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STURM-LIOUVILLE BVPS WITH CARATHEODORY
NONLINEARITIES

ABDELHAMID BENMEZAÏ, WASSILA ESSERHANE, JOHNNY HENDERSON

Abstract. In this article we study the existence and multiplicity of solu-

tions for several classes of Sturm-Liouville boundary value problems having

Caratheodory nonlinearities. Many results existing in the literature for such
boundary value problems in the continuous framework will find in this work

their extensions to the Caratheodory setting.

1. Introduction

Sturm-Liouville boundary value problems (BVP for short) have been the sub-
ject of hundreds of articles during the previous five decades, where existence and
multiplicity of solutions have been investigated. Often, these works are considered
in the continuous framework. For this reason, we are concerned here with existence
and multiplicity of solutions for Sturm-Liouville BVPs posed in the Caratheodory
framework given by,

£u = f(t, u, µ) in (ξ, η) a.e.,

au(ξ) + bpu′(ξ) = 0,

cu(η) + dpu′(η) = 0,

(1.1)

where −∞ ≤ ξ < η ≤ +∞, £u = −(pu′)′ + qu for u ∈ dom(£), 1/p, q ∈ L1(ξ, η),
p > 0 in (ξ, η) a.e., (a2+b2)(c2+d2) 6= 0 and f : (ξ, η)×R×R→ R is a Caratheodory
function, that is,

(i) f(t, ·, ·) is continuous for a.e. t ∈ (ξ, η),
(ii) f(·, u, µ) is measurable for all u, µ ∈ R.

In what follows, we let m : (ξ, η)→ [0,+∞) be in L1(ξ, η) such that m is positive on
a subset of positive measure, α, β ∈ L1(ξ, η) and g : (ξ, η)×R→ R is a Caratheodory
function. Our first contribution in this work concerns the linear version of (1.1),
namely the case where f(t, u, µ) = µm(t)u and (1.1) takes the form

£u = µmu in (ξ, η) a.e.,

au(ξ) + bpu′(ξ) = 0,

cu(η) + dpu′(η) = 0.

(1.2)
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So far we know, the best result existing in the literature (see [41, Theorem 4.9.1])
states that (1.1) admits an increasing sequence of simple eigenvalues (µk)k≥1such
that limk→∞ µk = +∞ and if φk is the eigenfunction associated with µk and zk is
its number of zeros, then zk+1 = zk + 1. Moreover, if m > 0 in (ξ, η) a.e., then
z1 = 0. We obtain in this work (see Corollary 3.14) that although m(t) > 0 a.e.
t ∈ (ξ′, η′)  (ξ, η), we have always z1 = 0.

In fact Corollary 3.14 is a consequence of Theorem 3.10 which is the second
contribution in this work. This result concerns the case where f(t, u, µ) = µm(t)u+
α(t)u+ − β(t)u−, and the BVP (1.1) takes the form

£u = µmu+ αu+ − βu− in (ξ, η) a.e.,

au(ξ) + bpu′(ξ) = 0,

cu(η) + dpu′(η) = 0.

(1.3)

Note that such a nonlinearity f is positively 1-homogeneous and it is linear on
[0,+∞) and on (−∞, 0]. For this reason, the BVP (1.3) is said to be half-linear
and if (µ, u) is a nontrivial solution, we say that µ is a half-eigenvalue of BVP
(1.3). Clearly, if α = β = 0 then BVP (1.3) coincides with the linear eigenvalue
BVP (1.2) and this exhibits that the concept of half-eigenvalue generalizes that
of eigenvalue. Such types of BVPs have been considered for the first time in [6],
where the author introduced the concept of half-eigenvalue. He proved in the case
where −∞ < ξ < η < +∞, p ∈ C1[ξ, η], q,m, α, β ∈ C[ξ, η] and m > 0 in [ξ, η],
that BVP (1.3) admits two increasing sequences of simple half-eigenvalues (µ+

k )k≥1

and (µ−k )k≥1. Theorem 3.10 states that the Berestycki’s result holds for our more
general case. In [9], Binding and Rynne studied existence of half-eigenvalues and
their properties for the periodic version of BVP ((1.3). The importance of the
concept of half-eigenvalue in the theory of Sturm-Liouville BVPs appears clearly in
all existence and multiplicity results (see [9, Theorems 5.1, 5.3, 5.4]).

Our third contribution consists in Theorem 4.3 of Section 4, where is examined
the perturbed version of the BVP (1.3),

£u = µmu+ ug(t, u) in (ξ, η) a.e.,

au(ξ) + bpu′(ξ) = 0,

cu(η) + dpu′(η) = 0,

(1.4)

where g(t, 0) = 0, limu→+∞ g(t, u) = α(t), limu→−∞ g(t, u) = β(t) a.e. t ∈ (ξ, η).
Theorem 4.3 concerns the bifurcation diagram of the BVP (1.4). It describes the
asymptotic behavior of the two components ζ+

k and ζ−k bifurcating from the kth-
eigenvalue µk of the BVP (1.2). More precisely, it states that each one of the
components ζ+

k and ζ−k rejoins respectively the points (µ+
k ,∞) and (µ−k ,∞) where

(µ+
k )k≥1 and (µ−k )k≥1 are the two sequences of half-eigenvalues of BVP (1.3). Note

that if either µκk < 1 < µk, or µk < 1 < µκk with κ = + or −, then the BVP

£u = ug̃(t, u) in (ξ, η) a.e.,

au(ξ) + bpu′(ξ) = 0,

cu(η) + dpu′(η) = 0,

(1.5)

where g̃(t, u) = m(t) + g(t, u), admits a nontrivial solution. Thus, in Section 5,
we present situations where this is the case and our contribution consists in The-
orem 5.1 and its corollary (Corollary 5.2). In fact, Theorem 5.1 is composed of
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four assertions and each assertion presents a situation where (1.5) admits nodal
solutions. The first two assertions generalize and improve many results existing in
the literature and so far we know, the last two ones presents new existence results.

In the last section, we consider the case where f(t, u, µ) = g(t, u) − µφ + h,
φ, h ∈ L1(ξ, η), and the BVP (1.1) takes the form

£u = g(t, u)− µφ+ h in (ξ, η) a.e.,

au(ξ) + bpu′(ξ) = 0,

cu(η) + dpu′(η) = 0,

(1.6)

Such a class of nonlinearities is known in the literature by jumping nonlinearities,
and the particular case of BVP (1.6) having such a nonlinearity

−u′′ = ψ(u)− µ sin(t)− h in (0, π),

u(0) = u(π) = 0,
(1.7)

where h ∈ C[0, π] and
∫ η
ξ
h(t) sin(t)dt = 0, has been widely investigated in the

literature. Denote by (λk)k≥1 the sequence of eigenvalues of the BVP

−u′′ = λu in (0, π),

u(0) = u(π) = 0,

and note that sin(t) is the eigenfunction associated with the first eigenvalue λ1.
Suppose that ψ ∈ C1(R) and set a± = limu→±∞ ψ′(u), the first existence result for
BVP (1.7) was obtained by Hammerstein in [20], where he proved that if a−, a+ <
λ1 then BVP (1.7) admits at least one solution. Moreover, if ψ′(u) < λ1 for all
u ∈ R, then the solution is unique. Dolph extended Hammerstein’s result in [18],
to the case where λk < a−, a+ < λk+1 for some integer k ≥ 1 and he proved that
the solution is unique whenever λk < ψ′(u) < λk+1. The nonlinearity ψ under the
hypothesis a−, a+ < λ1 or µk < a−, a+ < λk+1 is said to be without jump since
there is no eigenvalue in the interval I = (min(a−, a+),max(a−, a+)).

The case where I contains exactly one eigenvalue, has been considered for the
first time in [2], under the assumptions that ψ ∈ C2(R) is convex and 0 < a− < λ1 <
a+ < λ2, in which case the authors proved by means of a generalized version of the
global inversion theorem to operators having singularities, existence of a manifold Γ
in C[0, π] such that C[0, π]rΓ consists of two components Γ0 and Γ2, and (1.7) has
no solution if h̃ = µ sin(t) + h ∈ Γ0, exactly two solutions if h̃ ∈ Γ2, and a unique
solution if h̃ ∈ Γ. In [32], the authors relaxed the condition 0 < a− < λ1 < a+ < µ2

to that −∞ < a− < λ1 < a+ < µ2, and in [8] the authors proved existence of µ̄
such that Γ = {h̃ = µ sin(t) + h : µ = µ̄}, Γ0 = {h̃ = µ sin(t) + h : µ < µ̄} and
Γ2 = {h̃ = µ sin(t) + h : µ > µ̄}. Many other extensions of the Ambrosetti-Prodi
result are obtained in [1, 3, 11, 17, 22, 38]. The case where I contains more than
one eigenvalue is considered in [10, 12, 15, 21, 24, 25, 26, 27, 36, 35, 37, 39]. The
best result obtained for the minorant of the number of solutions to BVP (1.7) in
the above cited references is: if λj−1 < a− < λj < · · · < λi < a+ < λi+1 for
some integers i, j ≥ 1 with i ≥ 2(j − 1), then the BVP (1.7) admits 2(i − (j − 1))
nontrivial solutions for µ large.

In this section, we assume that g and ∂g
∂u are Caratheodory functions and the

nonlinearity g has the linear behavior at ±∞, limu→+∞ g(t, u)/u = α(t), and
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limu→−∞ g(t, u)/u = β(t) a.e. t ∈ (ξ, η). Our first contribution consists in Theo-
rem 6.1 and its corollary (Corollary 6.3). This theorem provide an existence and
uniqueness result of a solution to (1.6) for all µ ∈ R and φ, h ∈ L1(ξ, η), and Corol-
lary 6.3 consider the case where the nonlinearity g is a separated variables function
and shows that Theorem 6.1 is an extension of Hammerstein’s and Dolph’s results
to the case of Sturm-Liouville BVPs posed in the Caratheodory frame-work. Theo-
rem 6.1 is proved by means of degree theory and eigenvalue properties. The second
contribution in this section consists in Theorem 6.7 and its corollary (Corollary
6.11). Theorem 6.7 provides a multiplicity result for BVP (1.6) and Corollary 6.11
consider the case where the nonlinearity g is a separated variables function and
shows that Theorem 6.7 recuperates the minorant of the number of solutions to
(1.7) obtained in [10, 12, 15, 21, 24, 25, 26, 27, 36, 35, 37, 39] for our general case
of Sturm-Liouville BVPs posed in the Caratheodory frame-work.

In the last part of the last section, we present a result (Theorem 6.14) which
states that the Ambrosetti-Prodi situation holds for the particular case of BVP (1.7)
where the nonlinearity g is a separated variables function; Namely we consider the
BVP

£u = m(t)g1(u)− µφ+ h in (ξ, η) a.e.,

au(ξ) + bpu′(ξ) = 0,

cu(η) + dpu′(η) = 0,

(1.8)

where g1 ∈ C2(R,R) and limu→±∞ g′1(u) = g±. We prove by means of a shooting
method that if g′′1 > 0 and g− < µ1 < g+ < µ2 where µ1 and µ2 are respectively
and the second eigenvalues of (1.2), then there exists µ∗ such that (1.8) admits

(a) no solution if µ < µ∗,
(b) a unique solution if θ = µ∗, and
(c) exactly two solutions if θ > µ∗.

The main tool used in this article to obtain multiplicity results, is the global bifurca-
tion theory established by Rabinowitz in [34] on which Dancer gives more precision
in [16]. This theory remains a very powerful tool to prove existence and multiplicity
results for BVP (1.1), see for example [4, 5, 13, 14, 19, 28, 29, 30, 31, 40].

All the above contributions are presented in Sections 3-6 and Section 2 is devoted
to some preliminary results. All these results are not original and we can find in the
literature similar utterances, for example the case where τ ∈ R of Theorem 2.2 can
be easily found in the literature, although its extension to the case τ = ±∞ is easy
to prove, we haven’t find in the literature a result providing this situation. Also,
we met the spirit of Lemmas 2.8 and 2.9 in [6] but these two results are not clearly
stated in the above cited wok. For this reason and for sake of completeness, some
results in Section Preleminaries are stated and proved in the manner which agree
with the spirit of this work. We end this introduction with the following useful
lemma:

Lemma 1.1 ([23, Corollary 4.7]). Let p ∈ [1,∞), f ∈ Lp(Ω) and (fn) be a sequence
in Lp(Ω) where Ω is a measurable set in RN . If fn → f a.e. in Ω and lim ‖fn‖p =
‖f‖p, then lim ‖f − fn‖p = 0.
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2. Preliminaries

2.1. Notation.

∆1 = {(ξ, η) : −∞ ≤ ξ < η ≤ +∞} = R× R,
∆2 = {(ξ, η, p) : ρ1 = (ξ, η) ∈ ∆1 and 1/p ∈ K+

ρ },
∆3 = {(ξ, η, p, q) : ρ1 = (ξ, η) ∈ ∆1, ; (ξ, η, p) ∈ ∆2 and q ∈ L1

ρ1},
∆4 = {(ξ, η, p, 0, a, b, c, d) : (ξ, η, p) ∈ ∆2 and (a2 + b2)(c2 + d2) 6= 0},

∆ = {(ξ, η, p, q, a, b, c, d) : (ξ, η, p, q) ∈ ∆3 and (ξ, η, p, 0, a, b, c, d) ∈ ∆4} .

For ρ1 = (ξ, η) ∈ ∆1, we define

L1
ρ1 =

{
m : (ξ, η)→ R measurable

∫ η

ξ

|m(s)|ds <∞
}
,

Kρ1 = {m ∈ L1
ρ1 : m ≥ 0 a.e. in (ξ, η)},

K∗ρ1 = {m ∈ Kρ1 : m is positive in a subset of positive measure},
K+
ρ1 = {m ∈ Kρ1 : m > 0 a.e. in (ξ, η)},

Cρ1 =
{
u : (ξ, η)→ R : u is continuous and

lim
t→ξ

u(t), lim
t→η

u(t) exist and are finite
}
,

ACρ1 = {u ∈ Cρ1 : u′ ∈ L1
ρ1}.

For ρ2 = (ξ, η, p) ∈ ∆2, we define the linear spaces

Wρ2 = {u ∈ ACρ1 : u[p] ∈ Cρ1}, W̃ρ2 = {u ∈Wρ2 : u[p] ∈ ACρ1},

where ρ1 = (ξ, η) and u[p] = pu′ is the quasi-derivative of u. These two spaces,
respectively, with the norms

‖u‖1 = sup
t∈(ξ,η)

|u(t)|+ sup
t∈(ξ,η)

|u[p](t)|, ‖u‖2 = ‖u‖1 +
∫ η

ξ

|u[p](t)|dt

become Banach spaces.
For the sake of simplicity, we write for u ∈ Wρ2 , u(+∞), u[p](+∞) instead of

limt→+∞ u(t), limt→+∞ u[p](t) when η = +∞ and u(−∞), u[p](−∞) instead of
limt→−∞ u(t), limt→−∞ u[p](t) when ξ = −∞. Let u ∈ Wρ2 and t0 be such that
ξ ≤ t0 ≤ η. If u(t0) = 0 and u[p](t0) 6= 0, then t0 is said to be a simple zero of u.

Throughout this paper, for ρ3 = (ξ, η, p, q) ∈ ∆3, £ρ3 is the differential operator
defined for u ∈ W̃ρ2 where ρ2 = (ξ, η, p) by

£ρ3u(x) = −(u[p])′(x) + q(x)u(x).

For ρ4 = (ξ, η, p, 0, a, b, c, d) ∈ ∆4, Blρ4 , B
r
ρ4 are the operators given, for u ∈ W̃ρ2

where ρ2 = (ξ, η, p), by

Blρ4u = au(ξ) + bu[p](ξ), Brρ4u = cu(η) + du[p](η),

and Eρ4 is the subspace of Wρ2 defined by

Eρ4 = {u ∈Wρ2 : Blρ4u = Brρ4u = 0}.

For integers k ≥ 1, Sk,+ρ4 denotes the set of functions u ∈ Eρ4 having exactly
(k − 1) zeros in (ξ, η), all are simple and u is positive in a right neighbourhood
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of ξ. It is well known that Sk,+ρ4 , Sk,−ρ4 = −Sk,+ρ4 and Skρ4 = Sk,+ρ4 ∪ S
k,−
ρ4 are open

sets in Eρ4 and if u ∈ ∂Sk,κρ4 , (κ = +,−), then there exists τ ∈ (ξ, η) such that
u(τ) = u[p](τ) = 0. For u ∈ Skρ4 , (zj)

j=k
j=0 with ξ = z0 < z1 < · · · < zk = η and

u(zj) = 0 for j = 1, . . . , k − 1, is said to be the sequence of zeros of u.
For ρ1 ∈ ∆1 and κ = + or −, let Iκ : Cρ1 → Cρ1 be defined by Iκu(x) =

max(κu(x), 0).
For all u ∈ E, we have

u = I+u− I−u, |u| = I+u+ I−u.

This implies that, for all u, v ∈ E,

|I+u− I+v| ≤ |u− v|
2

+
||u| − |v||

2
≤ |u− v|,

|I−u− I−v| ≤ |u− v|
2

+
||u| − |v||

2
≤ |u− v|,

(2.1)

and the operators I+, I− are continuous.

Remark 2.1. Throughout this paper, when there is no confusion, we write for
ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆, L1

ρ, Kρ, K∗ρ , K+
ρ , Cρ, ACρ, Wρ, W̃ρ, Eρ, Sk,+ρ , Sk,−ρ ,

Skρ , £ρ, Blρ, B
r
ρ instead of L1

ρ1 , Kρ1 , K∗ρ1 , K+
ρ1 , Cρ1 , ACρ1 , Wρ2 , W̃ρ2 , £ρ3 , Blρ4 ,

Brρ4 , Eρ4 , Sk,+ρ4 , Sk,−ρ4 , Skρ4 , where for i ∈ {1, 2, 3, 4}, ρi is the projection of ρ onto
∆i.

2.2. Initial value problem. In this subsection we let ρ3 = (ξ, η, p, q) ∈ ∆3, ρ1 =
(ξ, η), ρ2 = (ξ, η, p), γ, δ ∈ R and τ is such that ξ ≤ τ ≤ η. Consider the initial
value problem (IVP for short);

£ρ3u = f(t, u),

u(τ) = γ,

u[p](τ) = δ,

(2.2)

where f : (ξ, η)× R→ R is a Caratheodory function; that is,
(1) f(·, u) is measurable for all u ∈ R,
(2) f(t, ·) is continuous for a.e. t ∈ (ξ, η).

Suppose that
f(·, 0) ∈ L1

ρ1 . (2.3)

By a solution to (2.2), we mean a function φ ∈ W̃ρ2 such that £ρ3φ = f(t, φ) and
φ(τ) = γ, φ[p](τ) = δ.

Theorem 2.2. Assume that Hypothesis (2.3) holds and there exists ψ ∈ L1
ρ1 such

that for all x, y ∈ R and a.e. t ∈ (ξ, η),

|f(t, x)− f(t, y)| ≤ ψ(t)|x− y|.
Then (2.2) admits a unique solution.

Proof. Clearly, u is a solution to (2.2) if and only if (u, u[p]) is a solution to the
first-order IVP

U ′ = F (t, U)

U(τ) = (γ, δ)
(2.4)

where for U = (u, v) and t ∈ (ξ, η), F (t, U) =
(
v
p(t) , q(t)u− f(t, u)

)
.
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Let κ > 1 and X = Cρ1 × Cρ1 be equipped with the norm,

‖(u, v)‖κ = sup
t∈(ξ,η)

(
exp(−κ

∣∣ ∫ t

τ

ω(r)dr
∣∣)(|u(t)|+ |v(t)|)

)
where ω = |q|+ ψ + 1

p . Note that the norm ‖ · ‖κ is equivalent to the norm ‖ · ‖∞
defined for (u, v) ∈ X by ‖(u, v)‖∞ = supt∈(ξ,η) |u(t)|+ supt∈(ξ,η) |v(t)|.

At this stage, we have that U = (u, v) ∈ X is a solution to (2.4) if and only if
U(t) = TU(t) where TU(t) = (γ, δ) +

∫ t
τ
F (s, U(s))ds. Since

|F (s, U(s))| ≤ |F (s, U(s))− F (s, 0)|+ |F (s, 0)|

≤ 1
p(s)
|v(s)|+ (|q(s)|+ ψ(s))|u(s)|+ |f(s, 0)|

the operator T : X → X is well defined. Therefore, it suffices to prove that T is a
contraction.

To this aim let U1 = (u1, v1), U2 = (u2, v2) ∈ X, we have

|F (s, U1(s))− F (s, U2(s))|

≤ |v1(s)− v2(s)|
p(s)

+ (|q(s)|+ ψ(s))|u1(s)− u2(s)|

≤ ω(s)|U1(s)− U2(s)|

(2.5)

and

S(t) = exp(−κ|
∫ t

τ

ω(r)dr|)|TU1(t)− TU2(t)|

= |
∫ t

τ

e−κ|
R t
s
ω(r)dr|(F (s, U1(s))− F (s, U2(s)))e−κ|

R s
τ
ω(r)dr|ds|.

(2.6)

Hence, we obtain from (2.5) and (2.6) that if t > τ , then

S(t) ≤
∫ t

τ

e−κ
R t
s
ω(r)dr|F (s, U1(s))− F (s, U2(s))|e−κ

R s
τ
ω(r)drds

≤
∫ t

τ

e−κ
R t
s
ω(r)drω(s)|U1(s)− U2(s)|e−κ

R s
τ
ω(r)drds

≤ (
∫ t

τ

e−κ
R t
s
ω(r)drω(s)ds)‖U1 − U2‖κ

≤ 1
κ
‖U1 − U2‖κ

and if t < τ , then

S(t) ≤
∫ τ

t

e−κ
R s
t
ω(r)dr|F (s, U1(s))− F (s, U2(s))|e−κ

R τ
s
ω(r)drds

≤
∫ τ

t

e−κ
R s
t
ω(r)drω(s)|U1(s)− U2(s)|e−κ

R τ
s
ω(r)drds

≤
(∫ τ

t

ω(s)e−κ
R s
t
ω(r)drds

)
‖U1 − U2‖κ

≤ 1
κ
‖U1 − U2‖κ.
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The above estimates on S(t) lead to ‖TU1−TU2‖κ ≤ 1
κ‖U1−U2‖κ and (2.2) admits

a unique solution, thus completing the proof. �

The following corollary is obtained from Theorem 2.2 and is an extension of [41,
Theorem 2.2.1] to the case where τ can be infinite.

Corollary 2.3. For all ρ3 = (ξ, η, p, q) ∈ ∆3, γ, δ ∈ R and ξ ≤ τ ≤ η and f ∈ L1
ρ1

with ρ1 = (ξ, η), the IVP

£ρ3u = f,

u(τ) = γ,

u[p](τ) = δ,

admits a unique solution.

Now consider the IVP
£ρ3u = ug(t, u),

u(τ) = 0,

u[p](τ) = 0,

(2.7)

where g : (ξ, η)× R→ R is a Caratheodory function.

Corollary 2.4. Assume that

|g(t, u)| ≤ ψ(t) for all u ∈ R and a.e. t ∈ (ξ, η)

for some ψ ∈ L1
ρ1 . Then the trivial function is the unique solution for (2.7).

Proof. Indeed, if (λ, u) is a solution to (2.7) then u is a solution of the IVP

−(pv′)′ + (q + qu)v = 0,

v(τ) = 0,

v[p](τ) = 0,

where qu(t) = −g(t, u(t)). Since the hypothesis in Corollary 2.4 guarantees that
qu ∈ L1

ρ1 , we have from Corollary 2.3 that u is the unique solution of (2.7). �

2.3. Comparison results.

Definition 2.5. Let ρ2 = (ξ, η, p) ∈ ∆2 and u, v ∈ Wρ2 . The function Wr(u, v) =
uv[p] − u[p]v is called the Wronksian of u, v.

It is easy to prove the following lemma.

Lemma 2.6. Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆ and u, v ∈Wρ. We have

[i) If Blρu = Blρv = 0, then Wr(u, v)(ξ) = 0;
(ii) If Brρu = Brρv = 0, then Wr(u, v)(η) = 0;

(iii) If Wr(u, v)(t0) 6= 0 for some t0 ∈ (ξ, η) and £ρu = £ρv = 0, then {u, v}
form a basis of the space of solutions to the differential equation £ρw = 0.

The proof of the following lemma is similar to that of [6, Lemma 2], so it is
omitted.
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Lemma 2.7. Let j and k be two integers such that j ≥ k ≥ 2. Suppose that there
exist two families of real numbers

ξ0 = ξ < ξ1 < ξ2 < · · · < ξk−1 < ξk = η,

η0 = ξ < η1 < η2 < · · · < ηj−1 < ηj = η.

Then, if ξ1 < η1, there exist two integers m and n having the same parity, 1 ≤ m ≤
k − 1 and 1 ≤ n ≤ j − 1 such that

ξm < ηn ≤ ηn+1 ≤ ξm+1.

Lemma 2.8. Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆ and let for i = 1, 2, φi ∈ Ski,κρ having
a sequence of zeros (zij)

j=ki
j=0 . If for some integers m,n with m ≤ k1−1 and n ≤ k2−1

we have φ1φ2 > 0 and z1
m ≤ z2

n < z2
n+1 ≤ z1

m+1, then
∫ z2n+1

z2n
φ1£ρφ2 − φ2£ρφ1 ≥ 0.

Moreover,
∫ z2n+1

z2n
φ1£ρφ2 − φ2£ρφ1 = 0 if and only if z1

m = z2
n < z2

n+1 = z1
m+1.

Proof. Without loss of generality, suppose that φ1, φ2 > 0 in (z2
n, z

2
n+1) and let Wr

be the Wronksian of φ1 and φ2. Set I =
∫ z2n+1

z2n
φ1£ρφ2 − φ2£ρφ1 and note that

I = Wr(z2
n)−Wr(z2

n+1).
We distinguish four cases:

(i) ξ = z2
n < z2

n+1 = η: In this case we have I = Wr(ξ)−Wr(η) = 0.
(ii) ξ = z2

n < z2
n+1 < η: In this case we have Wr(ξ) = 0, φ1(z2

n+1) ≥ 0,
φ2(z2

n+1) = 0, φ[p]
2 (z2

n+1) < 0, leading to

I = −Wr(z2
n+1) = −φ1(z2

n+1)φ[p]
2 (z2

n+1) ≥ 0.

Clearly, if I = 0 then φ1(z2
n+1) = 0 and z1

m+1 = z2
n+1.

(iii) ξ < z2
n < z2

n+1 = η: In this case we have Wr(η) = 0, φ1(z2
n) ≥ 0, φ2(z2

n) =
0, φ[p]

2 (z2
n) > 0, leading to I = Wr(z2

n) = φ1(z2
n)φ[p]

2 (z2
n) ≥ 0. Clearly, if

I = 0 then φ1(z2
n) = 0, proving that z1

m = z2
n.

(iv) ξ < z2
n < z2

n+1 < η: In this case we have φ1(z2
n) ≥ 0, φ1(z2

n+1) ≥ 0,
φ2(z2

n) = 0, φ2(z2
n+1) = 0, φ[p]

2 (z2
n) > 0, φ[p]

2 (z2
n+1) < 0 (see Figure 1),

leading to I = φ1(z2
n)φ[p]

2 (z2
n) − φ1(z2

n+1)φ[p]
2 (z2

n+1) ≥ 0. Clearly, if I = 0
then φ1(z2

n) = φ1(z2
n+1) = 0, proving that z1

m = z2
n and z1

m+1 = z2
n+1.

�

�
�
��

@
@R

@
@
@R

�
��

-z1
m z1

m+1

z1
m z1

m+1

z2
n z2

n+1

z2
n z2

n+1

φ1

φ2

φ1

φ2

Figure 1. Bumps
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Lemma 2.9. Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆ and let φ1, φ2 be respectively two
functions in Sk,κρ ∩ W̃ρ. Then, there exist two intervals (ξ1, η1) and (ξ2, η2) such
that φ1φ2 > 0 in (ξ1, η1) and in (ξ2, η2). Moreover,∫ η1

ξ1

φ1£ρφ2 − φ2£ρφ1 ≥ 0,
∫ η2

ξ2

φ1£ρφ2 − φ2£ρφ1 ≤ 0.

Proof. Without loss of generality, suppose that κ = + and let for i = 1, 2, (zij)
j=k
j=0

the sequence of zeros of φi. Since the case k = 1 is obvious, we suppose that k ≥ 2.
We distinguish two cases

(i) z1
1 = z2

1 : In this case let θ = inf(z1
2 , z

2
2). From Lemma 2.8, we have∫ z11

ξ

φ1£ρφ2 − φ2£ρφ1 = 0,
∫ θ

z11

φ1£ρφ2 − φ2£ρφ1{

{
≥ 0 if θ = z2

2

≤ 0 if θ = z1
2 .

Thus, if θ = z1
2 , we take (ξ1, η1) = (ξ, z1

1), (ξ2, η2) = (z1
1 , z

1
2) and if θ = z2

2 ,
we take (ξ1, η1) = (ξ, z1

1), (ξ2, η2) = (z1
2 , z

2
2).

(ii) z2
1 < z1

1 , (the case z1
1 < z2

1 is checked similarly): In this case Lemma
2.7 guarantees existence of two integers m,n ≥ 1 having the same parity
such that z2

m < z1
n < z1

n+1 ≤ z2
m+1. Thus, we take (ξ1, η1) = (ξ, z2

1) and
(ξ2, η2) = (z1

n, z
1
n+1) and we have from Lemma 2.8,∫ η1

ξ1

φ1£ρφ2 − φ2£ρφ1 ≥ 0,
∫ η2

ξ2

φ1£ρφ2 − φ2£ρφ1 ≤ 0.

This completes the proof. �

Lemma 2.10 ([6]). Let ρ ∈ ∆ and let w1, w2 be two functions in W̃ρ and assume
that w2 does not vanish identically and £ρw1 = m1w1 and £ρw2 = m2w2 where
m1, m2 ∈ L1

ρ are such that (m1 −m2) ∈ K∗ρ . Suppose that either
(1) w2(ξ) = w2(η) = 0, or
(2) for i = 1, 2 Blρwi = 0 and w2(η) = 0, or
(3) for i = 1, 2 Brρwi = 0 and w2(ξ) = 0 ,or
(4) for i = 1, 2 Blρwi = 0 and Brρwi = 0.

Then there exists τ ∈ (ξ, η) such that w1(τ) = 0.

2.4. Green’s function. For ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆ let Φρ and Ψρ be respec-
tively the solutions obtained from Theorem 2.3 to the equations

£ρu = 0

u(ξ) = b,

u[p](ξ) = −a,

£ρu = 0

u(η) = d,

u[p](η) = −c,

and Wrρ = Wr(Φρ,Ψρ). Note that because W ′rρ = 0, we have Wrρ(t) =
Wr(Φρ,Ψρ)(ξ) for all t ∈ (ξ, η).

Theorem 2.11. Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆ and assume that the trivial func-
tion 0 is the unique solution to the BVP

£ρu = 0 a.e. in (ξ, η),

Blρu = Brρu = 0.
(2.8)

Then, there exists a unique function Gρ : (ξ, η)× (ξ, η)→ R such that
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(1) Gρ is uniformly continuous, bounded and symmetric.
(2) For s0 ∈ (ξ, η) fixed, the function H0(t) = Gρ(t, s0) satisfies the differen-

tial equation (2.8) in each of intervals (ξ, s0) and (s0, η) and the boundary
conditions in (2.8).

(3) For s0 ∈ (ξ, η) fixed, G[p]
ρ (s+

0 , s0), G[p]
ρ (s−0 , s0) exist and we have

G[p]
ρ (s+

0 , s0)−G[p]
ρ (s−0 , s0) = 1.

(4) Moreover, for all f ∈ L1
ρ, u ∈ W̃ρ is a solution to

£ρu = f a.e. in (ξ, η),

Blρu = Brρu = 0,

if and only if u(t) =
∫ η
ξ
Gρ(t, s)f(s)ds = Lρf(t).

(5) The operator Lρ : L1
ρ → Cρ is compact.

Proof. The function

Gρ(t, s) =
1

Wrρ

{
Φρ(s)Ψρ(t) if s ≤ t
Φρ(t)Ψρ(s) if t ≤ s

is what we are seeking, where Wrρ = Wr(Φρ,Ψρ) = Wr(Φρ,Ψρ)(ξ).
Since q, 1/p ∈ L1

ρ, from [41, Theorem 2.3.1] we have that the functions, Φρ, Ψρ,

Φ[p]
ρ , Ψ[p]

ρ are bounded by a constant M > 0. Therefore, for t1, t2 ∈ (ξ, η) we have

|Φρ(t2)− Φρ(t1)| ≤M
∣∣∣ ∫ t2

t1

ds

p(s)

∣∣∣, |Ψρ(t2)−Ψρ(t1)| ≤M |
∫ t2

t1

ds

p(s)
|,

proving that Φρ, Ψρ are uniformly continuous. Then Gρ is uniformly continuous
on (ξ, η)× (ξ, η). Clearly, the function Gρ satisfies Properties 1, 2, 3, and Property
4 is proved by the method of variation of constants.

At the end, note that Lρ = iρ ◦ L̃ρ, where L̃ρ : L1
ρ → Wρ with L̃ρu = Lρu for

all u ∈ L1
ρ, is continuous and iρ is the continuous embedding of Wρ in Cρ. Because

the estimate

|u(t2)− u(t1)| ≤
∣∣∣ ∫ t2

t1

ds

p(s)

∣∣∣‖u‖1
holds for all u ∈ Wρ and t1, t2 with ξ ≤ t1 < t2 ≤ η, the embedding iρ is compact,
and then Lρ is compact. �

Lemma 2.12. Assume that Wrρ 6= 0, for some ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆, and
let for θ ∈ (ξ, η), ρl(θ) = (ξ, θ, p, q, a, b, 1, 0) and ρr(θ) = (θ, η, p, q, a, b, 1, 0).

(i) If Φρ(θ) 6= 0 for all θ ∈ (ξ, η), then for all θ ∈ (ξ, η), Gρl(θ) exists and we
have Gρl(θ)(t, s) = Gρ(t, s)− (Ψρ(θ)/WrρΦρ(θ))Φρ(t)Φρ(s).

(ii) If Ψρ(θ) 6= 0 for all θ ∈ (ξ, η), then for all θ ∈ (ξ, η), Gρr(θ) exists and we
have Gρr(θ)(t, s) = Gρ(t, s)− (Φρ(θ)/WrρΨρ(θ))Ψρ(t)Ψρ(s).

Proof. We need to prove that Φρ(θ) 6= 0 for all θ ∈ (ξ, η).
(i) Let Φρl(θ)(t) = Φρ(t) and Ψρl(θ)(t) = −(Ψρ(θ)/Φρ(θ))Φρ(t) + Ψρ(t). Then

Φθ,Ψθ are respectively the unique solutions to
£ρl(θ)u = 0,

u(ξ) = b,

u[p](ξ) = −a,

£ρl(θ)u = 0,

u(θ) = 0,

u[p](θ) = Wrρ/Φρ(θ),
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and for all θ ∈ (ξ, η), we have Wrρl(θ) = Wrρ 6= 0 and

Gρl(θ)(t, s) =
1

Wrρl(θ)
×

{
Φρl(θ)(s)Ψρl(θ)(t) if s ≤ t
Φρl(θ)(t)Ψρl(θ)(s) if t ≤ s

= Gρ(t, s)− (Ψρ(θ)/WrρΦρ(θ))Φρ(t)Φρ(s).

(ii) Let Φρr(θ) and Ψρr(θ) be defined by Φρl(θ)(t) = Φρ(t)− (Ψρ(θ)/Φρ(θ))Φρ(t)
and Ψρr(θ)(t) = Ψρ(t). Then, Φρr(θ),Ψρr(θ) are respectively the unique solutions of

£ρr(θ)u = 0,

u(θ) = 0,

u[p](θ) = Wrρ/Ψρ(θ),

£ρr(θ)u = 0,

u(η) = d,

u[p](η) = −c,

and we have for all θ ∈ (ξ, η), Wrρr(θ) = Wrρ 6= 0 and

Gρr(θ)(t, s) =
1

Wrρr(θ)
×

{
Φρr(θ)(s)Ψρr(θ)(t) if s ≤ t
Φρr(θ)(t)Ψρr(θ)(s) if t ≤ s

= Gρ(t, s)− (Φρ(θ)/WrρΨρ(θ))Ψρ(t)Ψρ(s).

�

2.5. Linear eigenvalue problem. For ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆ and m ∈ K∗ρ ,
consider the eigenvalue problem

£ρu = µmu in (ξ, η) a.e.,

Blρu = Brρ = 0.
(2.9)

Theorem 2.13 ([41, Theorem 4.9.1]). For ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆ and m ∈
K+
ρ , BVP (2.9) admits an increasing sequences of eigenvalues (µk(ρ,m))k≥1 such

that
(1) limµk(ρ,m) = +∞,
(2) µk(ρ,m) is simple,
(3) If φk is an eigenvalue associated with µk(ρ,m), then φk ∈ Skρ .

In what follows, we present some important properties of eigenvalues needed for
the proofs of the main results of this paper.

Lemma 2.14. Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆, m1,m2 ∈ K+
ρ and assume that

m1 ≤ m2 a.e. in (ξ, η) and m1 < m2 in a subset of positive measure. If for some
integer k ≥ 1, either µk(ρ,m1) ≥ 0 or µk(ρ,m2) ≥ 0, then µk(ρ,m1) > µk(ρ,m2) ≥
0.

Proof. For i = 1, 2, set µi = µk(ρ,mi) and let φi be the eigenfunction associated
with µi having a sequence of zeros (zij)

j=k
j=0 . First, we claim that there exists j0

such that z1
j0
6= z2

j0
. Indeed, assume that φ1(z2

j ) = 0 for all j ∈ {1, . . . , k − 1}
and µ1 < µ2 and note that there exists j1 ∈ {1, . . . , k − 1} such that meas({m2 >
m1} ∩ (z2

j1
, z2
j1+1)) > 0 and φ1φ2 > 0 in (z2

j1
, z2
j1+1). Applying Lemma 2.10, we get

that there exists τ ∈ (z2
j1
, z2
j1+1) such that φ1(τ) = 0 and this contradicts φ1 ∈ Sk,κρ .

Now, let k1 = max{l ≤ k : z1
j = z2

j for all j ≤ l} and (ξj)
j=k−k1
j=0 and (ηj)

j=k−k1
j=0

be the families defined by ξj = z1
k1+j and ηj = z2

k1+j . Then we distinguish two
cases.
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(i) ξ1 = z1
k1+1 < η1 = z2

k1+1: In this case we have

0 <
∫ η1

η0

φ2£ρφ1 − φ1£ρφ2 =
∫ η1

η0

(µ1m1 − µ2m2)φ1φ2

=
∫ η1

η0

(µ1 − µ2)m1φ1φ2 +
∫ η1

η0

µ2(m1 −m2)φ1φ2

=
∫ η1

η0

µ1(m1 −m2)φ1φ2 +
∫ η1

η0

(µ1 − µ2)m2φ1φ2

and this proves that in both the cases µ1 ≥ 0 or µ2 ≥ 0, we have µ1 > µ2.
(ii) ξ1 = z1

k1+1 > η1 = z2
k1+1: In this case Lemma 2.7 guarantees existence of

two integers m,n having the same parity such that

ξm = z1
k1+m < ηn = z2

k1+n < ηn+1 = z2
k1+n+1 ≤ ξm+1 = z1

k1+m+1.

As above, we have

0 <
∫ ηn+1

ηn

φ2£ρφ1 − φ1£ρφ2 =
∫ ηn+1

ηn

(µ1m1 − µ2m2)φ1φ2

=
∫ ηn+1

ηn

(µ1 − µ2)m1φ1φ2 +
∫ ηn+1

ηn

µ2(m1 −m2)φ1φ2

=
∫ ηn+1

ηn

µ1(m1 −m2)φ1φ2 +
∫ ηn+1

ηn

(µ1 − µ2)m2φ1φ2

and this proves that in both the cases µ1 ≥ 0 or µ2 ≥ 0, we have µ1 > µ2. This
completes the proof. �

Lemma 2.15. Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆, m ∈ K+
ρ and γ, δ ∈ R with

ξ < γ < δ < η. Then for all integers k ≥ 1, µk(ρ,m) ≤ µk(ρ,m) where
ρ = (γ, δ, p, q, 1, 0, 1, 0).

Proof. Fix k ≥ 1 and set µ1 = µk(ρ,m) and µ2 = µk(ρ,m). For i = 1, 2, let φi
be an eigenfunction associated with µi, having a sequence of zeros (zij)

j=k
j=0 , and

without loss of generality, suppose that φ1φ2 > 0 in a right neighborhood of γ. We
distinguish two cases.

(i) φ1 > 0 in (γ, δ): In this case we have

0 ≤ −φ1(δ)φ[p]
2 (δ) + φ1(γ)φ[p]

2 (γ) =
∫ δ

γ

φ1£ρφ2 − φ2£ρφ1

= (µ2 − µ1)
∫ δ

γ

mφ1φ2

leading to µ2 ≥ µ1.
(ii) φ1(t0) = 0 for some t0 ∈ (γ, δ): In this case consider the family (ξj)

j=k0
j=0

defined by ξ0 = γ, ξk0 = δ and φ1(ξj) = 0 for j ∈ {1, . . . , k0 − 1} and note that
k0 ≤ k. Thus, from Lemma 2.7 there exist two integers m,n having the same parity,
such that ξm < z2

n < z2
n+1 ≤ ξm+1. Therefore, we have φ1, φ2 > 0 in (z2

n, z
2
n+1) and

0 ≤ −φ1(z2
n+1)φ[p]

2 (z2
n+1) + φ1(z2

n)φ[p]
2 (z2

n)

=
∫ z2n+1

z2n

φ1£ρφ2 − φ2£ρφ1
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= (µ2 − µ1)
∫ z2n+1

z2n

mφ1φ2

leading to µ2 ≥ µ1. This completes the proof. �

Lemma 2.16. Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆ and m ∈ K+
ρ and set for all

θ ∈ (ξ, η), ρr(θ) = (θ, η, p, q, 1, 0, c, d) (resp. ρl(θ) = (ξ, θ, p, q, a, b, 1, 0)). Then,
the mapping θ → µ1(ρr(θ),m) is continuous increasing on (ξ, η) (resp. θ →
µ1(ρl(θ),m) is continuous decreasing on (ξ, η)), and we have limθ→η µ1(ρr(θ),m) =
+∞ (resp. limθ→ξ µ1(ρl(θ),m) = +∞).

Proof. The continuity of the mapping θ → µ1(ρr(θ),m) follows from [41, Theo-
rem 4.4.1]. Let θ1, θ2 be such that ξ ≤ θ1 < θ2 < η and let for i = 1, 2, φi be
the eigenvector corresponding to the eigenvalue µi = µ1(ρr(θi),m). Taking into
consideration φ2(θ2) = 0 and Wr(φ1, φ2)(η) = 0, from simple computations,

(µ2 − µ1)
∫ η

θ2

mφ1φ2 =
∫ η

θ2

φ1£ρr(θ2)φ2 − φ2£ρr(θ1)φ1 = φ1(θ2)φ[p]
2 (θ2) > 0,

thus proving that µ2 > µ1.
Now, we understand from Theorem 2.13 that there exists µ > 0 such that µ∗(ρ) =

µ1(ρ,m) + µ > 0 and this, together with θ → µ1(ρr(θ),m) is increasing, leads to

µ∗(θ) = µ1(ρr(θ),m) + µ = µ1(ρ̃r(θ),m) ≥ µ∗(ρ) = µ1(ρ̃,m) > 0

where ρ̃r(θ) = (θ, η, p, q + µm, 1, 0, c, d) and ρ̃ = (ξ, η, p, q + µm, 1, 0, c, d).
To prove limθ→η µ1(ρr(θ),m) = +∞, we need to prove the existence of a positive

constant M(d) such that supt∈(θ,η)(Ψeρ(t)/Ψeρ(θ)) ≤M(d). Note that Ψeρ(t) 6= 0 for
all t ∈ (ξ, η); indeed, if Ψeρ(t0) = 0 for some t0 ∈ (ξ, η), then there exists an integer
k0 ≥ 1 such that Ψeρ will be an eigenfunction associated with µk0(ρ̃r(t0),m) = 0
and yields the contradiction

0 = µk0(ρ̃r(t0),m) ≥ µ1(ρ̃r(t0),m) = µ∗(t0) > 0.

Without loss of generality, suppose that Ψeρ > 0 in (ξ, η) and note then that d ≥ 0.
We distinguish two cases:

(i) d > 0: In this case we have inft∈(ξ,η) Ψeρ(t) > 0 and

sup
t∈(θ,η)

(Ψeρ(t)/Ψeρ(t)) ≤ ‖Ψeρ‖/ inf
t∈(ξ,η)

Ψeρ(t) = M(d).

(ii) d = 0: In this case we have c > 0 and there exists δ > 0 such that Ψ[p]eρ (t) < 0
for all t ∈ (δ, η). We have then supt∈(θ,η)(Ψeρ(t)/Ψeρ(t)) = 1 if θ ∈ (δ, η) and
supt∈(θ,η)(Ψeρ(t)/Ψeρ(t)) ≤ ‖Ψeρ‖/ inft∈(ξ,δ) Ψeρ(t). Thus,

sup
t∈(θ,η)

(Ψeρ(t)/Ψeρ(t)) ≤M(d) = sup(1, ‖Ψeρ‖/ inf
t∈(ξ,δ)

Ψeρ(t)).
Since µ∗(θ) > 0, Geρr(θ) exists and we have for all θ ∈ (ξ, η) and all t ∈ (θ, η)

|Geρr(θ)(t, s)| = |Geρ(t, s)− (Φeρ(θ)/WreρΨeρ(θ))Ψeρ(t)Ψeρ(s)|
≤ ‖Geρ‖∞ +Wr−1eρ M(d)‖Φeρ‖‖Ψeρ‖.

Therefore,

0 < 1/µ∗(θ) ≤ sup
t∈(θ,η)

∫ η

θ

|Geρ(θ)(t, s)|m(s)ds
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≤ (‖Geρ‖∞ +Wr−1eρ M(d)‖Φeρ‖‖Ψeρ‖)
∫ η

θ

m(s)ds→ 0 as θ → η,

thus proving that limθ→η µk(ρ(θ),m) = +∞. This completes the proof. �

3. On the half-eigenvalue problem

For ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆, m ∈ K∗ρ , and α, β ∈ L1
ρ, consider the BVP

£ρu = λmu+ αu+ − βu− in (ξ, η) a.e.,

Blρu = Brρu = 0.
(3.1)

Definition 3.1. We say that λ0 is a half-eigenvalue of (3.1) if there exists a non-
trivial solution (λ0, u0) of (3.1). In this situation, {(λ0, tu0), t > 0} is a half-line
of nontrivial solutions of (3.1) and λ0 is said to be simple if all solutions (λ0, u) of
(3.1), with uu0 > 0 in a right neighborhood of ξ, are on this half-line. There may
exist another half-line of solutions {(λ0, tv0), t > 0}, but then we say that λ0 is
simple, if u0v0 < 0 in a right neighborhood of ξ and all solutions (λ0, v) of (3.1) lie
on these two half lines.

Berestycki [6] proved that if −∞ < ξ < η < +∞, p ∈ C1([ξ, η]), q,m, α, β ∈
C([ξ, η]) and m is positive, then (3.1) admits two increasing sequences of half-
eigenvalues. So, the main goal of this section is to prove that the Beresticki’s result
holds for the case 1/p, q,m, α, β ∈ L1

ρ. We begin with the following list of lemmas.

Lemma 3.2. If (λ, φ) is a non trivial solution of (3.1), then φ ∈ Sk,κρ , for some
integer k ≥ 1 and κ = +,−.

Proof. We have to prove that φ has a finite number of zeros and all are simple.
Clearly if for some τ, ξ ≤ τ ≤ η, φ(τ) = φ[p](τ) = 0, we obtain from Corollary 2.4
that φ = 0 and this contradicts the lemma’s hypothesis.

Now, suppose that φ has an infinite sequence of zeros (tn) in (ξ, η) converging
to t̂. Then we have φ(t̂) = limn→+∞ φ(tn) = 0. We claim that φ[p](t̂) = 0; indeed,
if for instance φ[p](t̂) > 0 then there exists δ0 > 0 such that φ[p](t) > 0 for all
t ∈ [t̂− δ0, t̂+ δ0], and we get

φ(t) =
∫ t

t̂

( 1
p(s)

)
φ[p](s)ds

{
> 0 if t ∈ (t̂, t̂+ δ0)
< 0 if t ∈ (t̂− δ0, t̂)

contradicting lim tn = t̂. Again, we obtain from Corollary 2.4 that φ = 0, contra-
dicting the Lemma’s hypothesis. Thus, we have proved that φ has a finite number
of zeros and that all are simple. In other words, φ ∈ Sk,κρ for some integer k ≥ 1
and κ = +,−. The proof is complete. �

Lemma 3.3. If λ is a half-eigenvalue of (3.1), then λ is simple.

Proof. Let λ be a half-eigenvalue and φ1, φ2 be two eigenfunctions associated with
λ such that φ1, φ2 > 0 in a right neighborhood of ξ. Therefore, φ1, φ2 ∈ Sk,+ρ for
some integer k ≥ 1, and denote for i = 1, 2, (zij)

j=k
j=0 the sequence of zeros of φi.

We have that z1
j = z2

j for all j = 0, . . . , k. By induction, clearly z1
0 = z2

0 = ξ and
if z1

j = z2
j then z1

j+1 = z2
j+1. Indeed, if for example z1

j+1 < z2
j+1, From Lemma 2.8
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we have the contradiction

0 <
∫ z1j+1

z1j

φ2£ρφ1 − φ1£ρφ2 = 0.

Because of the positive homogeneity of (3.1), we have that ψ1 = −φ[p]
2 (z1

1)φ1

and ψ2 = −φ[p]
1 (z1

1)φ2 are eigenfunctions associated with λ satisfying

ψ1(z1
1) = ψ2(z1

1) = 0 and ψ
[p]
1 (ξ) = ψ

[p]
2 (ξ) = −φ[p]

2 (z1
1)φ[p]

1 (z1
1).

Therefore, ψ = ψ1 − ψ2 satisfies

£ρψ = λmψ + αψ+ − βψ− in (ξ, η) a.e.,

ψ(ξ) = ψ[p](ξ) = 0,

and from Corollary 2.4 we have ψ1 = ψ2. This shows that the half-eigenvalue λ is
simple and completes the proof. �

Lemma 3.4. For all ρ ∈ ∆, m ∈ K∗ρ , α, β ∈ L1
ρ, k ≥ 1 and κ = +,−, BVP (3.1)

admits at most one half-eigenvalue having an eigenfunction in Sk,κρ .

Proof. Let (λ1, φ1), (λ2, φ2) ∈ R × (Sk,κρ ∩ W̃ρ) be two solutions of (3.1) such that
λ1 6= λ2 and φ1, φ2 ∈ Sk,κρ for some integer k ≥ 1 and κ = +,−, and denote for
i = 1, 2 (zij)

j=k
j=0 the sequence of zeros of φi. First, we claim that there exists j0

such that z1
j0
6= z2

j0
; indeed, assume that φ1(z2

j ) = 0 for all j ∈ {1, . . . , k − 1}
and λ1 < λ2 and note that there exists j1 ∈ {1, . . . , k − 1} such that meas({m >
0} ∩ (z2

j1
, z2
j1+1)) > 0 and φ1φ2 > 0 in (z2

j1
, z2
j1+1). Applying Lemma 2.10, we get

that there exists τ ∈ (z2
j1
, z2
j1+1) such that φ1(τ) = 0 and this contradicts φ1 ∈ Sk,κρ .

Now, let k1 = max{l ≤ k : z1
j = z2

j for j ≤ l} and (ξj)
j=k−k1
j=0 and (ηj)

j=k−k1
j=0 be

the families defined by ξj = z1
k1+j and ηj = z2

k1+j and without loss of generality,
assume that ξ1 = z1

k1+1 < η1 = z2
k1+1. We obtain from Lemma 2.7 that there exist

two integers m,n ≥ 1 having the same parity such that

ξm = z1
k1+m < ηn = z2

k1+n < ηn+1 = z2
k1+n+1 ≤ ξm+1 = z1

k1+m+1

and from Lemma 2.8 we have

0 <
∫ ξ1

ξ0

φ2£ρφ1 − φ1£ρφ2 = (λ1 − λ2)
∫ ξ1

ξ0

mφ1φ2, (3.2)

0 >
∫ ηn+1

ηn

φ2£ρφ1 − φ1£ρφ2 = (λ1 − λ2)
∫ ηn+1

ηn

mφ1φ2. (3.3)

On the one hand, from (3.2) we have λ1 > λ2, and on the other hand, from (3.3)
we have λ1 < λ2. This completes the proof. �

Lemma 3.5. Let ρ ∈ ∆, m ∈ K∗ρ , α, β ∈ L1
ρ, k ≥ 1 and κ = +,− and assume

that (λ1, φ1), (λ2, φ2) are two solutions of (3.1) such that for i = 1, 2, φi ∈ Ski,κρ .
If k2 > k1 then λ2 > λ1.

Proof. For i = 1, 2, let (zij)
j=k
j=0 be the sequence of zeros of φi and set k1 = max{l ≤

k : z1
j = z2

j for all j ≤ l}. Consider (ξj)
j=k−k1
j=0 and (ηj)

j=k−k1
j=0 the families defined

by ξj = z1
k1+j and ηj = z2

k1+j . We distinguish then two cases.
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(i) ξ1 = z1
k1+1 > η1 = z2

k1+1: In this case we have

0 <
∫ η1

η0

φ1£ρφ2 − φ2£ρφ1 = (λ2 − λ1)
∫ η1

η0

mφ1φ2

proving that λ1 < λ2.
(ii) ξ1 = z1

k1+1 < η1 = z2
k1+1: In this case, Lemma 2.7 guarantees existence of

two integers m,n having the same parity such that

ξm = z1
k1+m < ηn = z2

k1+n < ηn+1 = z2
k1+n+1 ≤ ξm+1 = z1

k1+m+1.

As above, we have

0 <
∫ ηn+1

ηn

φ1£ρφ2 − φ2£ρφ1 = (λ2 − λ1)
∫ ηn+1

ηn

mφ1φ2,

proving that λ1 < λ2. This completes the proof. �

Lemma 3.6. Let ρ = (ξ, η, p, q, a, b, 1, 0) ∈ ∆, m ∈ K+
ρ and α, β ∈ L1

ρ and suppose
that for all θ, ξ < θ ≤ η, λκk(ρl(θ),m, α, β) exists where ρl(θ) = (ξ, θ, p, q, a, b, 1, 0).
Then, the function θ → λκk(ρl(θ),m, α, β) is continuous and decreasing. Moreover,
we have limθ→ξ λ

κ
k(ρl(θ),m, α, β) = +∞.

Proof. Step 1 (Monotonicity). In this step, we prove that the function θ →
λ+
k (ρl(θ),m, α, β) is decreasing, the case κ = − is checked similarly. Let θ1, θ2 be

such that ξ < θ1 < θ2 ≤ η and let for i = 1, 2, λi = λ+
k (ρl(θi),m, α, β), and φi be

the eigenfunction associated with λi. Denoting for i = 1, 2, (zij)
j=k
j=0 as the sequence

of zeros of φi, we have

ξ = z1
0 < z1

1 < · · · < z1
k = θ1, ξ = z2

0 < z2
1 < · · · < z2

k = θ2.

For i = 1, 2, let ρ̃l(zi1) = (ξ, zi1, p, q − α, a, b, 1, 0), and note that λi = µ1(ρ̃l(zi1),m).
We claim that z1

1 < z2
1 . Indeed, if z1

1 = z2
1 , then we have from Lemma 2.16 that

λ2 > λ1. Applying Lemma 2.10, we get that φ2 vanishes in all intervals (z1
j , z

1
j+1)

for all j = 1, . . . , k − 1. This contradicts φ2 ∈ Sk,κρl(θ2).
At the end, Lemma 2.8 leads to

0 <
∫ z11

ξ

φ2£ρφ1 − φ1£ρφ2 = (λ1 − λ2)
∫ z11

ξ

mφ1φ2,

proving that λ1 > λ2.

Step 2 (Continuity). Let µ > 0 be such that

inf(µ1(ρα,m), µ1(ρβ ,m), µ1(ρ,m)) > −µ

where ρα = (ξ, η, p, q − α, a, b, 1, 0) and ρβ = (ξ, η, p, q − β, a, b, 1, 0). Consider the
BVP

£eρu = λmu+ αu+ − βu− in (ξ, η) a.e.,

Bleρu = Breρu = 0,
(3.4)

where ρ̃ = (ξ, η, p, q + µm, a, b, 1, 0). Clearly, if λ is a half-eigenvalue of (3.4) then
(λ−µ) is a half eigenvalue of (3.1), and note that because of µk(ρ̃,m) ≥ µ1(ρ̃,m) =
µ1(ρ,m) + µ > 0 for all integers k ≥ 1, Geρ exists.
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Let θ, ξ ≤ θ < η and (θn) ⊂ (ξ, η) such that lim θn = θ. Fix k ≥ 1 and κ and
set λ = λκk(ρ̃l(θ),m, α, β), λn = λκk(ρ̃l(θn),m, α, β) and let for all n ≥ 1, φn be the
normalized eigenfunction corresponding to λn. We have that

φn(t) = λn

∫ θn

ξ

Gn(t, s)m(s)φn(s)ds+
∫ θn

ξ

Gn(t, s)α(s)φ+
n (s)ds

−
∫ θn

ξ

Gn(t, s)β(s)φ−n (s)ds

where Gn = Geρl(θn). By the change of variables s = σn(τ) with

σn(τ) =

{
τ + hn if ξ = −∞
εnτ + ωn if ξ > −∞

where hn = θn − θ, εn = (θn − ξ)/(θ − ξ) and ωn = −(θn − θ)ξ/(θ − ξ), we have
that the function ϕn defined by ϕn(t) = φn(σn(t)) satisfies

ϕn(t) = λn

∫ θ

ξ

G̃n(t, τ)m(σn(τ))ϕn(τ)dτ +
∫ θ

ξ

G̃n(t, τ)α(σn(τ))ϕ+
n (τ)dτ

−
∫ θ

ξ

G̃n(t, τ)β(σn(τ))ϕ−n (τ)dτ

where

G̃n(t, τ) =

{
Gn(σn(t), σn(τ)) if ξ = −∞,
εnGn(σn(t), σn(τ)) if ξ > −∞.

Then from Lemma 2.12 we have

G̃n(t, τ) =


Gρ(σn(t), σn(τ))− (

(
Ψρ(θn)/Φρ(θn)

)
×Φρ(σn(t))Φρ(σn(τ)) if ξ = −∞

εnGρ
(
σn(t), σn(τ)

)
−εn(Ψρ(θn)/Φρ(θn))Φρ(σn(t))Φρ(σn(τ)) if ξ > −∞.

Now, we need to prove that for all χ ∈ L1
ρ(θ), Lχ,n → Lχ in operator norm, where

Lχ,n, Lχ : Ceρl(θ) → Ceρl(θ) are defined by

Lχ,nu(t) =
∫ θ

ξ

G̃n(t, τ)χ(σn(τ))u(τ)dτ,

Lχ,θu(t) =
∫ θ

ξ

Geρl(θ)(t, τ)χ(τ)u(τ)dτ.

For u ∈ Ceρl(θ) with ‖u‖ = 1, we have

|Lχ,nu(t)− Lχu(t)| ≤
∫ θ

ξ

|G̃n(t, τ)χ(σn(τ))−Geρl(θ)(t, τ)χ(τ)|dτ

≤
∫ θ

ξ

|G̃n(t, τ)−Geρl(θ)(t, τ)||χ(σn(τ))|dτ

+
∫ θ

ξ

|Geρl(θ)(t, τ)||χ(σn(τ))− χ(τ)|dτ.

(3.5)
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Let ε > 0. Since in both the cases ξ = −∞ and ξ > −∞, σn(τ) converges uniformly
to τ in (ξ, η) and the functions Φeρ,Ψeρ, Geρ are uniformly continuous, there exists
n1 ∈ N such that for all n ≥ n1,

|G̃n(t, τ)−Geρl(θ)(t, τ)| ≤ ε for all t and τ with ξ ≤ t, τ < η.

Moreover, we have

lim
∫ θ

ξ

|χ(σn(τ))|dτ = lim
∫ θn

ξ

|χ(τ)|dτ = ‖χ‖L1
ρ(θ)

and from Lemma 1.1, we obtain

lim
∫ θ

ξ

|χ(σn(τ))− χ(τ)|dτ = 0.

Consequently, there exists n2 ∈ N such that for all n ≥ n2,∫ θ

ξ

|χ(σn(τ))− χ(τ)|dτ ≤ ε and
∫ θ

ξ

|χ(σn(τ))|dτ ≤ (‖χ‖L1
ρ(θ)

+ ε)

and from (3.5) we obtain that for all n ≥ max(n1, n2),

sup
t∈(ξ,θ)

|Lχ,nu(t)− Lχu(t)| ≤ ε(‖χ‖L1
ρ(θ)

+ ε) + sup
t,τ∈(ξ,θ)

|Gρ(θ)(t, τ)|ε

proving that Lχ,n → Lχ in operator norm.
Let δ > 0 be such that θn ∈ [θ − δ, θ − δ]. We have from Step 1 that

λκk(ρl(θ + δ),m, α, β) ≤ λn = λκk(ρl(θn),m, α, β) ≤ λκk(ρl(θ − δ),m, α, β).

Hence, λsup = lim supλn and λinf = lim inf λn are finite numbers.
For all n ∈ N and ν = sup or inf, we have

ϕn = λnLm,nϕn + Lα,nI
+ϕn − Lβ,nI−ϕn

= (λn − λν)Lm,nϕn + λν(Lm,n − Lm,θ)ϕn + (Lα,n − Lα,θ)I+ϕn

− (Lβ,n − Lβ,θ)I−ϕn + λνLm,θϕn + Lα,θI
+ϕn − Lβ,θI−ϕn.

This, and the compactness of the operators Lm, Lα, Lβ and the fact that Lm,n →
Lm, Lα,n → Lα, Lβ,n → Lβ , imply that there exist ϕsup, ϕinf ∈ Sk,κeρl(θ) such that for
ν = sup or inf,

ϕν = λνLmϕν + LαI
+ϕν − LβI−ϕν .

In other words, each of the pairs (λsup, ϕsup) and (λinf , ϕinf) satisfies

£eρl(θ)u = λmu+ αu+ − βu− a.e. in (ξ, θ),

Bleρl(θ)u = Breρl(θ)u = 0,

and ϕsup, ϕinf ∈ Sk,κeρl(θ) (if ϕsup ∈ ∂Sk,κeρl(θ) then there exists τ, ξ ≤ τ ≤ η such that

ϕsup(τ) = ϕ
[p]
sup(τ) = 0 and by Corollary 2.4, we have ϕsup = 0 contradicting

‖ϕsup‖ = 1). At the end, we obtain from Lemma 3.4 that λsup = λinf = λ.
Step 3. We have

1 ≤ λκk(ρ̃l(θ),m, α, β)‖Lm,θ‖+ ‖Lα,θ‖+ ‖Lβ,θ‖

leading to
λκk(ρ̃l(θ),m, α, β) ≥ (1− ‖Lα,θ‖ − ‖Lβ,θ‖)/‖Lm,θ‖.
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Since ‖Lα,θ‖, ‖Lβ,θ‖, ‖Lm,θ‖ → 0 as θ → ξ (see the proof of Lemma 2.16), we have

lim
θ→ξ

λκk(ρ̃l(θ),m, α, β) = +∞.

This completes the proof. �

Lemma 3.7. For ρ ∈ ∆, m ∈ K+
ρ and α, β ∈ L1

ρ, BVP (3.1) admits two increasing
sequences of simple half-eigenvalues (λ+

k (ρ,m, α, β))k≥1 and (λ−k (ρ,m, α, β))k≥1,
such that for all integers k ≥ 1 and κ = +,−, the corresponding half-line of solutions
lies in {λκk(ρ,m, α, β)×Sκk }. Furthermore, aside from these solutions and the trivial
one, there are no other solutions of (3.1).

Proof. We proceed by induction on k. Clearly, for k = 1, λ+
1 = µ1(ρ̃+,m) and λ−1 =

µ1(ρ̃−,m) where for all ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆, ρ̃+ = (ξ, η, p, q − α, a, b, c, d)
and ρ̃− = (ξ, η, p, q − β, a, b, c, d).

Now, assume that for all ρ ∈ ∆, λκk = λκk(ρ,m, α, β) exists and let us prove that
λκk+1 = λκk+1(ρ,m, α, β) exists. Let for θ ∈ (ξ, η), λκk(θ) = λκk(ρl(θ),m, α, β) where
ρl(θ) = (ξ, θ, p, q, a, b, 1, 0) and let µ(θ) = µ1(ρ̃r(θ),m) where ρ̃r(θ) = (θ, η, p, q −
α, 1, 0, c, d). From Lemmas 2.16 and 3.6, there is a unique θk+1 ∈ (ξ, η) such that
λκk(θ0) = µ(θ0). Let φk,θ0 and φ1,θ0 > 0 be respectively the eigenfunction associated
with the half-eigenvalue λκk(θ0) the eigenvalue µ(θ0), then the function

φk+1 =

{
φk,θ0 in (ξ, θ0)
(φ[p]
k,θ0

(θ0)/φ[p]
1,θ0

(θ0))φ1,θ0 in (κ0, η)

belongs to Sk+1,κ
ρ and the pair (λκk(θ0), φk+1) = (µ(θ0), φk+1) satisfies the BVP

£ρu = λmu+ αu+ − βu− in (ξ, η) a.e.,

Blρu = Brρu = 0.

Thus, we have proved that λκk+1(ρ,m, α, β) exists. �

Proposition 3.8. Let ρ ∈ ∆, m ∈ K∗ρ and α1, α2, β1, β2 ∈ L1
ρ. Assume that

λκk(ρ,m, α1, β1), λκk(ρ,m, α2, β1) and λκk(ρ,m, α1, β2) exist.
(1) If α1 ≤ α2 a.e. in (ξ, η), then λκk(ρ,m, α1, β1) ≥ λκk(ρ,m, α2, β1).
(2) If β1 ≤ β2 a.e. in (ξ, η), then λκk(ρ,m, α1, β1) ≥ λκk(ρ,m, α1, β2).

Proof. We present the proof of property (1) only; Property (2) is checked similarly.
Fix k, κ and set for i = 1, 2, λi = λκk(ρ,m, αi, β1) and let φi be the eigenfunction
associated with λi having a sequence of zeros (zij)

j=k
j=0 . We distinguish two cases:

(i) z1
j = z2

j for all j ∈ {1, . . . , k − 1}: Let j1 ∈ {1, . . . , k − 1} be such that
meas({m > 0} ∩ (z2

j1
, z2
j1+1)) > 0 and

0 =
∫ z2j1+1

z2j1

φ2£ρφ1 − φ1£ρφ2 = (λ1 − λ2)
∫ z2j1+1

z2j1

mφ1φ2

+
∫ z2j1+1

z2j1

(α1φ
+
1 φ2 − α2φ

+
2 φ1) +

∫ z2j1+1

z2j1

(β1φ
−
1 φ2 − β1φ

−
2 φ1)

= (λ1 − λ2)
∫ z2j1+1

z2j1

mφ1φ2 +
∫ z2j1+1

z2j1

(α1φ
+
1 φ2 − α2φ

+
2 φ1).

(3.6)
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Thus, from (3.6) in both the case φ1, φ2 > 0 in (z2
j1
, z2
j1+1) and the case φ1, φ2 < 0

in (z2
j1
, z2
j1+1), we obtain λ1 ≥ λ2.

(ii) z1
j0
6= z2

j0
for some j0: In this case set k1 = max{l ≤ k : z1

j = z2
j for all j ≤ l}.

If z1
k1+1 < z2

k1+1, then

0 <
∫ z1k1+1

z1k1

φ2£ρφ1 − φ1£ρφ2 = (λ1 − λ2)
∫ z1k1+1

z1k1

mφ1φ2 +
∫ z1k1+1

z1k1

(α1 − α2)φ1φ2

proving that λ1 > λ2 and if z2
k1+1 < z1

k1+1 then considering the families (ξj)
j=k−k1
j=0

and (ηj)
j=k−k1
j=0 with ξj = z1

k1+j and ηj = z2
k1+j , we obtain from Lemma 2.7 that

there exist two integers m,n ≥ 1 having the same parity such that

ξm = z2
k1+m < ηn = z1

k1+n < ηn+1 = z1
k1+n+1 ≤ ξm+1 = z2

k1+m+1.

Therefore, Lemma 2.8 leads to

0 <
∫ ηn+1

ηn

φ2£ρφ1 − φ1£ρφ2 = (λ1 − λ2)
∫ ηn+1

ηn

mφ1φ2 +
∫ ηn+1

ηn

(α1 − α2)φ1φ2,

and then λ1 > λ2. This completes the proof. �

Proposition 3.9. Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆, m1,m2 ∈ K∗ρ and α, β ∈ L1
ρ.

Assume that m1 ≤ m2 a.e. in (ξ, η), m1 < m2 in a subset of positive measure, and
λκk(ρ,m1, α, β), λκk(ρ,m2, α, β) exist for some integer k ≥ 1 and κ = +,−. If either
λκk(ρ,m1, α, β) ≥ 0 or λκk(ρ,m2, α, β) ≥ 0, then λκk(ρ,m1, α, β) > λκk(ρ,m2, α, β),
and if either λκk(ρ,m1, α, β) ≤ 0 or λκk(ρ,m2, α, β) ≤ 0, then λκk(ρ,m1, α, β) <
λκk(ρ,m2, α, β).

Proof. For i = 1, 2, set µi = µk(ρ,mi) and let φi be the eigenfunction associated
with µi having a sequence of zeros (zij)

j=k
j=0 . First, we claim that there exists j0

such that z1
j0
6= z2

j0
. Indeed, assume that φ1(z2

j ) = 0 for all j ∈ {1, . . . , k − 1}
and µ1 < µ2 and note that there exists j1 ∈ {1, . . . , k − 1} such that meas({m2 >
m1} ∩ (z2

j1
, z2
j1+1)) > 0 and φ1φ2 > 0 in (z2

j1
, z2
j1+1). Applying Lemma 2.10, we get

that there exists τ ∈ (z2
j1
, z2
j1+1) such that φ1(τ) = 0 and this contradicts φ1 ∈ Sk,κρ .

Now, let k1 = max{l ≤ k : z1
j = z2

j for all j ≤ l}, and (ξj)
j=k−k1
j=0 and (ηj)

j=k−k1
j=0

be the families defined by ξj = z1
k1+j and ηj = z2

k1+j . We distinguish then two
cases.

(i] ξ1 = z1
k1+1 < η1 = z2

k1+1: In this case

0 <
∫ η1

η0

φ2£ρφ1 − φ1£ρφ2 =
∫ η1

η0

(µ1m1 − µ2m2)φ1φ2

=
∫ η1

η0

(µ1 − µ2)m1φ1φ2 +
∫ η1

η0

µ2(m1 −m2)φ1φ2

=
∫ η1

η0

µ1(m1 −m2)φ1φ2 +
∫ η1

η0

(µ1 − µ2)m2φ1φ2

and this proves that in both the cases µ1 ≥ 0 and µ2 ≥ 0, we have µ1 > µ2.
(ii) ξ1 = z1

k1+1 > η1 = z2
k1+1: In this case Lemma 2.7 guarantees existence of

two integers m,n having the same parity such that

ξm = z1
k1+m < ηn = z2

k1+n < ηn+1 = z2
k1+n+1 ≤ ξm+1 = z1

k1+m+1.
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As above, we have

0 <
∫ ηn+1

ηn

φ2£ρφ1 − φ1£ρφ2 =
∫ ηn+1

ηn

(µ1m1 − µ2m2)φ1φ2

=
∫ ηn+1

ηn

(µ1 − µ2)m1φ1φ2 +
∫ ηn+1

ηn

µ2(m1 −m2)φ1φ2

=
∫ ηn+1

ηn

µ1(m1 −m2)φ1φ2 +
∫ ηn+1

ηn

(µ1 − µ2)m2φ1φ2

and this proves that in both the cases µ1 ≥ 0 and µ2 ≥ 0, we have µ1 > µ2.
The cases λκk(ρ,m1, α, β) ≤ 0 and λκk(ρ,m2, α, β) ≤ 0 are checked in similar way

and this ends the proof. �

Theorem 3.10. For ρ ∈ ∆, m ∈ K∗ρ and α, β ∈ L1
ρ, BVP (3.1) admits two increas-

ing sequences of simple half-eigenvalues (λ+
k (ρ,m, α, β))k≥1 and (λ−k (ρ,m, α, β))k≥1,

such that for all integers k ≥ 1 and κ = +,−, the corresponding half-line of solu-
tions lies in {λκk(ρ,m, α, β)} × Sk,κρ and limk→+∞ λκk(ρ,m, α, β) = +∞. Further-
more, aside from these solutions and the trivial one, there are no other solutions of
(3.1).

Proof. Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆, m ∈ K∗ρ , α, β ∈ L1
ρ and (εn) be a decreasing

sequence of real numbers converging to 0 and let A > 0 be such that

min(µ1(ρ,m+ ε1), λ+
1 (ρ,m+ ε1, α, β), λ−1 (ρ,m+ εn, α, β)) > −A.

Consider the BVP

£eρu = λmu+ αu+ − βu− in (ξ, η) a.e.,

Bleρu = Breρu = 0,
(3.7)

where ρ̃ = (ξ, η, p, q + Am, a, b, c, d) and note that λ is a half-eigenvalue of (3.7)
if and only if (λ − A) is a half-eigenvalue of (3.1). For k and κ fixed, let λκk,n =
λκk(ρ̃,m+ εn, α, β) be associated with a normalized eigenfunction φk,n ∈ Sk,κρ , and
let [γ, δ] ⊂ (ξ, η) be such that m > 0 a.e. in (γ, δ).

First, because

λκk,1 = λκk(ρ,m+ ε1, α, β) +A ≥ λκ1 (ρ,m+ ε1, α, β) +A > 0,

we have from property 1 in Proposition 3.9 that for all n ∈ N, λκk,n+1 ≥ λκk,n ≥
λκk,1 > 0.

Set q̃ = −(|α|+ |β|), ρ∗ = (ξ, η, p, q+Am− q̃, a, b, c, d) and ρ∗ = (γ, δ, p, q+Am−
q̃, 1, 0, 1, 0). Then properties 2 and 3 in Proposition 3.8, Lemma 2.15 and Lemma
2.14 lead to

0 < λκk,n ≤ λκk(ρ̃,m+ εn, q̃, q̃) = µk(ρ∗,m+ εn) ≤ µk(ρ∗,m+ εn) ≤ µk(ρ∗,m)

proving that limλκk,n = λκk > 0.
Now, if µl(ρ̃,m) exists for some l ≥ 1, then µl(ρ̃,m) = µl(ρ,m) + A (that is

µl(ρ,m) exists) and

µl(ρ̃,m+ ε1) = µl(ρ,m+ ε1) +A > µ1(ρ,m+ ε1) +A > 0.

We obtain from Proposition 3.9 that µl(ρ̃,m) > µl(ρ̃,m + ε1) > 0, proving that
that Geρ exists.
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At this stage, we have

φk,n = λκk,nLmφk,n + εnLφk,n + Φ(φk,n)

where Lm, L,Φ : Cρ → Cρ are defined by

Lmu(t) =
∫ η

ξ

Geρ(t, s)m(s)u(s)ds,

Lu(t) =
∫ η

ξ

Geρ(t, s)u(s)ds

Φ(u)(t) =
∫ η

ξ

Geρ(t, s)(α(s)u+(s)− β(s)u−(s))ds.

Since Lm is compact, L is bounded and Φ is completely continuous, φk,n converge

(up to a subsequence) to some φk ∈ Sk,κρ with ‖φk‖ = 1 and we have φk = λκkLmφk+
Φ(φk). Because of Theorem 2.2, φk ∈ Sk and λκk is a half-eigenvalue of (3.1).

Since uniqueness and simplicity of λκk follow from Lemmas 3.3 and 3.4 and the
monotonicity of the the sequence (λκk) is assured by Lemma 3.5, it remains to show
that limk→∞ λκk = +∞. We have from Proposition 3.8 that

λκk = λκk(ρ̃,m, α, β) ≥ λκk(ρ̃,m+ ε1, α, β) ≥ λκk(ρ̃,m+ ε1,−q̃,−q̃) = µk(ρ̂,m+ ε1)

where ρ̂ = (ξ, η, p, q + Am + q̃, a, b, c, d). Therefore, we have from Assertion 1 of
Theorem 2.13 that limk→∞ λκk = +∞. This completes the proof. �

In the following three propositions, we present some important properties of
half-eigenvalues needed in the reminder of this work.

Proposition 3.11. Let for i = 1, 2, ρi = (ξ, η, p, qi, a, b, c, d) ∈ ∆, m ∈ K∗ρ1 ,
α, β ∈ L1

ρ1 and suppose that for i = 1, 2, λi = λκk(ρi,m, α, β) exists for some integer
k ≥ 1 and κ = +,−. If q1 ≤ q2 a.e. in (ξ, η) then λ1 ≤ λ2. Moreover, if q1 < q2 in
a subset of positive measure, then λ1 < λ2.

Proof. Since for i = 1, 2, λi = λκk(ρi,m2, 0, 0) = λκk(ρ̂,m,−qi,−qi) with ρ̂ =
(ξ, η, p, 0, a, b, c, d), we have from Proposition 3.8 that if q1 ≤ q2 a.e. in (ξ, η)
then µ1 ≤ µ2. Now, suppose that q1 < q2 in a subset of positive measure, and for
i = 1, 2, let φi be the eigenfunction associated with λi having a sequence of zeros
(zij)

j=k
j=0 . We distinguish two cases.

(i) z1
j = z2

j = 0 for all j ∈ {1, . . . , k − 1}: In this case , for all j we have∫ z2j+1

z2j

−φ2(φ[p]
1 )′ + φ1(φ[p]

2 )′ +
∫ z2j+1

z2j

(q1 − q2)φ1φ2

=
∫ z2j+1

z2j

(q1 − q2)φ1φ2

= (λ1 − λ2)
∫ z2j+1

z2j

mφ1φ2.

(3.8)

Let j1 ∈ {1, . . . , k − 1} be such that meas({q2 > q1} ∩ (z2
j1
, z2
j1+1)) > 0. Then from

(3.8) we have

0 >
∫ z2j+1

z2j

(q1 − q2)φ1φ2
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= (λ1 − λ2)
∫ z2j+1

z2j

mφ1φ2

leading to λ2 > λ1.
(ii) z1

j0
6= z2

j0
for some j0: In this case set k1 = max{l ≤ k : z1

j = z2
j for all j ≤ l}.

If z2
k1+1 < z1

k1+1 then we have

0 >
∫ z2k1+1

z2k1

−φ2(φ[p]
1 )′ + φ1(φ[p]

2 )′

= (λ1 − λ2)
∫ z1k1+1

z1k1

mφ1φ2 −
∫ z1k1+1

z1k1

(q1 − q2)φ1φ2

proving that λ2 > λ1 and if z1
k1+1 < z2

k1+1, then considering the families (ξj)
j=k−k1
j=0

and (ηj)
j=k−k1
j=0 with ξj = z1

k1+j and ηj = z2
k1+j , we obtain from Lemma 2.7 that

there exists two integers m,n ≥ 1 having the same parity such that

ξm = z1
k1+m < ηn = z2

k1+n < ηn+1 = z2
k1+n+1 ≤ ξm+1 = z1

k1+m+1.

As above, we have

0 >
∫ ηn+1

ηn

−φ2(φ[p]
1 )′ + φ1(φ[p]

2 )′

= (λ1 − λ2)
∫ ηn+1

ηn

mφ1φ2 −
∫ ηn+1

ηn

(q1 − q2)φ1φ2

proving that λ2 > λ1. This proof is complete. �

Proposition 3.12. Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆, m ∈ K∗ρ , (qn) ⊂ L1
ρ and

(mn) ⊂ K∗ρ such that qn → q and mn → m in L1
ρ. Set ρn = (ξ, η, p, qn, a, b, c, d).

Then for all α, β ∈ L1
ρ, k ≥ 1 and κ = +,−, we have limn→∞ λκk(ρn,mn, α, β) =

λκk(ρ,m, α, β).

Proof. Step 1. In this first step we fix m in K∗ρ , α, β in L1
ρ, the integer k ≥ 1

and κ = +,− and we prove the continuity of the mapping q → λκk(ρ(q),m, α, β)
on L1

ρ. Let λ̄ > 0 such that λκk(ρ̄,m, α, β) > 0 for all k ≥ 1, where ρ̄ = (ξ, η, p, q +
λ̄m, a, b, c, d) and let λn = λκk(ρ̄n,m, α, β) and λ = λκk(ρ̄,m, α, β), where ρ̄n =
(ξ, η, p, qn+λ̄m, a, b, c, d). Since λ = λκk(ρ,m, α, β)+λ̄ and λn = λκk(ρn,m, α, β)+λ̄,
we have to show that limλn = λ. We claim now, that the sequence (λn) is bounded.
Indeed, if this is not the case and there is a subsequence denoted also for convenience
by (λn) such that limn→+∞ |λn| = ∞. We have then from [23, Proposition 4.11],
that there is a function q̃ ∈ K∗ρ and a subsequence (qnl) such that |qnl | ≤ q̃. Thus,
from Proposition 3.11 we have

λκk(ρ̄−,m, α, β) ≤ λnl = λκk(ρ̄nl ,m, α, β) ≤ λκk(ρ̄+,m, α, β)

where for ν = +,−, ρ̄ν = (ξ, η, p, νq̃ + λ̄m, a, b, c, d), contradicting lim |µnl | =∞.
Now, let φn, φ be the normalized eigenfunctions associated respectively with λn

and λ and note that Gρ̄ exists. Then we have

φ = λLmφ+ Φ(φ), φn = λnLmφn + Φ(φn) + Lnφn
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where Lm, Ln,Φ : Cρ̄ → Cρ̄ are defined by:

Φ(u)(t) =
∫ η

ξ

Gρ̄(t, s)(α(s)u+(s)− β(s)u−(s))ds,

Lmu(t) =
∫ η

ξ

Gρ̄(t, s)m(s)u(s)ds and

Lnu(t) =
∫ η

ξ

Gρ̄(t, s)(q(s)− qn(s))u(s)ds.

Let λ+ = lim supλn and λ− = lim inf λn, we obtain from the compactness of the
operators Lm, Φ and the fact that Ln → 0 in operator norm, that there exist
ψ+, ψ− ∈ Sk,κρ such that

ψ+ = λ+Lmψ+ + Φ(ψ+), ψ− = λ−Lmψ− + Φ(ψ−).

At the end by Theorem 2.2 we conclude that ψ+, ψ− ∈ Sk,κρ and the uniqueness of
the half-eigenvalue leads to limλn = λ+ = λ− = λ.
Step 2. We prove the proposition, we denote λn = λκk(ρn,mn, α, β) and λ =
λκk(ρ,m, α, β) where ρn = (ξ, η, p, qn, a, b, c, d). We claim that the sequence (λn) is
bounded. Indeed, if this is not the case, and there is a subsequence denoted also
for convenience by (λn) such that limn→+∞ |λn| =∞. Let φn, φ be the normalized
eigenfunctions associated respectively with λn and λ, we have

£ρnφn − µnmnφn = αφ+
n − βφ−n in (ξ, η) a.e.,

Blρφn = Brρφn = 0

and

£ρφ− µmφ = αφ+ − βφ− in (ξ, η) a.e.,

Blρφ = Brρφ = 0,

from which we obtain
λκk(ρ̃n,mn, α, β) = λκk(ρ̃,m, α, β) = 0,

with ρ̃n = (ξ, η, p, qn − µnmn, a, b, c, d) and

ρ̃ = (ξ, η, p, q − µm, a, b, c, d).
(3.9)

Suppose now, that limλn = −∞ and let ω > −λ. There exists n0 ∈ N such that
−µn ≥ ω for all n ≥ n0 and we have

0 = λκk(ρ̃n,m, α, β) = λκk(qn − µnmn) ≥ λκk(qn + ωmn) for all n ≥ n0.

This together with Proposition 3.11 leads to the contradiction

0 = λκk(ρ̃,m, α, β) = λκk(q − µm)

< λκk(q + ωm) = limλκk(qn + ωmn) ≤ 0.

Similarly, if limµn = +∞ and ω > µ, there exists n0 ∈ N such that µn ≥ ω for all
n ≥ n0 and we have

0 = λκk(ρ̃n,m, α, β) = λκk(qn − µnmn) ≤ λκk(qn − ωmn) for all n ≥ n0.

This, and Proposition 3.11, leads to the contradiction

0 = λκk(ρ̃,m, α, β) = λκk(q − µm)

> λκk(q − ωm) = limλκk(qn − ωmn) ≥ 0.
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At this stage let λ+ = lim supλn and λ− = lim inf λn. From (3.9) we obtain

λκk(ρ̃+,m, α, β) = λκk(q − µ+m) = 0

λκk(ρ̃−,m, α, β) = λκk(q − µ−m) = 0

ρ̃+ = (ξ, η, p, q − µ+m, a, b, c, d)

ρ̃− = (ξ, η, p, q − µ−m, a, b, c, d),

and uniqueness of the eigenvalue µ = µk(ρ,m) leads to limµn = µ+ = µ− = µ,
completing the proof. �

Proposition 3.13. Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆, m ∈ K∗ρ , (αn) ⊂ L1
ρ and

(βn) ⊂ K∗ρ such that αn → α and βn → β in L1
ρ. Then for all k ≥ 1 and κ = +,−,

we have limn→∞ λκk(ρ,m, αn, βn) = λκk(ρ,m, α, β).

Proof. Fix the integer k ≥ 1 and κ = +,− and let λ̄ > 0 such that λκk(ρ̄,m, α, β) > 0
for all k ≥ 1, where ρ̄ = (ξ, η, p, q+λ̄m, a, b, c, d). Set λn = λκk(ρ̄,m, αn, βn) and λ =
λκk(ρ̄,m, α, β), since λ = λκk(ρ,m, α, β) + λ̄ and λn = λκk(ρ,m, αn, βn) + λ̄, we have
to show that limλn = λ. We claim now, that the sequence (λn) is bounded. Indeed,
if this is not the case and there is a subsequence, denoted also for convenience by
(λn), such that limn→+∞ |λn| =∞, we have then from [23, Proposition 4.11], that
there are two functions α̃, β̃ ∈ K∗ρ and subsequences (αnl), (βnl) such that |αnl | ≤ α̃
and |βnl | ≤ β̃. Thus, we have from Proposition 3.8 that

λκk(ρ̄,m, α̃, β̃) ≤ λnl = λκk(ρ̄nl ,m, αnl , βnl) ≤ λκk(ρ̄,m,−α̃,−β̃)

contradicting lim |λnl | =∞.
Now, let φn, φ be the normalized eigenfunctions associated respectively with λn

and λ and note that Gρ̄ exists. Then we have

φn = λnLmφn + LαnI
+(φn)− LβnI−(φn)

= λnLmφn + LαI
+(φn)− LβI−(φn) + (Lαn − Lα)I+(φn)− (Lβn − Lβ)I−(φn)

where for χ ∈ L1
ρ, Lχ : Cρ̄ → Cρ̄ is defined by Lχu(t) =

∫ η
ξ
Gρ̄(t, s)m(s)u(s)ds.

Let λ+ = lim supλn and λ− = lim inf λn, we obtain from the compactness of the
operators Lm, Lα, Lβ , and the fact that (Lαn − Lα), (Lβn − Lβ) → 0 in operator

norm, that there exist ψ+, ψ− ∈ Sk,κρ such that

ψ+ = λ+Lmψ+ + LαI
+(ψ+)− LβI−(ψ+),

ψ− = λ−Lmψ− + LαI
+(ψ−)− LβI−(ψ−).

At the end we conclude by Theorem 2.2 that ψ+, ψ− ∈ Sk,κρ and the uniqueness of
the half-eigenvalue leads to limλn = λ+ = λ− = λ. This concludes the proof. �

Taking α = β = 0 in (3.1), we obtain from Theorem 3.10 the following corollary
which is an improvement of [41, Theorem 4.9.1].

Corollary 3.14. For all ρ ∈ ∆ and m ∈ K∗ρ , BVP (2.9) admits an increasing
sequences of eigenvalues (µk(ρ,m))k≥1 such that

(1) limµk(ρ,m) = +∞,
(2) µk(ρ,m) is simple,
(3) If φk is an eigenvalue associated with µk(ρ,m), then φk ∈ Skρ .
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From Theorem 3.10 and Proposition 3.9 we obtain the following property for
eigenvalues of (2.9).

Proposition 3.15. Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆, m1,m2 ∈ K∗ρ and assume that
m1 ≤ m2 a.e. in (ξ, η) and m1 < m2 in a subset of positive measure. If for some
integer k ≥ 1, either µk(ρ,m1) ≥ 0 or µk(ρ,m2) ≥ 0, then µk(ρ,m1) > µk(ρ,m2) ≥
0.

At the end of this section, we consider for ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆, m ∈ K∗ρ
and h ∈ L1(ξ, η) the BVP

£ρu = µmu+ h in (ξ, η) a.e.,

Blρu = Brρu = 0,
(3.10)

where µ is a real parameter. The following result is an extension of what is known
as the Fredholm alternative.

Theorem 3.16. For all ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆, m ∈ K∗ρ and h ∈ L1
ρ, BVP

(3.10) admits
(1) a unique solution if µ 6= µk(ρ,m),
(2) no solution if µ = µk0(ρ,m) for some integer k0 ≥ 1 and

∫ η
ξ
φk0h 6= 0,

(3) infinitely many solutions if µ = µk0(ρ,m), for some integer k0 ≥ 1 and∫ η
ξ
φk0h = 0.

Proof. Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆.
(1) If µ 6= µk(ρ,m) for all k ≥ 1, then 0 is the unique solution to the BVP

(£ρ − µm)u = 0 in (ξ, η) a.e.,

Blρu = Brρu = 0.

Thus, we have from Assertion 4 in Theorem 2.11, u(t) =
∫ η
ξ
Geρ(t, s)h(s)ds is the

unique solution to (3.10), where ρ̃ = (ξ, η, p, q − µm, a, b, c, d).
(2) Suppose that µ = µk0(ρ,m) for some integer k0 ≥ 1 and let φk0 be the

eigenfunction associated with µ = µk0(ρ,m). Therefore, if u satisfies (3.10), then

0 =
∫ η

ξ

£ρu− u£ρφk0 =
∫ η

ξ

φk0h.

This proves that if
∫ η
ξ
φk0h 6= 0 then (3.10) has no solution.

(3) Now, suppose that
∫ η
ξ
φk0h = 0 and let ψ be such that {φk0 , ψ} form a

fundamental system for the differential equation (£ρ − m)u = 0. Then Wr =
φk0ψ

[p]−ψφ[p]
k0

is constant on (ξ, η) and BlρψB
r
ρψ 6= 0. Therefore, for all σ ∈ R, the

function

u(t) =
(
σ +

1
Wr

∫ t

ξ

h(s)ψ(s)ds
)
φk0 +

( 1
Wr

∫ t

ξ

h(s)φk0(s)ds
)
ψ(t)

solves (3.10). The proof is complete. �

Now for ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆ consider the BVP

£ρu = λ(αu+ − βu−) in (ξ, η) a.e.,

Blρu = Brρu = 0,
(3.11)
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where α, β ∈ K∗ρ . Note that the nonlinearity in (3.11) is the same as in (3.1),
positively 1-homogeneous and so we can define the concept of half-eigenvalue as
it is done in Definition 3.1. In [4], the authors proved in the case, where q = 0,
a,−b, c, d ∈ [0,+∞) with ∆ = ad+ ac

∫ η
ξ

dτ
p(τ) − bc > 0 and α, β ∈ K∗ρ , that (3.11)

admits two sequences of half-eigenvalues having the same properties as that in
Theorem 3.10. At the end of this section, we prove that Theorem 3.10 holds for
(3.11).

Theorem 3.17. For all ρ ∈ ∆, and α, β ∈ K∗ρ with αβ ∈ K∗ρ , BVP (3.11)
admits two increasing sequences of simple half-eigenvalues (λ+

k (ρ,m, α, β))k≥1 and
(λ−k (ρ,m, α, β))k≥1, such that for all integer k ≥ 1 and κ = +,−, the corresponding
half-line of solutions lies in {λκk(ρ,m, α, β)} × Sk,κρ and limk→+∞ λκk(ρ,m, α, β) =
+∞. Furthermore, aside from these solutions and the trivial one, there are no other
solutions of (3.11).

Proof. Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆ and m be an arbitrary function in K∗ρ and
consider the BVP

£ρu = λmu+ θαu+ − θβu− in (ξ, η) a.e.,

Blρu = Brρu = 0,

where θ is a real parameter.
Fix k ≥ 1 and κ = +,− and set λ(θ) = λκk(ρ,m, θα, θβ). Note that because

of Proposition 3.8, the mapping λ(·) is non-increasing and if for some θ0 ∈ R,
λ(θ0) = 0, then θ0 is a half-eigenvalue of (3.11) having an eigenfunction in Sk,κρ .
Therefore, we have to prove that limθ→−∞ λ(θ) = +∞ and limθ→+∞ λ(θ) = −∞.
Moreover, since λ(θ) ≤ λκk(ρ,m, θψ, θψ) for θ < 0 and λ(µ) ≥ λκk(ρ,m, θψ, θψ) for
θ ≥ 0, where ψ = sup(α, β), we have to check that limθ→−∞ µk(θ) = +∞ and
limθ→+∞ µk(θ) = −∞, where µk(θ) = λκk(ρ,m, θψ, θψ) = µk(ρ(θ),m) and ρ(θ) =
(ξ, η, p, q− θψ, a, b, c, d). We present in what follows the proof of limθ→−∞ µk(θ) =
+∞, the other limit is checked similarly.

To the contrary, suppose that limθ→−∞ µk(θ) = µ∞ < +∞ and let ε0 > 0 be
fixed. There exists θ0 > 0 such that for all θ ≤ −θ0, (µ∞ − ε0) < µk(θ) < µ∞. Let
µ0 = µk(ρ∞, ψ) where ρ∞ = (ξ, η, p, q − (µ∞ − ε0)m, a, b, c, d) and φ, φθ ∈ Skρ such
that

£ρφ− (µ∞ − ε0)mφ− µ0ψφ = 0 in (ξ, η) a.e.,

Blρφ = Brρφ = 0.
(3.12)

For θ > max(θ0, µ0) let φθ ∈ Skρ be such that

£ρφθ − µk(θ)mφθ − θψφθ = 0 in (ξ, η) a.e.,

Blρφθ = Brρφθ = 0.
(3.13)

Then from (3.12) and (3.13) we have µk(ρ̃ε0 ,m) = 0 = µk(ρ̃(θ),m) where ρ̃ε0 =
(ξ, η, p, q−(µ∞−ε0)m−µ0ψ, a, b, c, d) and ρ̃(θ) = (ξ, η, p, q−µk(θ)m−θψ, a, b, c, d).
Since (µ∞ − ε0)m + µ0ψ ≤ µk(θ)m + θψ a.e. in (ξ, η) and (µ∞ − ε0)m + µ0ψ <
µk(θ)m + θψ in a subset of positive measure; from Proposition 3.11 we have the
contradiction

0 = µk(ρ̃ε0 ,m) > µk(ρ̃(θ),m) = 0.



EJDE-2016/298 STURM-LIOUVILLE BVPS 29

Since Proposition 3.13 guarantees that λ(·) is a continuous function, we conclude
that there exists θκk such that λ(θκk ) = 0; namely, θκk is a half-eigenvalue of BVP
(3.11) having an eigenfunction in Sk,κρ . This completes the proof. �

4. Bifurcation diagram for an asymptotically linear Sturm-Liouville
BVP

Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆ and m ∈ K∗ρ and consider in this section, the
BVP

£ρu = λmu+ uf(t, u), in (ξ, η) a.e.,

Blρu = Brρu = 0,
(4.1)

where λ is a real parameter and f : (ξ, η)× R→ R is a Caratheodory function.
We assume throughout this section that

f(t, 0) = 0 a.e. t ∈ (ξ, η), (4.2)

and also that there exist α, β, γ ∈ K∗ρ such that

lim
u→−∞

f(t, u) = β(t) a.e. t ∈ (ξ, η), (4.3)

lim
u→+∞

f(t, u) = α(t) a.e. t ∈ (ξ, η), (4.4)

|f(t, u)| ≤ γ(t) for all u ∈ R and a.e. t ∈ (ξ, η. (4.5)

For the statement of the main result of this section and its proof, it is useful to in-
troduce the following notation. For k ≥ 1 and κ = +,−, denote λκk = λκk(ρ,m, α, β)
and µk = µk(ρ,m). Without loss of generality, assume that µk 6= 0 for all k ≥ 1
(otherwise consider ρ̃ = (ξ, η, p, q + Am, a, b, c, d) with A sufficiently large). Thus,
Gρ exists and (λ, u) ∈ R × W̃ρ is a solution to (4.1) if and only if u = T (λ, u),
where T : R × Cρ → Cρ is defined by T = i ◦ Lρ ◦ F , F : R × Cρ → L1

ρ is the
Nymetski operator defined for u ∈ Cρ by F (λ, u)(t) = λm(t)u(t) + uf(t, u), and i

is the compact embedding of W̃ρ in Cρ.
Let H,K : Cρ → Cρ be defined by Hu(t) =

∫ η
ξ
Gρ(t, s)u(s)f(s, u(s))ds and

Ku(t) =
∫ η
ξ
Gρ(t, s)f̃(s, u(s))ds, where f̃(s, u) = uf(s, u)−α(s)u+ +β(s)u−. Then

we have
T (λ, u) = λLmu+Hu,

T (λ, u) = λLmu+ LαI
+u− LβI−u+Ku

(4.6)

where for χ ∈ L1
ρ, Lχ : Cρ → Cρ is defined by Lχu(t) =

∫ η
ξ
Gρ(t, s)χ(s)u(s)ds.

Clearly, Lχ is compact for all χ ∈ L1
ρ, and H and K are completely continuous.

Lemma 4.1. Assume that (4.2) and (4.5) hold. Then H(u) = o(‖u‖) near 0.

Proof. Let (un) ⊂ Cρ be such lim ‖un‖ = 0. Because of the inequality

|Hun(t)|/‖un‖ ≤
∫ η

ξ

Rn(s)ds, where Rn(s) = ‖Gρ‖∞|f(s, un(s))|,

it suffices to prove that
∫ η
ξ
Rn(s)ds→ 0 as n→∞.

Hypothesis (4.3) implies that Rn(s) → 0 as n → +∞, a.e. s ∈ (ξ, η) and
Hypothesis (4.5) implies

Rn(s) = ‖Gρ‖∞|f(s, un(s))| ≤ ‖Gρ‖∞γ(s) a.e. s ∈ (ξ, η).

Thus, by the Lebesgue dominated convergence theorem, we conclude that H(u) =
o(‖u‖) at 0. �
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Lemma 4.2. Assume that (4.3)–(4.5) hold. Then K(u) = o(‖u‖) near ∞.

Proof. Let (un) ⊂ Cρ be such lim ‖un‖ =∞. Because of the inequality

|Kun(t)|/‖un‖ ≤
∫ η

ξ

Rn(s)ds,

where

Pn(s) = ‖Gρ‖∞|
un(s)
‖un‖

f(s, un(s))− α(s)
u+
n (s)
‖un‖

+ β(s)
u−n (s)
‖un‖

|,

it suffices to prove that
∫ η
ξ
Pn(s)(s)ds→ 0 as n→∞.

From (4.5) we have

Pn(s) = ‖Gρ‖∞(γ(s) + α(s) + β(s)) a.e. s ∈ (ξ, η).

It remains to prove that limPn(s) = 0 for a.e. s ∈ (ξ, η). Let s ∈ (ξ, η). We
distinguish the following cases:

(i) limun(s) = +∞: In this case,

Pn(s) ≤ ‖Gρ‖∞|(f(s, un(s)))− α(s)| → 0 as n→ +∞.
(ii) limun(s) = −∞: in this case,

Pn(s) ≤ ‖Gρ‖∞|(f(s, un(s)))− β(s)| → 0 as n→ +∞.
(iii) limun(s) 6= ±∞ : in this case there may exist subsequences (un1

k
(s)) and

(un2
k
(s)) such that (un1

k
(s)) is bounded and limun2

k
(s) = ±∞. Arguing as in the

above two cases we get limPn2
k
(s) = 0 and we have

Pn1
k
(s) ≤ G(s, s)(γ(s) + δ(s) + α(s) + β(s))

(
|un1

k
(s)|/‖un1

k
‖
)
→ 0 as k → +∞.

Thus, we have limPn(s) = 0 for a.e. s ∈ (ξ, η). By the Lebesgue dominated
convergence theorem, we conclude that Kun = o(‖un‖) near ∞. �

Theorem 4.3. Assume that (4.2) and (4.5) hold. Then for all integers k ≥ 1 and
κ = +,− , BVP (4.1) admits an unbounded component ζκk of solutions bifurcating
from (µk, 0) such that ζκk ⊂ R × Sk,κρ . Moreover, if (4.3) and (4.4) hold, then ζκk
rejoins the point (λκk ,∞).

Proof. Step 1. Note that the set of characteristic values of Lm consists of the
sequence (µk)k≥1. So, we need to prove that for all integers k ≥ 1, µk is algebraically
simple. Choose u ∈ N

(
(µkLm− I)2

)
and set v = (µkLm− I)(u) = µkLmu−u. We

have µkLmv − v = 0 and the geometric simplicity of µk implies v = xφk, and then
µkLmu−u = xφk where φk ∈ Sk,+ρ is the normalized eigenfunction associated with
µk. In other words, we have that u satisfies the BVP

£ρu = µkmu− xµkmφk in ξ, η) a.e.,

Blρu = Brρu = 0.
(4.7)

Multiplying the differential equation (4.7) by φk and integrating by parts on (ξ, η),
we obtain xµk

∫ η
ξ
mφ2

k = 0 leading to x = 0 and u = ωφk for some ω ∈ R.
Since Hun = o(‖un‖) near 0, we conclude from [16, Theorem 2] that for all

integer k ≥ 1, µk is a bifurcation point of two components ζ+
k and ζ−k of non trivial

solutions and either ζ+
k and ζ−k are unbounded or ζ+

k ∩ ζ
−
k 6= {(µk, 0)}. Moreover,

we have from [34, Theorem 1.25 and Lemma 1.24] that, if ε > 0 is sufficiently small
and (λ, u) ∈ ζκk ∩Bε, where Bε = {(θ, v) ∈ R×Cρ : |θ|+‖v‖ < ε}, then |λ−µk| < ς
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and u = αφk + ω where κα > κ‖u‖∞, w = o(|α|) near 0, ς > 0, κ ∈ (ξ, η) and
κ = +,−. Thus, considering the fact that Sk,+ρ and Sk,−ρ are open sets, we obtain
from limα→0(u/α) = φk that ζκk ∩ Bε ⊂ Sk,κρ for κ = +,−. In fact, ζκk does not
leave Sk,κρ . Indeed, if this occurs then there will exist a pair (λ, u) ∈ ζκk such that
u ∈ ∂Sk,κρ , and in this case, there is τ, ξ ≤ τ ≤ η such that u(τ) = u[p](τ) and then
we have from Corollary 2.4, u = 0 and λ = µl(m) for some l 6= k. This is impossible
since near (µl, 0) the possible solutions (λ, u) are in R× Sl,κρ . Finally, we conclude
from ζκk ⊂ Sk,κρ that ζκk is unbounded.

Step 2. Now, assume that (4.3) and (4.4) hold and let us prove first that for all
k ≥ 1 and κ = +,−, the projection of ζκk onto the real axis is bounded. To this aim,
for κ = +,−, let ψk,κ be the eigenfunction associated with µk(κγ) = µk(ρκγ ,m)
where ρκγ = (ξ, η, p, q + κγ, a, b, c, d) and (λ, u) ∈ ζκk . We have from Lemma 2.9
that there exist two intervals (ξ1, η1) and (ξ2, η2) such that uψk,κ ≥ 0 for κ =,−,∫ η1
ξ1
ψk,+£ρu− u£ρψk,+ ≤ 0 and

∫ η2
ξ2
ψk,−£ρu− u£ρψk,− ≥ 0. We have then from

Hypothesis (4.5),

0 ≥
∫ η1

ξ1

ψk,+£ρu− u£ρψk,+

=
∫ η1

ξ1

(λ− µk(γ))mψk,+u+ (f(s, u) + γ)uψk,+

≥ (λ− µk(γ))
∫ η1

ξ1

mφ+
k uds

and

0 ≤
∫ η2

ξ2

ψk,−£ρu− u£ρψk,−

=
∫ η2

ξ2

((λ− µk(−γ))mψk,−u+ (f(s, u)− γ)uψk,−)ds

≤ (λ− µk(−γ))
∫ η2

ξ2

mψk,−uds

leading to µk(−γ) ≤ λ ≤ µk(γ).
Step 3. Let (λn, un) be sequence in ζκk such that limn→∞ ‖un‖∞ = +∞. Set
vn = un

‖un‖∞ and note that ‖vn‖ = 1 and

£ρvn = λnmvn + αv+
n − βv−n + (f̃(t, un)/‖un‖) in (ξ, η) a.e.,

avn(ξ) + bv[p]
n (ξ) = cvn(η) + dv[p]

n (η) = 0.

Clearly, the above equation is equivalent to the equation

vn = λnLmvn + LαI
+vn − LβI−vn + (Kun/‖un‖). (4.8)

Because of the compactness of Lm, Lα, Lβ , boundedness of (λn), and the fact that

Ku = ◦(‖u‖) at ∞, we have, up to subsequences, vn → v ∈ Sk,κρ , and λn → λ, and
the pair (λ, v) satisfies

£ρv = λmv + αv+ − βv− in (ξ, η) a.e.,

Blρv = Brρv = 0.
(4.9)



32 A. BENMEZAÏ, W. ESSERHANE, J. HENDERSON EJDE-2016/298

Since ‖v‖ = lim ‖vn‖ = 1, from Theorem 2.2 we have v ∈ Sk,κρ , and from (4.9) we
conclude that λ = λκk . The proof is complete. �

5. Multiplicity results for an asymptotically linear Sturm-Liouville
BVP

Let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆ and consider the BVP

£ρu = ug(t, u) in (ξ, η) a.e.,

Blρu = Brρu = 0,
(5.1)

where g : (ξ, η)× R→ R is a Caratheodory function.
The main result of this section will be obtained under the following conditions

on the function g: There exist m,α, β, γ ∈ K∗ρ such that

lim
u→0

g(t, u) = m(t) a.e. t ∈ (ξ, η),

lim
u→+∞

g(t, u) = α(t) a.e. t ∈ (ξ, η),

lim
u→−∞

g(t, u) = β(t) a.e. t ∈ (ξ, η),

|g(t, u)| ≤ γ(t)a.e. t ∈ (ξ, η) .

(5.2)

Set ϕ = inf(α, β), ψ = sup(α, β) and for k ≥ 1, µk(m) = µk(ρ,m), µk(α) =
µk(ρ, α), µk(β) = µk(ρ, β), µk(ψ) = µk(ρ, ψ) and µk(ϕ) = µk(ρ, ϕ) if ϕ ∈ K∗ρ .

Theorem 5.1. Assume that (5.2) is fulfilled.
(1) If ϕ ∈ K∗ρ and there exist two integers i ≥ j ≥ 1 such that

µi(ϕ) < 1 < µj(m), (5.3)

then (5.1) admits, in each of Sj,+ρ , . . . , Si,+ρ , Sj,−ρ , . . . , Si,−ρ , a solution.
(2) If there exist two integers i ≥ j ≥ 1 such that

µi(m) < 1 < µj(ψ), (5.4)

then (5.1) admits, in each of Sj,+ρ , . . . , Si,+ρ , Sj,−ρ , . . . , Si,−ρ , a solution.
(3) If there exist two integers i ≥ j ≥ 1 with i ≥ 2j − 1 such that one of the

situations (5.5) or (5.6), where

µi(m) < 1 < µj(β) (5.5)

µi(β) < 1 < µj(m) (5.6)

holds true, then (5.1) admits, in each of S2j,+
ρ , . . . , Si,+ρ , S2j−1,−

ρ , . . . , Si,−ρ ,
a solution.

(4) If there exist two integer i ≥ j ≥ 1 with i ≥ 2j − 1 such that one of the
situation (5.7) or (5.8), where

µi(m) < 1 < µj(α) (5.7)

µi(α) < 1 < µj(m) (5.8)

holds true, then (5.1) admits, in each of S2j−1,+
ρ , . . . , Si,+ρ , S2j,−

ρ , . . . , Si,−ρ ,
a solution.

Proof. Set f(x, u) = g(x, u)−m(x)u and consider the BVP

£ρu = λmu+ f(t, u) in (ξ, η) a.e.,

Blρu = Brρu = 0.
(5.9)
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Note that if (1, u) is a solution to (5.9) then u is solution to (5.1). Let (λ+
l )l≥1 and

(λ−l )l≥1 be the sequences of half-eigenvalue of the problem

£ρu = λmu+ (α−m)u+ − (β −m)u− in (ξ, η) a.e.,

Blρu = Brρu = 0.

Since the function f satisfies Hypotheses (4.2)–(4.5), from Theorem 4.3 we have
that for all integers k ≥ 1 and κ = +,−, the component ζκk of nontrivial solutions
of (5.9), which bifurcate from µk(ρ,m), rejoins the point (λκk ,∞). Thus we have
to compute, for each of the Cases 1–4, the number of components ζκk crossing the
hyperplane {1}×Cρ. To be brief, we present the proofs of Case 1 and Case 3 with
µp(m) < 1 < µj(β).

ζ+
j

ζ+
i

ζ−j ζ−i

-
µj(m) µi(m)1λ+

j λ+
i

λ−j λ−i

Figure 2. µi(ϕ) < 1 < µ(mj)

(1) Suppose that µi(ρ, ϕ) < 1 < µj(ρ,m) and let

ρ = (ξ, η, p, q +m− ϕ, a, b, c, d)

µ∗i = µi(ρ, ϕ),

ρ̃ = (ξ, η, p, q + (1− µ∗i )m, a, b, c, d).

Then we have

λκi = λκi (ρ,m, α−m,β −m) ≤ λκi (ρ,m,ϕ−m,ϕ−m) = µ∗i .

Let u be such that

£ρu+ (1− µ∗i )mu = ϕu in (ξ, η) a.e.,

Blρu = Brρu = 0.



34 A. BENMEZAÏ, W. ESSERHANE, J. HENDERSON EJDE-2016/298

We conclude from the above BVP that µi(ρ̃, ϕ) = 1. Thus, if µ∗i ≥ 1, from Propo-
sition 3.8 we have the contradiction

1 = µi(ρ̃, ϕ) = λκi (ρ, ϕ, (µ∗i − 1)m, (µ∗i − 1)m) ≤ µi(ρ, ϕ, 0, 0) = µi(ρ, ϕ) < 1.

We have proved that for all integers k ∈ {j, . . . , i} and κ = +,−, ζκk crosses the
hyperplane {1} × Cρ (see 2).

ζ+
2j ζ+

i

ζ−2j ζ−iζ−2j−1

-µ2j−1(m) µ2j(m)
µi(m) 1 λ+

2j λ+
i

λ−2jλ−2j−1 λ−i

Figure 3. µi(m) < 1 < µj(β)

(2) Suppose that µi(m) < 1 < µj(β). We claim also that λ+
2j > 1 and λ−2j−1 > 1.

Indeed if λ+
2j ≤ 1 (we check λ−2j−1 > 1 in the same way) and u, v satisfy respectively

£ρu = (λ+
2j − 1)mu+ αu+ − βu− in (ξ, η) a.e.,

Blρu = Brρu = 0,

and

£ρv = µj(β)βv in (ξ, η) a.e.,

Blρv = Brρv = 0,

we let (zl)
l=2j
l=0 be the sequence of zeros of u. We have for all l = 0, . . . , j − 1,

0 ≤Wr(u, v)(z2l+2)−Wr(u, v)(z2l+1)

=
∫ z2l+2

z2l+1

((λ+
2j − 1)m+ (1− µj(β))β)uv.

This equality implies that in each of the intervals [z2l+1, z2l+2], l = 0, . . . , j − 2,
and [z2j−1, η), v vanishes at least once. This means that v admits at least j zeros
in (ξ, η), contradicting v ∈ Sjρ. Thus, we have proved that λ+

2j > 1. Thus, ζ+
k

crosses the hyperplane {1} × Cρ for all integers k ∈ {2j, . . . , i}, and ζ−k crosses the
hyperplane {1} × Cρ for all integers k ∈ {2j − 1, . . . , i} (see Figure 3). �
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Now, consider the boundary value problem

£ρu = ω(t)uh(u) in (ξ, η) a.e.,

Blρu = Brρu = 0,
(5.10)

where ω ∈ K∗ρ and h : R→ R is a continuous function such that

lim
u→0

h(u) = h0 > 0, lim
u→+∞

h(u) = h+ > 0, lim
u→−∞

h(u) = h− > 0. (5.11)

Theorem 5.1 yields the following result.

Corollary 5.2. Assume that (5.11) is fulfilled.
(1) If there exist two integers i ≥ j ≥ 1 such that one of the following two

conditions holds,

h0 < µj(ω) < µi(ω) < min(h+, h−), (5.12)

max(h+, h−) < µj(ω) < µi(ω) < h0, (5.13)

then (5.10) admits, in each of the sets Sj,+ρ , . . . , Si,+ρ , Sj,−ρ , . . . , Si,−ρ , a solution.
(2) If there exist two integers i ≥ j ≥ 1 with i ≥ 2(j − 1) and such that one of

the following two conditions holds,

h− < µj(ω) < µi(ω) < h0, (5.14)

h0 < µj(ω) < µi(ω) < h−, (5.15)

then (5.10) admits, in each of the sets S2j,+
ρ , . . . , Si,+ρ , S

(2j−1),−
ρ , . . . , Si,−ρ , a solu-

tion.
(3) If there exist two integers i ≥ j ≥ 1 with i ≥ 2(j − 1) and such that one of

the two conditions holds,

h+ < µj(ω) < µi(ω) < h0, (5.16)

h0 < µj(ω) < µi(ω) < h+, (5.17)

then (5.10) admits, in each of the sets S(2j−1),+
ρ , . . . , Si,+ρ , S2j,−

ρ , . . . , Si,−ρ , a solu-
tion.

Proof. Set g(t, u) = ω(t)uh(u). Then condition (5.2) is satisfied for m(t) = h0ω(t),
α(t) = h+ω(t), β(t) = h−ω(t). For all integers i ≥ 1, we have

µi(m) = µi(ω)/h0, µi(α) = µi(ω)/h+, µi(β) = µi(ω)/h−
µi(ϕ) = µi(ω)/min(h+, h−), µi(ψ) = µi(ω)/max(h+, h−).

Therefore, Assertions 1, 2 and 3 of Corollary 5.2 follow from Assertions 1-4 of
Theorem 5.1. �

Remark 5.3. Assertion 1 in Corollary 5.2 shows that Assertion 1 of Theorem 5.1
implies the case 0 < f0, f∞ <∞ of the [33, Theorems 2 and 3] and extends to a more
general situation, since here the operator −d2/dx2 is replaced by the differential
operator £ρ, f is not necessarily a separated variable function, no condition on the
parity of f is imposed and f is not locally Lipschitzian. Theorem 5.1 extends in
some manner, [30, Theorems 1 and 2 in], [31, Theorem 1.1] and [13, Theorem 3.3].
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Example 5.4. Let ρ = (0, π, 1, 0, 1, 0, 1, 0), f0, f−, f+ ∈ (0,+∞), and let i, j, k be
integers such that 1 ≤ j ≤ i ≤ k. Consider the BVP

−u′′ = f(u) in (0, π)

u(0) = u(π) = 0
(5.18)

where

f(u) = f0ue
−|u| +

f+u
2eu

1 + |u|eu
+

f−u
2e−u

1 + |u|e−u
.

We have

lim
u→0

f(u)
u

= f0, lim
u→−∞

f(u)
u

= f−, lim
u→+∞

f(u)
u

= f+.

We deduce from Corollary 5.2 the following results. (1) Suppose that

(j − 1)2 < f0 < j2 ≤ · · · ≤ i2 < f− < (i+ 1)2 ≤ · · · ≤ k2 < f+ < (k + 1)2

and k ≥ 2(j − 1). From Part 1 of Corollary 5.2 BVP (5.18) admits one solution in
each of the sets Sj,+ρ , . . . , Si,+ρ , Sj,−ρ ,. . . , Si,−ρ , and from Part 3 of Corollary 5.2,

BVP (5.18) admits one solution in each of the sets S(2j−1),+
ρ ,. . . , Sk,+ρ , S2j,−

ρ , . . . ,
Sk,−ρ . We conclude that: If i < 2j− 1 then (5.18) admits 2k+ 2i− 6j+ 5 solutions.
If i ≥ 2j − 1 then (5.18) admits 2k − 2j + 2 solutions.

(2) Suppose that

(j − 1)2 < f− < j2 ≤ · · · ≤ i2 < f0 < (i+ 1)2 ≤ · · · ≤ k2 < f+ < (k + 1)2,

k ≥ 2i and i ≥ 2(j − 1). From Part 2 of Corollary 5.2, BVP (5.18) admits one
solution in each of the sets S2j,+

ρ ,. . . ,Si,+ρ , S(2j−1),−
ρ ,. . . , Si,−ρ , and from Part 3 of

Corollary 5.2, BVP (5.18) admits one solution in each of the sets S(2i+1),+
ρ , . . . ,

Sk,+ρ , S2i+2,−
ρ , . . . , Sk,−ρ . We conclude that (5.18) admits 2k−2i−4j+ 2 solutions.

6. Sturm-Liouville BVP with jumping nonlinearities

6.1. General setting. Throughout this section, we let ρ = (ξ, η, p, q, a, b, c, d) ∈ ∆,
α, α̂, β, γ, ω ∈ K∗ρ , h, φ ∈ L1

ρ, θ is a real parameter, χ ∈ C1(R), ĝ : [0,+∞) →
[0,+∞) is a nondecreasing function satisfying limu→+∞ ĝ(u) = 0 and g : (ξ, η) ×
R → R is a Caratheodory function such that ∂g

∂u (t, ·) exists for a.e. t ∈ (ξ, η) and
∂g
∂u is a Caratheodory function.

Set ϕ = inf(α, β), ψ = sup(α, β) and for all k ≥ 1, µk(α) = µk(ρ, α), µk(β) =
µk(ρ, β), µk(ψ) = µk(ρ, ψ), µk(ω) = µk(ρ, ω), and µk(ϕ) = µk(ρ, ϕ) if ϕ ∈ K∗ρ .

Also, throughout this section, we assume that∣∣∂g
∂u

(t, u)
∣∣ ≤ γ(t) for all u ∈ R and a.e. t ∈ (ξ, η); (6.1)

lim
u→−∞

g(t, u)/u = β(t) a.e. t ∈ (ξ, η); (6.2)

lim
u→+∞

g(t, u)/u = α(t) a.e. t ∈ (ξ, η); (6.3)

lim
u→−∞

χ′(u) = χ−, lim
u→+∞

χ′(u) = χ+, χ−, χ+ ∈ R. (6.4)

Also, we set in this section,

a∞(b) =

{
−a if b > 0
1 if b = 0,

c∞(d) =

{
−c if d > 0
1 if d = 0.
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and let v−∞ and v+∞ be respectively the unique solutions of

£ρv = χ+ωv
+ − χ−ωv−,

v(ξ) = b,

v[p](ξ) = a∞(b),

and

£ρv = χ+ωv
+ − χ−ωv−,

v(ξ) = −b,

v[p](ξ) = −a∞(b).

6.2. Nonlinearities without jump. We are concerned here, with the BVP

£ρu = g(x, u) + h in (ξ, η) a.e.,

Blρu = Brρu = 0.
(6.5)

The main result of this subsection, Theorem 6.1, is an extension of the results
obtained in [20] and [18].

Theorem 6.1. In addition to (6.1), (6.2), (6.3), assume that ϕ ∈ K∗ρ and there
exists j ≥ 1 such that

µj(ϕ) < 1 < µj+1(ψ) or µ1(ψ) > 1. (6.6)

Then (6.5) admits at least one solution. Moreover, if

ϕ(t) ≤ ∂g

∂u
(t, u) ≤ ψ(t) for all u ∈ R and t in (ξ, η) a.e., (6.7)

then (6.5) admits a unique solution.

In fact, (6.5) under Hypotheses (6.6) and (6.7) is a perturbation of (3.10) in
Case 1 of Theorem 3.16. The proof of Theorem 6.1 uses the following lemma.

Lemma 6.2. Assume that ϕ ∈ K∗ρ and (6.6) holds. Then for all γ, δ ∈ K∗ρ with
ϕ ≤ γ, δ ≤ ψ, the trivial function is the unique solution of the BVP

£ρu = γu+ − δu− in (ξ, η) a.e.,

Blρu = Brρu = 0.
(6.8)

Proof. To the contrary, suppose (6.8) admits a nontrivial solution φ. In this case
there is an integer l ≥ 1 and κ = +,− such that λκl (m, γ, δ) = 0 for an arbitrary
m ∈ K∗ρ . Since ϕ ≤ γ, δ ≤ ψ, Proposition 3.8 leads to

λ1 = λκl (m,ψ, ψ) ≤ λκl (m, γ, δ) = 0 ≤ λκl (m,ϕ, ϕ) = λ2. (6.9)

Let, for i = 1, 2, φi ∈ Sl,κρ be the eignfunction associated with λi and note that

£ρφ1 = (ψ + λ1m)φ1 in (ξ, η) a.e.,

Blρu = Brρu = 0,

and

£ρφ2 = (ϕ+ λ2m)φ2 in (ξ, η) a.e.,

Blρu = Brρu = 0.
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From the above BVPs, we obtain that λκl (ψ, λ1m,λ1m) = 1 = λκl (ϕ, λ2m,λ2m).
Then taking into account (6.9), from Proposition 3.8 we obtain

µl(ϕ) = λκl (ϕ, 0, 0) ≥ λκl (ϕ, λ2m,λ2m) = 1, (6.10)

µl(ψ) = λκl (ψ, 0, 0) ≤ λκl (ψ, λ1m,λ1m) = 1. (6.11)

Therefore, when µ1(ψ) > 1, from (6.11), the contradiction 1 ≥ µl(ψ) ≥ µ1(ψ) >
1, and when µj(ϕ) < 1 < µj+1(ψ) for some integer j ≥ 1, if l ≤ j, we have from
(6.10) the contradiction 1 > µj(ϕ) ≥ µl(ϕ) ≥ 1, and if l ≥ j + 1, we have from
(6.11) the contradiction 1 ≥ µl(ψ) ≥ µj+1(ψ) > 1. This completes the proof. �

Proof of Theorem 6.1.
Step 1 (Existence). For κ ∈ [0, 1] consider the BVP

£ρu = κ(g(x, u) + θφ+ h) + (1− κ)
α+ β

2
u in (ξ, η) a.e.,

Blρu = Brρu = 0,
(6.12)

and note that u ∈ W̃ρ is a solution to (6.12) if and only if

u = κTu+ (1− κ)Lu

= κLαI
+u− κLβI−u+ T̃ u+ (1− κ)Lu

(6.13)

where for u ∈ Cρ,

Tu(t) =
∫ η

ξ

(Gρ(t, s)g(s, u(s)) + θφ(s) + h(s))ds,

Lu(t) =
∫ η

ξ

Gρ(t, s)(
α(s) + β(s)

2
)ds,

T̃ u(t) =
∫ η

ξ

(Gρ(t, s)g̃(s, u(s)) + θφ(s) + h(s))ds,

g̃(s, u) = g(s, u)− α(s)u+ + β(s)u−.

Now, we claim that there exists R > 0 large such that Equation (6.13) has no
solution in ∂B(0, R). Indeed, if this is not the case and for all n ∈ N there exist
κn ∈ [0, 1] and un ∈ ∂B(0, n) such that the pair (κn, un) satisfies (6.12), then the
pair (κn, vn) with vn = un/‖un‖, satisfies

vn = κnLαI
+vn − κLβI−vn +

(
T̃ un/‖un‖

)
+ (1− κ)Lvn.

Arguing as in the proof of Lemma 4.2, we obtain that T̃ un = ◦(‖un‖) at ∞ and
then we obtain from the compactness of the operators Lα, Lβ and L0 that there is
a pair (κ, v), with κ ∈ [0, 1] and ‖v‖ = 1, satisfying the equation

u = κLαI
+u− κLβI−u+ (1− κ)Lu.

In other words, we have

£ρv = Aκv
+ −Bκv− in (ξ, η) a.e.,

Blρv = Brρv = 0,

where

Aκ =
1 + κ

2
α+

1− κ
2

β, Bκ =
1− κ

2
α+

1 + κ

2
β, ϕ ≤ Aκ, Bκ ≤ ψ.
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This contradicts Lemma 6.2 and proves existence of R > 0 large such that Equation
(6.13) has no solution. For such a radius R > 0, we have from homotopy property
of the degree and Lemma 6.2 that

d(I − T,B(0, R), 0) = d(I − L,B(0, R), 0) = (−1)ε 6= 0

where ε is the sum of algebraic multiplicities of characteristic values of L contained
in (0, 1). Clearly, this shows that (6.15) admits a solution.
Step 2 (Uniqueness). Assume that (6.7) holds and (6.15) admits two solutions
φ1, φ2. Set φ = φ1 − φ2 and

q(x) =

{
g(t,φ1(t))−g(t,φ1(t))

φ1(t)−φ2(t) if φ1(t) 6= φ2(t),
∂g
∂u (t, φ1(t)) if φ1(t) = φ2(t).

Then φ is a solution of

£ρu = qu = qu+ − qu− in (ξ, η) a.e.,

Blρu = Brρu = 0,

with ϕ ≤ q ≤ ψ. This contradicts Lemma 6.2, and completes the proof. �

Consider now the separated variable case of BVP (6.5)

£ρu = ω(t)χ(u) + h in (ξ, η) a.e.,

Blρu = Brρu = 0.
(6.14)

Setting α(t) = χ+ω(t) and β(t) = χ−ω(t), we have ϕ = min(χ−, χ+)ω and ψ =
max(χ−, χ+)ω and for all k ≥ 1, µk(α) = µk(ω)/χ+, µj(β) = µj(ω)/χ−. Therefore,
from Theorem 6.1 we obtain the following corollary.

Corollary 6.3. In addition to (6.4), assume that χ−, χ+ < µ1(ω), or that there
exists an integer j ≥ 1 such that µj(ω) < χ−, χ+ < µj+1(ω). Then (6.14) admits at
least one solution. Moreover, if min(χ+, χ−) ≤ χ′(u) ≤ max(χ+, χ−), then (6.14)
admits a unique solution.

6.3. Nonlinearities with jump. Now we consider the BVP

£ρu = g(x, u)− θφ+ h in (ξ, η) a.e.,

Blρu = Brρu = 0,
(6.15)

and we assume the following conditions: The BVP

£ρu = αu− φ in (ξ, η) a.e.,

Blρu = Brρu = 0,
(6.16)

admits a unique solution Φ ∈ S1,+
ρ and∣∣∂g

∂u
(t, u)− α(t)

∣∣ ≤ α̂(t)ĝ(u) in (ξ, η) a.e. and u ≥ 0. (6.17)

Remark 6.4. From Hypothesis (6.17) we obtain that

|g(t, u)− α(t)u| ≤ α̂(t)ĝ(u) + |g(t, 0)| for all u ≥ 0 and a.e. t ∈ (ξ, η).

Remark 6.5. Note that (6.16) implies µl(ρ̃, α) 6= 1, for all l ≥ 1, and then Geρ
exists where ρ̃ = (ξ, η, p, q − α, a, b, c, d).
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Remark 6.6. Because that S1,+
ρ is an open set in Eρ and Φ ∈ S1,+

ρ , there exists
r0 > 0 small enough such that

BEρ = {u ∈ Eρ, ‖u− Φ‖1 ≤ r0} ⊂ S1,+
ρ .

The following theorem is the main result of this subsection. It gives a lower
bound of the number of solutions to (6.15) when the real parameter θ is large.

Theorem 6.7. In addition to(6.1), (6.2), (6.3), (6.16) and (6.17), assume that
there exist two integers i, j ≥ 1 with i > 2(j − 1) such that µi(α) < 1 < µj(β).
Then there exists θ > 0 such that (6.15) admits 2(i − 2(j − 1)) solutions for all
θ ≥ θ.

The proof of Theorem 6.7 uses the following lemmas.

Lemma 6.8. Assume that (6.1), (6.3), (6.16) and (6.17) hold. Then there exists
θ1 > 0 such that (6.15) admits a positive solution for all θ > θ1

Proof. Set g̃(x, u) = g(x, u)−α(x)u and for θ 6= 0 consider the operatorAθ : E → E,
defined for u ∈ E by

Aθu(x) =
1
θ

∫ η

ξ

Geρ(x, s)(g̃(s, θ(u(s) + Φ(s))) + h(s))ds,

where ρ̃ is that in Remark 6.5. Clearly, Aθ is a completely continuous operator.
We claim that there exists θ1 > 0 such that Aθ(Ω) ⊂ Ω for all θ ≥ θ1 where
Ω = BEρ(0, r0) and r0 is the real number in Remark 6.6. Indeed, let

Geρ =
(
‖Geρ‖∞ + sup

t,s∈(ξ,η)

∣∣p(t)∂Geρ
∂t

(t, s)
∣∣),

and we obtain from Remark 6.4 the following estimate for all u ∈ Ω,

‖Aθu‖2 ≤ (Geρ/θ)(‖h‖L1
ρ

+ ‖g(., 0)‖L1
ρ

)
+ ‖α̂‖L1

ρ
(r0 + ‖Φ‖1)ĝ(θ(r0 + ‖Φ‖1)).

This together with the fact that limx→+∞ ĝ(x) = 0, leads to supu∈Ω ‖Aθu‖2 → 0
as θ → +∞, proving our claim.

At the end we conclude by Schauder’s fixed point theorem that for all θ > θ1,
Aθ admits a fixed point uθ and Uθ = θ(uθ + Φ) is a positive solution of (6.15). �

We need to introduce the following notation. For θ ≥ θ1 > 0 set

qθ(t) =
∂g

∂u
(t, Uθ(t)), ρ̂ = (ξ, η, p, q + q−θ , a, b, c, d),

gθ(t, u) =

{
g(t,u+Uθ)−g(t,Uθ)

u + q−θ (t) if u 6= 0
q+
θ (t) if u = 0.

From (6.1)-(6.16) we have

lim
u→0

gθ(t, u) = q+
θ (t) in (ξ, η) a.e.,

lim
u→−∞

gθ(t, u) = β(t) + q−θ (t) in (ξ, η) a.e.

Lemma 6.9. Assume that (6.1), (6.2), (6.3), (6.16) and (6.17) hold. Then there
exists θ2 ≥ θ1 such that µi(ρ̂θ, q+

θ ) < 1 < µj(ρ̂θ, βθ).
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Proof. From (6.17) we have∫ η

ξ

|qθ(t)− α(t)|dt =
∫ η

ξ

∣∣∂g
∂u

(t, Uθ(t))− α(t)
∣∣dt

≤
∫ η

ξ

α̂(t)ĝ(θ(uθ + Φ(t)))dt

≤
(∫ η

ξ

α̂(t)dt
)
ĝ(θ(r0 + ‖Φ‖))

→ 0 as θ → +∞.

This shows that qθ → α in L1
ρ as θ → +∞ and because of inequalities (2.1), we

have q+
θ → α and q−θ → 0 in L1

ρ. Therefore, we deduce from Proposition 3.12 that

lim
θ→+∞

µi(ρ̂θ, q+
θ ) = µi(α) < 1 < µi(β) = lim

θ→+∞
µj(ρ̂θ, βθ)

and there exists θ2 ≥ θ1 such that for all θ ≥ θ2, µi(ρ̂θ, q+
θ ) < 1 < µj(ρ̂θ, βθ),

completing the proof. �

Proof of Theorem 6.7. For θ > θ2, we consider the BVP
£ρu = ugθ(t, u) in (ξ, η) a.e.,

Blρu = Brρu = 0,
(6.18)

and note that if u is a solution to (6.18) then u + Uθ is a solution of (6.15).
In addition to µi(ρ̂θ, q+

θ ) < 1 < µj(ρ̂θ, βθ), from hypothesis (6.1) we have that
|gθ(t, u)| ≤ γ + q+

θ . This shows that all conditions of Part 3 in Theorem 5.1 are
satisfied and in addition to the trivial solution, (6.18) admits for l = 1, . . . , i−2j+1,
a solution u+

l ∈ S2j−1+l,+
ρ and for l = 1, . . . , i− 2j + 2, a solution u−l ∈ S2j−2+l,−

ρ .
We conclude that Uθ, Uθ + u+

l , for l = 1, . . . , i − 2j + 1, and Uθ + u−l , for l =
1, . . . , i− 2j + 2, are solutions to (6.3). �

Now we consider the separated variables case of (6.15),

£ρu = ω(t)χ(u)− θφ+ h in (ξ, η) a.e.,

Blρu = Brρu = 0,
(6.19)

and suppose that the BVP
£ρu = χ+ωu− φ in (ξ, η) a.e.,

Blρu = Brρu = 0,
(6.20)

admits a unique solution Φ ∈ S1,+
ρ .

Remark 6.10. Let φ1 ∈ S1,+
ρ be the eigenfunction associated with µ1(ω), φ =

−ωφ1 and µ1(ω) < χ+ 6= µk(ω) for all k ≥ 2 (to get uniqueness from Theorem
3.16) is a typical example where (6.20) is satisfied with Φ = φ1/(χ+ − µ1(ω)).

Setting α(t) = χ+ω(t) and β(t) = χ−ω(t), we have ϕ = min(χ−, χ+)ω, ψ =
max(χ−, χ+)ω and if χ−, χ+ > 0, then for all k ≥ 1, µk(α) = µk(ω)/χ+, µj(β) =
µj(ω)/χ−. Therefore, from Theorem 6.7 we obtain the following corollary.

Corollary 6.11. In addition to (6.4) and (6.20), assume that there exist two inte-
gers i, j ≥ 1 with i ≥ 2(j− 1) such that χ+ > µi(ω) > µj(ω) > χ− > 0. Then there
exists θ > 0 such that the (6.19) admits 2(i− 2(j − 1)) solutions for all θ ≥ θ.
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Example 6.12. Let ρ = (0, π, 1, 0, 1, 0, 1, 0), g−, g+ ∈ (0,+∞) and let i, j be
integers such that 1 ≤ j ≤ i and i ≥ 2(j − 1). Consider the BVP

−u′′ = g(u)− θφ+ h in (0, π)

u(0) = u(π) = 0
(6.21)

where h ∈ L1
ρ and

g(u) =
g+u

2eu

1 + |u|eu
+

g−u
2e−u

1 + |u|e−u
.

We have

lim
u→−∞

g(u)
u

= g−, lim
u→+∞

g(u)
u

= g+.

Example 6.13. Suppose that 0 < g− < 1 < g+ < 4. Denote by Φ the unique
solution of the BVP

−u′′ = g+u− φ in (0, π)

u(0) = u(π) = 0.

(1) If φ(t) = 1, then

Φ(t) =
1
g+

(− cos(
√
g+t)−

1− cos(√g+π)
sin(√g+π)

sin(
√
g+t) + 1)

=
−2 sin(√g+(π − t)/2)

g+ sin(√g+π)
sin(π

√
g+/2) sin(t

√
g+/2)

and Φ ∈ S1,+
ρ . Therefore, from Corollary 6.11 we deduce that (6.21) admits

at least 2 nontrivial solutions for θ large.
(2) If φ(t) = t, then

Φ(t) =
−π

g+ sin(√g+π)
sin(
√
g+t) +

t

g+

=
−1

g+ sin(√g+π)
(π sin(

√
g+t)− t(

√
g+π)).

It is easy to see that there exists α∗ ∈ (1, 9
4 ) such that Φ ∈ S1,+

ρ whenever
g+ ∈ (1, 9

4 ). Therefore, we deduce from Corollary 6.11 that (6.21) admits
at least 2 nontrivial solutions for θ large and g+ ∈ (1, 9

4 ).

6.4. Ambrosetti-Prodi situation.

Theorem 6.14. In addition to (6.4) and (6.20), assume that χ ∈ C2(R), χ′′ > 0
and χ− < µ1(ω) < χ+ < µ2(ω). Then there exists a real number θ∗ such that
(6.19) admits

i) no solution if θ < θ∗,
ii) a unique solution if θ = θ∗, and

iii) exactly two solutions if θ > θ∗.

The proof of the above theorem uses the following lemmas.

Lemma 6.15. In addition to (6.4) and (6.20), assume that χ− < µ1(ω) < χ+.
Then there exists a real number θ3 such that (6.19) admits no solutions.
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Proof. Let ε > 0 be such that ε < min((χ+−χ−)/2, χ+−µ1(m), χ−−µ1(m)). We
claim that there exist two positive constants C1 and C2 such that

χ(u) ≥ (χ+ − ε)u− C1 for all u ∈ R, (6.22)

χ(u) ≥ (χ− + ε)u− C2 for all u ∈ R. (6.23)

Indeed, for such a real number ε there exists A > 0 such that

χ(u) ≥ (χ+ − ε)u ≥ (χ− + ε)u for all u ≥ A,
χ(u) ≥ (χ− + ε)u ≥ (χ+ − ε)u for all u ≤ −A.

This leads to existence of positive constants C1 and C2 such that χ(u) ≥ (χ+ −
ε)u− C1 and χ(u) ≥ (χ− + ε)u− C2 for all u ∈ R.

Now, let u ∈Wρ be a solution of (6.19). Then

0 =
∫ η

ξ

φ1£ρu− u£ρφ1 =
∫ η

ξ

(χ(u)− µ1(ω)u)ωφ1 − θ
∫ η

ξ

φ1φ+
∫ η

ξ

φ1h (6.24)

and ∫ η

ξ

φ1φ = (χ+ − µ1(ω))
∫ η

ξ

ωφ1Φ−
∫ η

ξ

φ1£ρΦ− Φ£ρφ1

= (χ+ − µ1(ω))
∫ η

ξ

ωφ1Φ > 0.

Therefore, if
∫ η
ξ
ωφ1u ≤ 0, then inserting (6.23) into (6.24), we obtain

θ

∫ η

ξ

φ1φ ≥ ((χ− + ε)− µ1(ω))
∫ η

ξ

ωφ1u+
∫ η

ξ

φ1h ≥
∫ η

ξ

φ1h

leading to θ ≥
∫ η
ξ
φ1h/

∫ η
ξ
φ1φ, and if

∫ η
ξ
ωφ1u > 0, then inserting (6.22) into (6.24),

we obtain

θ

∫ η

ξ

φ1φ ≥ ((χ+ − ε)− µ1(ω))
∫ η

ξ

ωφ1u+
∫ η

ξ

φ1h ≥
∫ η

ξ

φ1h,

leading also to θ ≥
∫ η
ξ
φ1h/

∫ η
ξ
φ1φ = θ3. This shows that if θ < θ3, BVP (6.19)

has no solution. The proof is complete. �

In what follows and without loss of generality, we assume that the real parameters
b and d are nonnegative.

Lemma 6.16. Suppose that χ− < µ1(ω) < χ+ < µ2(ω). Then

c∞(d)v+∞(η) + dv
[p]
+∞(η) < 0 < c∞(d)v−∞(η) + dv

[p]
−∞(η).

Proof. We present the proof for v+∞; the proof for v−∞ is similar. First, we claim
that v+∞ admits at most one zero, Indeed, if there are ξ < x1 < x2 ≤ η such that
v+∞(x1) = v+∞(x2) = 0, then for φ1 ∈ S1,+

ρ we have an eigenfunction associated
with µ1(ω), yielding the contradiction

0 < −φ1(x2)v[p]
+∞(x2) + φ1(x1)v[p]

+∞(x1)

=
∫ x2

x1

φ1£ρv+∞ − v+∞£ρφ1

= (µ1(ω)− χ−)
∫ x2

x1

ωφ1v+∞ < 0.
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Therefore, we distinguish two cases:
(i) v+∞ > 0 in (ξ, η): In this case,

−φ1(η)v[p]
+∞(η) + φ

[p]
1 (η)v+∞(η) =

∫ η

ξ

φ1£ρv+∞ − v+∞£ρφ1

= (χ− − µ1(ω))
∫ η

ξ

ωφ1v+∞ > 0
(6.25)

and
− φ1(η)v[p]

+∞(η) + φ
[p]
1 (η)v+∞(η)

=

{
−φ1(η)

d (cv+∞(η) + dv
[p]
+∞(η)) if d > 0

φ
[p]
1 (η)v+∞(η) if d = 0.

(6.26)

Since φ1(η) > 0 if d > 0, and φ[p]
1 (η) < 0 if d = 0, from (6.25) and (6.26) we obtain

c∞(d)v+∞(η) + dv
[p]
+∞(η) < 0.

(ii) v+∞(x1) = 0 for some x1 ∈ (ξ, η): In this case we have v[p]
+∞(x1) < 0 and

− φ1(η)v[p]
+∞(η) + φ

[p]
1 (η)v+∞(η)

=
∫ η

x1

φ1£ρv+∞ − v+∞£ρφ1

= −φ1(x1)v[p]
+∞(x1) + (χ− − µ1(ω))

∫ η

x1

ωφ1v+∞ > 0.

(6.27)

As with the above case, from (6.27) and (6.26) we obtain c∞(d)v+∞(η)+dv[p]
+∞(η) <

0. This completes the proof. �

Lemma 6.17. Let for σ ∈ R, vσ = v(·, σ, θ) be the unique solution of

£ρv = ω
χ(σv)
σ
− θφ

σ
+
h

σ
v(ξ) = b

v[p](ξ) = a∞(b)

and assume that (6.4) holds. Then limσ→−∞ vσ = v−∞ and limσ→+∞ vσ = v+∞
in W̃ρ.

Proof. We prove that limσ→+∞ vσ = v+∞ in W̃ρ; the other limit is checked simi-
larly. Let χ̃(u) = χ(u)−χ+u

+ +χ−u
− and note that there exists M > 0 such that

|χ(u)| ≤M . For σ > 0, let wσ = vσ − v+∞ and observe that wσ satisfies

£ρwσ = χ̂(s, wσ)

wσ(ξ) = 0,

w[p]
σ (ξ) = 0,

where

χ̂(s, u) = ωχ+((u+ v+∞(s))+ − v+
+∞(s))− χ−ω((u+ v+∞(s))− − v−+∞(s))

+ ω
χ̃(σ(u+ v+∞(s)))

σ
− θφ(s)

σ
+
h(s)
σ

.
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Set Wσ = (wσ, w
[p]
σ ), then Wσ satisfies W ′σ = F (s,Wσ) and Wσ(ξ) = (0, 0) where

for X = (x, y), F (s,X) = ( 1
py, q(s)u − χ̂(s, u)) and Wσ(t) =

∫ t
ξ
F (s,Wσ(s))ds.

From (2.1) we obtain the estimates

|F (s,Wσ(s))|

≤ |q(s)||wσ(s)|+ |w
[p]
σ (s)|
p(s)

+ θ
|φ(s)|
σ

+
|h(s)|
σ

+ ω(s)
|χ̃(σ(wσ(s) + v+∞(s)))|

σ
+ χ+ω(s)|(wσ(s) + v+∞(s))+ − v+

+∞(s)|

+ χ−ω(s)|(wσ(s) + v+∞(s))− − v−+∞(s)|

≤ |w
[p]
σ (s)|
p(s)

+ (χ+ + χ−)ω(s)|wσ(s)|+ ω(s)
M

σ
+ θ
|φ(s)|
σ

+
|h(s)|
σ

≤ $(s)(|w[p]
σ (s)|+ |wσ(s)|) + ω(s)

M

σ
+ θ
|φ(s)|
σ

+
|h(s)|
σ

where $(s) = (1/p(s)) + |q(s)|+ (χ+ + χ−)ω(s). Let κ > 1. The above estimates
lead to

exp(−κ
∫ t

ξ

$(r)dr)|Wσ(t)|

≤
∫ t

ξ

|F (s,Wσ(s))| exp(−κ
∫ s

ξ

$(r)dr) exp(−κ
∫ t

s

$(r)dr)ds

≤ ‖Wσ‖ξ
∫ t

ξ

$(s) exp(−κ
∫ t

s

$(r)dr)ds+
1
σ

(M + θ‖φ‖1 + ‖h‖1)

≤ 1
κ
‖Wσ‖ξ +

1
σ

(M + θ‖φ‖1 + ‖h‖1),

and then

(1− 1
κ

)‖Wσ‖ξ ≤
1
σ

(M + θ‖φ‖1 + ‖h‖1)→ 0 as σ → +∞.

Thus, we have proved that wσ → 0 in W̃ρ; the proof is complete. �

Proof of Theorem 6.14. Without loss of generality, suppose that b, d ≥ 0. For σ ∈
R, let u(·, σ, θ) be the unique solution given by Theorem 2.3 of the IVP

£ρu = ωχ(u)− θφ+ h

u(ξ) = bσ

u[p](ξ) = a∞(b)σ.

Consider the function γ : R2 → R given by

γ(E, θ) = Brρu(η, σ, θ) = c∞(d)u(η, σ, θ) + du[p](η, σ, θ).

Fix θ and let γθ(σ) = γ(σ, θ). We have that limσ→−∞ γθ(σ) = limσ→+∞ γθ(σ) =
−∞. We present the proof of limσ→+∞ γθ(σ) = −∞; the other limit is checked
similarly. For σ > 0, let vσ = u/σ, and note that vσ satisfies the IVP

£ρu = ω
χ(σu)
σ
− θφ

σ
+
h

σ
u(ξ) = b
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u[p](ξ) = a∞(b).

From Lemma 6.17, we have limσ→+∞ vσ = v+∞ in W̃ρ. In particular, we have

limσ→+∞
u(η,σ,θ)

σ = v+∞(η) and limσ→+∞
u[p](η,σ,θ)

σ = v
[p]
+∞(η). Then taking into

account Lemma 6.16, we obtain

lim
σ→+∞

γθ(σ)
σ

= c∞(d)v+∞(η) + dv
[p]
+∞(η) < 0

and obviously, limσ→+∞ γθ(σ) = −∞.
Now, we claim that the mapping γθ admits a unique critical point at which it

reaches its maximum value. Let σ∗ be such that γ′θ(σ
∗) = 0 and set u∗ = u(·, σ∗, θ),

v∗ = ∂u
∂σ (·, σ∗, θ) and w∗ = ∂2u

∂σ2 (·, σ∗, θ) and note that

£ρv∗ = ωχ′(u∗)v∗

Blρv∗ = Brρv∗ = 0
(6.28)

and
£ρw∗ = ωχ′′(u∗)(v∗)2 + ωχ′(u∗)w∗

w∗(ξ) = 0

w
[p]
∗ (ξ) = 0.

(6.29)

We have that v∗ ∈ S1,+
ρ , indeed, from BVP (6.28) we obtain µl(q − ωχ′(u∗)) =

µl(ρ∗,m) = 0 for some integer l ≥ 1 and arbitrary m ∈ K∗ρ , where ρ∗ = (ξ, η, p, q−
ωχ′(u∗), a, b, c, d). Let φ1, φ2 be respectively eigenfunctions associated with µ1(ω),
µ2(ω) and note that we obtain also that

µ1(q − µ1(ω)ω) = µ1(ρ1,m) = µ2(q − µ2(ω)ω) = µ2(ρ2,m) = 0

where for i = 1, 2, ρi = (ξ, η, p, q − µi(ω)ω, a, b, c, d).
Since χ− < χ′(u∗) < χ+ < µ2(ω), from Proposition 3.11 for l ≥ 2, we have the

contradiction

0 = µl(q − ωχ′(u∗)) > µl(q − µ2(ω)ω) ≥ µ2(q − µ2(ω)ω) = 0.

This shows that l = 1 and since v∗(ξ) = b ≥ 0 and v
[p]
∗ (ξ) = 1 if b = 0, we have

v∗ ∈ S1,+
ρ .

At this stage, we have

−w[p]
∗ (η)v∗(η) + w∗(η)v[p]

∗ (η) =
∫ η

ξ

v∗£ρw∗ − w∗£ρv∗

=
∫ η

ξ

ωχ′′(u∗)(v∗)3 > 0
(6.30)

and since

−w[p]
∗ (η)v∗(η) + w∗(η)v[p]

∗ (η) =

{
−v∗(η)

d γ′′θ (σ∗) if d > 0
v

[p]
∗ (η)γ′′θ (σ∗) if d > 0

and v∗(η) > 0 if d > 0, and v
[p]
∗ (η) < 0 if d = 0, from (6.30) we conclude that

γ′′θ (σ∗) < 0 and γθ reaches at σ∗ its maximum value.
Now, let for θ ∈ R, Γ(θ) = γ(σ(θ), θ) where σ(θ) is the unique critical point of

the mapping γ and z = ∂u
∂θ (·, σ, θ). Then

Γ′(θ) =
∂γ

∂σ
(σ(θ), θ)σ′(θ) +

∂γ

∂θ
(σ(θ), θ) =

∂γ

∂θ
(σ(θ), θ)
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and

£ρz = ωχ′(u∗)z − φ
z(ξ) = 0

z[p](ξ) = 0.

γθ∗

γθ

γθ∗

-

6

σ(θ∗)
σ(θ)

σ(θ∗)

Γ(θ∗)

Γ(θ)

Figure 4. The mapping γθ

Similar calculations lead to∫ η

ξ

v∗φ =
∫ η

ξ

Φ£ρv∗ − v∗£ρΦ−
∫ η

ξ

(χ′(u∗)− χ+)ωΦv∗

=
∫ η

ξ

(χ+ − χ′(u∗))ωΦv∗ > 0

and

−v∗(η)z[p](η) + v
[p]
∗ (η)z∗(η) =

{
− v∗(η)

d
∂γ
∂θ (σ(θ), θ) if d > 0

v
[p]
∗ (η)∂γ∂θ (σ(θ), θ) if d = 0

=
∫ η

ξ

v∗£ρw∗ − w∗£ρv∗

= −
∫ η

ξ

v∗φ < 0.

This shows that the mapping Γ is increasing.From Lemma 6.15 we have Γ(θ3) < 0,
and from Theorem 6.7 we have Γ(θ̄) > 0, then there exists a unique θ∗ ∈ R such
that Γ(θ∗) = 0 and consequently (6.19) has no solution if θ < θ∗, a unique solution
(u(·, σ(θ∗), θ∗)) if θ = θ∗, and exactly two solutions (u(·, σ1, θ) and u(·, σ2, θ) with
γ(σ1, θ) = γ(σ2, θ) = 0 and σ1 < σ(θ) < σ2) if θ > θ∗. The proof is complete. �
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