

∫ 1

0

uxxxxY2n−1(x) dx+
∫ 1

0

f(x)Y2n−1(x) dx.

Integrating by parts and using the boundary conditions (1.3)–(1.4), we obtain

Dα,γ
0+
u2n−1(t) + λnu2n−1(t) = f2n−1. (3.7)

Similarly, we have the linear fractional differential equations

Dα,γ
0+
u0(t) = f0, (3.8)

Dα,γ
0+
u2n(t) + λnu2n(t) = f2n. (3.9)

Taking Laplace transform of (3.7) and using formula (2.3), we obtain

L{u2n−1(t)} = I1−γ
0+

u2n−1(t)r|t=0

( sα−γ

sα + λn

)
+

f2n−1

s(sα + λn)
.

The solution of (3.7) is obtained by applying inverse Laplace transform, formula
(2.9) and L−1(L{f1(t)}L{f2(t)}) = (f1 ∗ f2)(t),

u2n−1(t) = I1−γ
0+

u2n−1(t)
∣∣∣
t=0

tγ−1Eα,γ(−λntα)

+ f2n−1

∫ t

0

τα−1Eα,α(−λnτα)dτ.
(3.10)

Similarly, the solutions of (3.8) and (3.9) are given by

u0(t) = I1−γ
0+

u0(t)
∣∣∣
t=0

tγ−1

Γ(γ)
+ f0

tα

Γ(α+ 1)
, (3.11)

u2n(t) = I1−γ
0+

u2n(t)
∣∣∣
t=0

tγ−1Eα,γ(−λntα) + f2n

∫ t

0

τα−1Eα,α(−λnτα)dτ, (3.12)

respectively. By the initial condition (1.2), we have

I1−γ
0+

u0(t)r|t=0 = ϕ0, I1−γ
0+

u2n−1(t)r|t=0 = ϕ2n−1, I1−γ
0+

u2n(t)r|t=0 = ϕ2n,
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where ϕ0, ϕ2n−1 and ϕ2n are the coefficients of series expansion of ϕ(x) when ex-
panded using the bi-orthogonal system and are given by

ϕ0 =
∫ 1

0

ϕ(x)Y0(x) dx, ϕ2n−1 =
∫ 1

0

ϕ(x)Y2n−1(x) dx,

ϕ2n =
∫ 1

0

ϕ(x)Y2n(x) dx.
(3.13)

Alike, using the condition u(x, T ) = ψ(x), we have

u0(T ) = ψ0, u2n−1(T ) = ψ2n−1, u2n(T ) = ψ2n, (3.14)

where ψ0, ψ2n−1 and ψ2n are the coefficients of series expansion of the function ψ(x)
in terms of the bi-orthogonal system of functions. �

Before we proceed further let us fix some notation

E(1)
n (t) := tγ−1Eα,γ(−λntα), E(2)

n (t) :=
∫ t

0

τα−1Eα,α(−λnτα)dτ.

By using these notation and taking (3.10)–(3.12) into account we can write

u0(t) = ϕ0
tγ−1

Γ(γ)
+ f0

tα

Γ(α+ 1)
,

u2n−1(t) = ϕ2n−1E(1)
n (t) + f2n−1E(2)

n (t),

u2n(t) = ϕ2nE(1)
n (t) + f2n mathcalE

(2)
n (t).

Due to (3.14)–(3.1) the unknowns f0, f2n−1, f2n are determined as

f0 =
(
ψ0 −

ϕ0T
γ−1

Γ(γ)

)Γ(1 + α)
Tα

, (3.15)

f2n−1 =
ψ2n−1 − ϕ2n−1E(1)

n (T )

E(2)
n (T )

, (3.16)

f2n =
ψ2n − ϕ2nE(1)

n (T )

E(2)
n (T )

. (3.17)

The solution of the ISP-I is given by the series (3.5) and (3.6), where u0(t), u2n−1(t),
u2n(t), f0, f2n−1 and f2n given by (3.1)–(3.17), respectively.

Before proceeding further, we recall [18, Lemma 5 on page 89].

Lemma 3.1. Let f ∈ L2(0, 1) and

an =
∫ 1

0

f(x)eµn(x−1)dx, bn =
∫ 1

0

f(x)e−µnxdx,

where µ is any complex number such that Reµ > 0. Then the series
∞∑
n=1

|an|2,
∞∑
n=1

|bn|2

are convergent.

Existence of the solution of the ISP-I: To show that the solution of the inverse
problem represented by the series (3.5) and (3.6) is a regular solution we need to
show that
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• The series corresponding to u(x, t), ux(x, t), uxx(x, t), uxxx(x, t), uxxxx(x, t),
and Dα,γ

0+
u(x, t) represent continuous functions.

• The series corresponding to f(x) is continuous on [0, 1].
Let

u(x, t) =W0 +
∞∑
n=1

W2n−1 +
∞∑
n=1

W2n, (3.18)

where W0 = u0(t)X0(x), W2n−1 = u2n−1(t)X2n−1(x), W2n = u2n(t)X2n(x), and
u0(t), u2n−1(t) and u2n(t) are given by (3.1)–(3.1).

We shall show that all the series involved in (3.18) represents a continuous func-
tion on Ωε := [0, 1] × [ε, T ] for ε > 0. By using (2.10) the bound for E(1)

n (t) is
obtained as

E(1)
n (t) ≤ C1

t1+α−γλn
, t ∈ [ε, T ], (3.19)

and using (2.7), we can have

E(2)
n (t) ≤ C2, t ∈ [ε, T ],

where C1 and C2 are constants. For some fixed time (say) T , using above estimates
together with (2.6)–(2.7), we can chooseM1, andM2, independent of n, such that

|E(1)
n (T )| ≤ M1, |E(2)

n (T )|−1 ≤M2, n ∈ N.

From (3.13) and integration by parts, we have

|ϕ2n−1| =
1
λn
〈ϕiv(x), Y2n−1(x)〉, |ϕ2n| =

√
2

(2πn)
〈ϕ′(x),

√
2 sin 2πnx〉,

using elementary inequality ab ≤ 1/2(a2 + b2) for all a, b ∈ R, we obtain

|ϕ2n−1| ≤
1
2

(
1
λ2
n

+ I2
n), |ϕ2n| ≤

1√
2
{ 1

(2πn)2
+ (〈ϕ′(x),

√
2 sin 2πnx〉)2},

where In = 〈ϕiv(x), Y2n−1(x)〉. By Lemma 3.1 we conclude that the series
∑∞
n=1 I2

n

converges absolutely. The sequence {
√

2 sin 2πnx}∞n=1 is an orthonormal sequence
in L2(0, 1), hence by Bessel’s inequality, we have

∞∑
n=1

|ϕ2n| ≤
1√
2
{
∞∑
n=1

1
(2πn)2

+ ‖ϕ′(x)‖2L2(0,1)}.

Also, we have
|ϕ0| = 〈ϕ(x), Y0(x)〉 ≤ 2‖ϕ(x)‖L2(0,1).

Similarly, the estimates for ψ0, ψ2n−1 and ψ2n are obtained as

|ψ0| ≤ 2‖ψ(x)‖L2(0,1),

∞∑
n=1

|ψ2n−1| ≤
1
2

( 1
λ2
n

+ J 2
n

)
,

∞∑
n=1

|ψ2n| ≤
1√
2

{ ∞∑
n=1

1
(2πn)2

+ ‖ψ′(x)‖2L2(0,1)

}
,

where Jn = 〈ψiv(x), Y2n−1(x)〉. Consequently, from (3.15)–(3.17), we obtained the
following estimates

T 1+α−γ |f0| ≤ 2C3

(
‖ψ(x)‖L2(0,1) + ‖ϕ(x)‖L2(0,1)

)
, (3.20)
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∞∑
n=1

|f2n−1| ≤
M2

2

{ 1
λ2
n

+ J 2
n +M1

( 1
λ2
n

+ I2
n

)}
, (3.21)

∞∑
n=1

|f2n| ≤
M2√

2

{ ∞∑
n=1

1
(2πn)2

+ ‖ψ′(x)‖2L2(0,1)

+M1

( ∞∑
n=1

1
(2πn)2

+ ‖ϕ′(x)‖2L2(0,1)

)}
,

(3.22)

where

C3 = max
{Γ(1 + α)

Γ(γ)
, t1−γΓ(1 + α),

tα

Γ(γ)
,
t1+2α−γ

Γ(1 + α)

}
,

for all t ∈ [ε, T ]. From estimates (3.20)–(3.22) the series expansion of f(x) given
by (3.6) represents a continuous function on Ωε.

Using (3.20)–(3.22) and |Xn(x)| ≤ 2 for n ∈ N ∪ {0}, we have the following
estimates for the series involved in (3.18),

t1+α−γ |W0| ≤ 4C3{‖ϕ(x)‖L2(0,1) + C3(‖ψ(x)‖L2(0,1) + ‖ϕ(x)‖L2(0,1))},

t1+α−γ
∞∑
n=1

|W2n−1| ≤ 2
[C1C4

λn
+
t1+α−γC2M2

2

{ 1
λ2
n

+ J 2
n +M1

( 1
λ2
n

+ I2
n

)}]
,

t1+α−γ
∞∑
n=1

|W2n| ≤ 2
[C1C5

λn
+
t1+α−γC2M2√

2

{ ∞∑
n=1

1
(2πn)2

+ ‖ψ′(x)‖2L2(0,1)

+M1(
∞∑
n=1

1
(2πn)2

+ ‖ϕ′(x)‖2L2(0,1))
}]
,

where C4 and C5 are positive constants such that
∞∑
n=1

|ϕ2n−1| ≤ C4, and
∞∑
n=1

|ϕ2n| ≤ C5.

Thus all the series in (3.18) are bounded above by uniformly convergent numerical
series. Consequently, by Weierstrass M-test the series expansion of u(x, t) given by
(3.18) is uniformly convergent in Ωε.

Notice that

Xiv
0 (x) = 0, Xiv

2n−1(x) = λnX2n−1(x), Xiv
2n(x) = λnX2n(x).

Let us show that the series representation of uxxxx(x, t) obtained from (3.18) is
uniformly convergent series.

Integration by parts leads us to the following estimates

|ϕ2n−1| =
1

(2πn)5
〈ϕv(x),

e2πnx − e2πn(1−x)

e2πn − 1
− cos 2πnx〉 =

I∗n
(2πn)5

, (3.23)

|ϕ2n| =
1

(2πn)5
〈ϕv(x), 2 sin(2πnx)〉 ≤

√
2

(2πn)5
‖ϕv(x)‖L2(0,1), (3.24)

|ψ2n−1| =
1

(2πn)5
〈ψv(x),

e2πnx − e2πn(1−x)

e2πn − 1
− cos 2πnx〉 =

J ∗n
(2πn)5

, (3.25)

|ψ2n| =
1

(2πn)5
〈ψv(x), 2 sin(2πnx)〉 ≤

√
2

(2πn)5
‖ψv(x)‖L2(0,1), (3.26)
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where I∗n = 〈ϕv(x), (e2πnx − e2πn(1−x))/(e2πn − 1)− cos 2πnx〉 and

J ∗n = 〈ψv(x), (e2πnx − e2πn(1−x))/(e2πn − 1)− cos 2πnx〉.

Using (3.23)–(3.26) in (3.15)–(3.17) the estimates for f2n−1 and f2n, are

|f2n−1| ≤ M2{
1

(2πn)5
J ∗n +

M1

λn
I∗n}, (3.27)

|f2n| ≤ M2{
2

(2πn)5
‖ψv(x)‖L2(0,1) +

2M1

(2πn)5
‖ϕv(x)‖L2(0,1)}. (3.28)

From (3.23)–(3.28) we have

t1+α−γ
∞∑
n=1

|∂
4W2n−1

∂x4
| ≤

∞∑
n=1

2λn
{ C1I∗n
λn(2πn)5

+ t1+α−γM2C2(
J ∗n

(2πn)5
+
M1I∗n
(2πn)5

)
}
,

(3.29)

t1+α−γ
∞∑
n=1

|∂
4W2n

∂x4
| ≤

∞∑
n=1

2λn
{C1‖ϕv(x)‖L2(0,1)

λn(2πn)5
+ t1+α−γM2C2

×
(‖ϕv(x)‖L2(0,1)

(2πn)5
+
M1‖ψv(x)‖L2(0,1)

(2πn)5
)}
.

(3.30)

By using the inequality 2ab ≤ (a2+b2) and Lemma 3.1 the series involved in (3.29)–
(3.30) are uniformly convergent. Moreover by the assumptions on ϕ(x) and ψ(x)
it can be concluded that the series expansion of uxxxx(x, t) is bounded above by
convergent series and represents a continuous function.

Next we show that the series corresponding to fractional derivative Dα,γ
0+
u(x, t)

is uniformly convergent, i.e.,

Dα,γ
0+

∞∑
n=1

W2n−1(t), Dα,γ
0+

∞∑
n=1

W2n(t),

are uniformly convergent. From (3.7)–(3.9), we have

Dα,γ
0+
W0 = f0X0(x), (3.31)

∞∑
n=1

Dα,γ
0+
W2n−1 =

∞∑
n=1

[λnu2n−1(t) + f2n−1]X2n−1(x), (3.32)

∞∑
n=1

Dα,γ
0+
W2n =

∞∑
n=1

[λnu2n(t) + f2n]X2n(x). (3.33)

Using estimates (3.23)–(3.28) and Weierstrass M-test, the series
∑∞
n=1D

α,γ
0+
W2n−1

and
∑∞
n=1D

α,γ
0+
W2n are uniformly convergent on Ωε.

At this stage let us recall the [34, Lemma 15.2, page 278].

Lemma 3.2. Let the fractional derivative Dα,γ
0+
fn exists for all n ∈ N and the

series
∑∞
n=1 fn and

∑∞
n=1D

α,γ
0+
fn are uniformly convergent on every subinterval

[ε, b] for ε > 0 then

Dα,γ
0+

( ∞∑
n=1

fn(x)
)

=
∞∑
n=1

Dα,γ
0+
fn(x), 0 < α ≤ γ < 1, 0 < x < b.
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By the estimates (3.23)–(3.28) and Lemmas 3.2 and 3.3 it can be deduced that the
series involved in Dα,γ

0+
u(x, t) are bounded above by uniformly convergent numerical

series and hence by Weierstrass M-test Dα,γ
0+
u(x, t) is uniformly convergent.

Proof of Theorem 2.2. (Uniqueness of the solution of the ISP-I)
Suppose {u1(x, t), f1(x)} and {u2(x, t), f2(x)} are two solution sets of the ISP-I,
then ū(x, t) = u1(x, t)− u2(x, t) and f̄(x) = f1(x)− f2(x) satisfy

Dα,γ
0+
ū(x, t) + ūxxxx(x, t) = f̄(x), (x, t) ∈ Ω, (3.34)

I1−γ
0+

ū(x, t)
∣∣∣
t=0

= 0, ū(x, T ) = 0, x ∈ [0, 1], (3.35)

ūx(0, t) = ūx(1, t), ū(0, t) = 0, t ∈ [0, T ], (3.36)

ūxxx(0, t) = ūxxx(1, t), ūxx(1, t) = 0, t ∈ [0, T ], (3.37)

Following the strategy in [29], we consider the functions

ū0(t) =
∫ 1

0

ū(x, t)Y0(x)dx,

ū2n−1(t) =
∫ 1

0

ū(x, t)Y2n−1(x)dx,

ū2n(t) =
∫ 1

0

ū(x, t)Y2n(x)dx,

(3.38)

and

f̄0 =
∫ 1

0

f̄(x)Y0(x)dx,

f̄2n−1 =
∫ 1

0

f̄(x)Y2n−1(x)dx,

f̄2n =
∫ 1

0

f̄(x)Y2n(x)dx.

(3.39)

Applying the time fractional derivative Dα,γ
0+

(·) to both sides of each equation in
(3.38), we obtain

Dα,γ
0+
ū0(t) =

∫ 1

0

Dα,γ
0+
ū(x, t)Y0(x)dx,

Dα,γ
0+
ū2n−1(t) =

∫ 1

0

Dα,γ
0+
ū(x, t)Y2n−1(x)dx,

Dα,γ
0+
ū2n(t) =

∫ 1

0

Dα,γ
0+
ū(x, t)Y2n(x)dx.

(3.40)

Let us take the third equation in (3.40). Using (3.34) together with the conditions
(3.36)-(3.37), we obtain the fractional differential equation

Dα,γ
0+
ū2n(t) + λnū2n(t) = f̄2n. (3.41)

By using Laplace transform technique the solution of (3.41) is

ū2n(t) = I1−γ
0+

ū2n(t)
∣∣
t=0

tγ−1Eα,γ(−λntα) + f̄2n

∫ t

0

τα−1Eα,α(−λnτα)dτ. (3.42)
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Since

ū2n(t) =
∫ 1

0

ū(x, t)Y2n(x)dx ⇒ I1−γ
0+

ū2n(t)
∣∣∣
t=0

=
∫ 1

0

I1−γ
0+

ū(x, t)
∣∣∣
t=0

Y2n(x)dx

and by using the initial condition from (3.35) the solution (3.42) takes the form

ū2n(t) = f̄2n

∫ t

0

τα−1Eα,α(−λnτα)dτ. (3.43)

By using the final temperature condition from (3.35), we obtain f̄2n = 0 and con-
sequently ū2n(t) = 0 for all t ∈ [0, T ].

Similarly, we can shaow that for all t ∈ [0, T ],

ū0(t) = 0, ū2n−1(t) = 0, f̄0 = 0, f̄2n−1 = 0. (3.44)

The uniqueness of the regular solution of the ISP-I follows from the completeness
of the set {Y0(x), Y2n−1(x), Y2n(x)}, n ∈ N (see [3, Lemma 2]).

It remains to show that u(x, t) given by (3.18) agrees with the initial and final
data. We have

I1−γ
0+
W0 =

{
ϕ0 +

t1+α−γ

Γ(2 + α− γ)
f0
}
X0(x),

I1−γ
0+
W2n−1

{
Eα,1(−λntα)ϕ2n−1 + t1+α−γEα,2+α−γ(−λntα)f2n−1

}
X2n−1(x),

I1−γ
0+
W2n =

{
Eα,1(−λntα)ϕ2n + t1+α−γEα,2+α−γ(−λntα)f2n

}
X2n(x).

The term by term fractional integral of (3.18) converges to I1−γ
0+

u(x, t) and it is
uniformly convergent on [ε, T ]. For t = 0 we have,

I1−γ
0+
W0|t=0 = ϕ0X0(x), I1−γ

0+
W2n−1

∣∣
t=0

= ϕ2n−1X2n−1(x),

I1−γ
0+
W2n

∣∣
t=0

= ϕ2nX2n.

Therefore,

I1−γ
0+

u(x, t)
∣∣
t=0

= ϕ0X0 +
∞∑
n=1

ϕ2n−1X2n−1 +
∞∑
n=1

ϕ2nX2n,

which is the series expansion of ϕ(x), when expanded using bi-orthogonal system.
Similarly, we can show that for u(x, t) given by (3.18) the over-determination is

also satisfied, that is, u(x, T ) = ψ(x). �

Before providing the proof of our stability result, i.e., Theorem 2.3 let us mention
the following result from [14].

Lemma 3.3. For any function f ∈ L2(0, 1) the inequality

r1‖f‖2L2(0,1) ≤
∞∑
n=0

f2
n ≤ R1‖f‖2L2(0,1), (3.45)

is valid, where r1 and R1 are constants and fn are coefficients of the bi-orthogonal
expansion of the function f in any Riesz basis {Rn(x)} given by

fn = 〈f,Wn〉, n ∈ N ∪ {0},

where {Wn(x)} is corresponding bi-orthogonal set of Riesz basis {Rn(x)}.
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Proof of Theorem 2.3. Let {u(x, t), f(x)}, {ũ(x, t), f̃(x)} be two solution sets of the
ISP-I corresponding to the data {ϕ,ψ}, {ϕ̃, ψ̃} respectively. By Lemma 3.3, we have

‖f − f̃‖L2(0,1)
2
≤ 1
r1

∞∑
n=0

(fn − f̃n)2.

Consider

(f0 − f̃0)2 =
(Γ(1 + α)

Tα

)2[(
ψ0 −

T γ−1

Γ(γ)
ϕ0

)
−
(
ψ̃0 −

T γ−1

Γ(γ)
ϕ̃0

)]2
≤ 2C2

3

[
(ψ0 − ψ̃0)2 + C2

3 (ϕ0 − ϕ̃0)2
]
,

(3.46)

where we have used (a± b)2 ≤ 2a2 + 2b2. Similarly, we have
∞∑
n=1

(f2n−1 − f̃2n−1)2

≤
∞∑
n=1

2(M2)2
[(
ψ2n−1 − ψ̃2n−1

)2

+ (M1)2(ϕ2n−1 − ϕ̃2n−1)2
]
,

(3.47)

∞∑
n=1

(f2n − f̃2n)2 ≤
∞∑
n=1

2(M2)2
[(
ψ2n − ψ̃2n

)2

+ (M1)2(ϕ2n − ϕ̃2n)2
]
. (3.48)

Setting
N = max

{
2C2

3 , 2C4
3 , 2(M1)2(M2)2, 2(M2)2

}
,

and using the estimates (3.46)-(3.48) we have
∞∑
n=0

(fn − f̃n)2

≤ 3N
[
(ϕ0 − ϕ̃0)2 +

∞∑
n=1

(ϕ2n−1 − ϕ̃2n−1)2 +
∞∑
n=1

(ϕ2n − ϕ̃2n)2

+ (ψ0 − ψ̃0)2 +
∞∑
n=1

(ψ2n−1 − ψ̃2n−1)2 +
∞∑
n=1

(ψn − ψ̃2n)2
]

≤ 3NR1

(
‖ϕ− ϕ̃‖2L2(0,1) + ‖ψ − ψ̃‖2L2(0,1)

)
.

(3.49)

By Lemma 3.3, we have

‖f − f̃‖2L2(0,1) ≤
1
r1

∞∑
n=0

(fn − f̃n)2 ≤ 3NR1

r1

(
‖ϕ− ϕ̃‖2L2(0,1) + ‖ψ − ψ̃‖2L2(0,1)

)
,

‖f − f̃‖L2(0,1) ≤
√

3NR1

r1

(
‖ϕ− ϕ̃‖L2(0,1) + ‖ψ − ψ̃‖L2(0,1)

)
.

Similarly we can obtain a stability result for u(x, t). �

4. Inverse source problem II

In this section, we shall deal with ISP-II for (1.1)–(1.4), with F (x, t) = a(t)f(x, t),
where f(x, t) is known and a pair of functions {u(x, t), a(t)} is to be determined.
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Proof of Theorem 2.4. To determine the solution of ISP-II, i.e., the pair of functions
{u(x, t), a(t)}, we expand u(x, t) and f(x, t) using bi-orthogonal system functions

u(x, t) =
∞∑
n=1

u0(t)X 0(x) +
∞∑
n=1

u2n−1(t)X2n−1(x) +
∞∑
n=1

u2n(t)X2n(x), (4.1)

f(x, t) =
∞∑
n=1

f0(t)X 0(x) +
∞∑
n=1

f2n−1(t)X2n−1(x) +
∞∑
n=1

f2n(t)X2n(x), (4.2)

where u0(t), u2n−1(t) and u2n(t) are to be determined, f0(t), f2n−1(t) and f2n(t) are
coefficients of f(x, t), when expanded by using bi-orthogonal system. The following
linear fractional differential equations are obtained

Dα,γ
0+
u 0(t) = a(t)f0(t), (4.3)

Dα,γ
0+
u2n−1(t) = −λnu2n−1(t) + a(t)f2n−1(t), (4.4)

Dα,γ
0+
u2n(t) = −λnu2n(t) + a(t)f2n(t), n ∈ N. (4.5)

The solutions of the fractional differential equations (4.3)–(4.5) are

u0(t) = ϕ0
tγ−1

Γ(γ)
+ a(t)f0(t) ∗ t

α−1

Γ(α)
, (4.6)

u2n−1(t) = ϕ2n−1E(1)
n (t) + a(t)f2n−1(t) ∗ E(3)

n (t), (4.7)

u2n(t) = ϕ2nE(1)
n (t) + a(t)f2n(t) ∗ E(3)

n (t), (4.8)

where * is the integral convolution operator and

E(3)
n (t) = tα−1Eα,α(−λntα).

Taking the generalized fractional derivative Dα,γ
0+

, under the integral sign of the
over-determination condition (1.7) and using (1.1) along with F (x, t) = a(t)f(x, t),
we obtain

a(t) =
(∫ 1

0

xf(x, t)dx
)−1(

Dα,γ
0+
g(t) +

∫ 1

0

xuxxxx(x, t)dx
)
. (4.9)

From the conditions of Theorem 2.4, we have
∫ 1

0
xf(x, t)dx 6= 0 and is given by∫ 1

0

xf(x, t)dx

=
2
3
f0(t)−

∞∑
n=1

1
πn

f2n−1(t) +
∞∑
n=1

( −1
2π2n2

+
1 + e2πn

2πn(e2πn − 1)

)
f2n(t),

(4.10)

and∫ 1

0

xuxxxx dx =
∞∑
n=1

λn

{
− 1
πn

(
E(1)
n (t)ϕ2n−1(t) + a(t)f2n−1(t) ∗ E(3)

n (t)
)

+
( −1

2π2n2
+

1 + e2πn

2πn(e2πn − 1)

)
×
(
E(1)
n (t)ϕ2n(t) + a(t)f2n(t) ∗ E(3)

n (t)
)}
.

(4.11)
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By (4.10)–(4.11), we have the following linear Volterra type integral equation of
second kind

a(t) =
(∫ 1

0

xf(x, t)dx
)−1(

Dα,γ
0+
g(t) + T (t) +

∫ t

0

K(t, τ)a(τ) dτ
)
, (4.12)

where

T (t) =
∞∑
n=1

λn

{
− 1
πn
E(1)
n (t)ϕ2n−1(t)

+
( −1

2π2n2
+

1 + e2πn

2πn(e2πn − 1)

)
E(1)
n (t)ϕ2n(t)

}
,

(4.13)

and

K(t, τ) =
∞∑
n=1

λn

{
− 1
πn

(
f2n−1(τ)E(3)

n (t− τ)
)

+
( −1

2π2n2
+

1 + e2πn

2πn(e2πn − 1)

)(
f2n(τ)E(3)

n (t− τ)
)}
.

(4.14)

�

Let us consider the space of continuous functions C[0, T ], equipped with the
Chebyshev norm

‖f‖C[0,T ] := max
0≤t≤T

|f(t)|.
Define an operator B(a(t)) := a(t), where the operator B is

B(a(t)) =
(∫ 1

0

xf(x, t)dx
)−1(

Dα,γ
0+
g(t) + T (t) +

∫ t

0

K(t, τ)a(τ) dτ
)
. (4.15)

To show that the mapping B:C[0, T ] → C[0, T ] is a contraction map. First of all,
we shall show that a(t) ∈ C[0, T ] implies that B(a(t)) ∈ C[0, T ].

By using (2.10) there exists a constant C6 such that

tE(3)
n (t) ≤ C6

λn
t ∈ [ε, T ]. (4.16)

Using (3.13), integration by parts and Bessel’s inequality, we obtained the in-
equalities

|ϕ2n−1| ≤
1
λn
In, and |ϕ2n| ≤

√
2

λn
‖ϕiv(x)‖L2(0,1).

Similarly we obtain

|f2n−1| ≤
1
λn
Hn, and |f2n| ≤

√
2

λn
‖f iv(x)‖L2(0,1),

where Hn = 〈f iv, Y2n−1〉. From estimates (3.19), (4.16) and using above relations
we have

t1+α−γ |T (t)| ≤
∞∑
n=1

C1

{ In
πnλn

+
( 1
π2n2

+
1
πn

)√2
λn
‖ϕiv(x)‖L2(0,1)

}
,

t|K(t, τ)| ≤
∞∑
n=1

C6

{ Hn
πnλn

+
( 1
π2n2

+
1
πn

)√2
λn
‖f iv(x)‖L2(0,1)

}
.
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Hence, the series (4.13) and (4.14) are uniformly convergent by Weierstrass M-test.
The uniform convergence of the series (4.14) allow us to write

‖K(t, τ)‖C[0,T ] ≤ K1, t ∈ (0, T ],

where K1 is a constant, consequently B(a(t)) ∈ C[0, T ].
Without loss of generality we set T such that T < 1/K1M

∗.
Let us show that the mapping B : C[0, T ] → C[0, T ] is contraction, for this we

take

|B(a)− B(c)| ≤M∗
∫ t

0

|a(τ)− c(τ)||K(t, τ)|dτ ≤ TK1M
∗ max
0≤t≤T

|a(τ)− c(τ)|,

‖B(a)− B(c)‖C[0,T ] ≤ TK1M
∗‖a− c‖C[0,T ],

(4.17)
thus, the mapping B(·) is a contraction which assures the unique determination of
a ∈ C[0, T ] by Banach fixed point theorem.

The solution u(x, t) is formally given by the series (4.1); the uniform conver-
gence of the series involved in u(x, t),ux(x, t), uxx(x, t), uxxx(x, t), uxxxx(x, y) and
Dα,γ

0+
u(x, t) directly follows from the estimates obtained in the previous section.

Proof of Theorem 2.5. (Uniqueness of the solution of the ISP-II) We have already
proved uniqueness of the source term a(t) in Theorem 2.4, it remains to prove
uniqueness of u(x, t).

Let u(x, t) and v(x, t) be two solutions, and let ū(x, t) = u(x, t)− v(x, t). Then
ū(x, t) satisfy the equation

Dα,γ
0+
ū(x, t) = ūxxxx(x, t), (x, t) ∈ Ω, (4.18)

with initial condition

I1−γ
0+

ū(x, t)|t=0 = 0, x ∈ [0, 1], (4.19)

and nonlocal boundary conditions

ūx(0, t) = ūx(1, t), ū(0, t) = 0 t ∈ [0, T ], (4.20)

ūxxx(0, t) = 0 = ūxxx(1, t) ūxx(1, t) = 0, t ∈ [0, T ]. (4.21)

Consider the functions

ū0(t) =
∫ 1

0

ū(x, t)Y0(x)dx,

ū2n−1(t) =
∫ 1

0

ū(x, t)Y2n−1(x)dx,

ū2n(t) =
∫ 1

0

ū(x, t)Y2n(x)dx.

Following the same steps as in the proof of Theorem 2.2, we can show that

ū0(t) = 0, ū2n−1(t) = 0, ū2n(t) = 0, t ∈ [0, T ].

Consequently, the uniqueness of the solution follows from the completeness of the
set of function {Y0(x), Y2n−1(x), Y2n(x)}, n ∈ N. �

The proof of Theorem 2.6, the stability result is similar to the proof of Theorem
2.3. Theefore, we omit it.
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5. Examples

In this section, we provide some examples for ISP-I and ISP-II.

Example 5.1. Consider the ISP-I with initial and final temperatures

ϕ(x) = sin 2πx, ψ(x) = (1 + Tα) sin 2πx.

The coefficients of the series expansions of φ(x) and ψ(x) using bi-orthogonal system
of functions are

ϕ0 = 0, ϕ2n = 0, ϕ2n−1 =

{
1/2, n = 1,
0, n 6= 1,

and

ψ0 = 0, ψ2n = 0, ψ2n−1 =

{
(1 + Tα)/2, n = 1,
0, n 6= 1.

Using (3.15)–(3.17), we have

f0 = 0, f2n = 0, f2n−1 =


(1+Tα)−E(1)1 (T )

2E(2)1 (T )
, n = 1,

0, n 6= 1.

Substituting the series coefficient of f(x) in (3.1)–(3.1) we obtain

u0 = 0, u2n = 0,

u2n−1 =


E(1)1 (t)

2 + (1+Tα)−E(1)1 (T )

2E(2)1 (T )
E(2)
1 (t), n = 1,

0, n 6= 1.

Hence the solution of ISP-I is

f(x) =
( (1 + Tα)− E(1)

1 (T )

E(2)
1 (T )

)
sin(2πx),

u(x, t) =
(
E(1)
1 (t) +

(1 + Tα)− E(1)
1 (T )

E(2)
1 (T )

E(2)
1 (t)

)
sin(2πx).

Example 5.2. Consider the ISP-II with given the data

ϕ(x) = 0, g(t) =
2
3

( tγ+1

Γ(γ)
+

tα+2

Γ(α+ 1)

)
,

f(x, t) = 2
( Γ(γ + 2)

Γ(γ)Γ(γ − α+ 2)
tγ−α +

Γ(α+ 3)
Γ(3)Γ(α+ 1)

t
)
x.

By using the bi-orthogonal system, the coefficients of the series expansion are

ϕ0 = 0, ϕ2n = 0, ϕ2n−1 = 0,

and

f0 =
Γ(γ + 2)

Γ(γ)Γ(γ − α+ 2)
tγ−α +

Γ(α+ 3)
Γ(3)Γ(α+ 1)

t, f2n = 0, f2n−1 = 0.

The solution is

u(x, t) = 2
( tγ+1

Γ(γ)
+

tα+2

Γ(α+ 1)

)
x,

which satisfies the initial condition (1.2) and the over-determination condition (1.7).
By using the value of u(x, t) in (4.9), we obtained the source term as a(t) = t.
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Hence {u(x, t), a(t)} forms the solution set for the ISP-II.
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