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STURM-LIOUVILLE BVPS WITH CARATHEODORY
NONLINEARITIES

ABDELHAMID BENMEZAI, WASSILA ESSERHANE, JOHNNY HENDERSON

ABSTRACT. In this article we study the existence and multiplicity of solu-
tions for several classes of Sturm-Liouville boundary value problems having
Caratheodory nonlinearities. Many results existing in the literature for such
boundary value problems in the continuous framework will find in this work
their extensions to the Caratheodory setting.

1. INTRODUCTION

Sturm-Liouville boundary value problems (BVP for short) have been the sub-
ject of hundreds of articles during the previous five decades, where existence and
multiplicity of solutions have been investigated. Often, these works are considered
in the continuous framework. For this reason, we are concerned here with existence
and multiplicity of solutions for Sturm-Liouville BVPs posed in the Caratheodory
framework given by,

£Lu= f(t,u,p) in (&,7n) a.e.,
au(§) + bpu'(§) = 0, (1.1)
cu(n) + dpu'(n) =0,
where —oo < ¢ <1 < 400, £u = —(pu') + qu for u € dom(£), 1/p,q € L*(&,n),
p > 0in (&,n) ae., (a®+b%)(c>+d?) #0and f : (£,7) xRxR — R is a Caratheodory
function, that is,
(i) f(t,-,-) is continuous for a.e. t € (£,7),
(ii) f(-,u,p) is measurable for all u, u € R.
In what follows, we let m : (&,7) — [0, +00) be in L' (&, n) such that m is positive on
a subset of positive measure, a, 3 € L'(£,1) and g : (£,7)xR — R is a Caratheodory

function. Our first contribution in this work concerns the linear version of (1.1),
namely the case where f(¢,u,u) = pm(t)u and (1.1) takes the form

£Lu=pmu in (§,n) a.e.,
au(§) + bpu'(€) = 0, (1.2)
cu(n) + dpu’(n) = 0.
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So far we know, the best result existing in the literature (see [41, Theorem 4.9.1])
states that admits an increasing sequence of simple eigenvalues (ux)g>15uch
that limg_, o ux = +00 and if ¢y is the eigenfunction associated with uy and zj is
its number of zeros, then z;11 = zp + 1. Moreover, if m > 0 in (&,7) a.e., then
z1 = 0. We obtain in this work (see Corollary that although m(t) > 0 a.e.
te (¢,n) ¢ (&n), we have always 21 = 0.

In fact Corollary [3:I4] is a consequence of Theorem [3.10] which is the second
contribution in this work. This result concerns the case where f(¢,u, u) = pm(t)u+
a(t)ut — B(t)u~, and the BVP takes the form

Lu=pmu+aout — pu”  in (& n) ae.,
au(€) + bpu'(€) = 0, (1.3)
cu(n) + dpu'(n) = 0.

Note that such a nonlinearity f is positively 1-homogeneous and it is linear on
[0,400) and on (—o0,0]. For this reason, the BVP (1.3) is said to be half-linear
and if (p,w) is a nontrivial solution, we say that p is a half-eigenvalue of BVP
. Clearly, if « = § = 0 then BVP coincides with the linear eigenvalue
BVP (1.2) and this exhibits that the concept of half-eigenvalue generalizes that
of eigenvalue. Such types of BVPs have been considered for the first time in [6],
where the author introduced the concept of half-eigenvalue. He proved in the case
where —0o < £ < n < +oo, p € CY¢,n], ¢,m,a, 3 € C[¢,n] and m > 0 in [, 7],
that BVP (1.3)) admits two increasing sequences of simple half-eigenvalues (Mz)kel
and (uy, )k>1. Theorem states that the Berestycki’s result holds for our more
general case. In [9], Binding and Rynne studied existence of half-eigenvalues and
their properties for the periodic version of BVP ((1.3). The importance of the
concept of half-eigenvalue in the theory of Sturm-Liouville BVPs appears clearly in
all existence and multiplicity results (see [0l Theorems 5.1, 5.3, 5.4]).

Our third contribution consists in Theorem [£.3] of Section 4, where is examined
the perturbed version of the BVP ([1.3)),

£u = pmu + ug(t,u) in (&, n) a.e.,
au(§) + bpu'(§) = 0,
cu(n) + dpu’(n) = 0,

where ¢(¢,0) = 0, limy,— o0 g(t,u) = a(t), lim,—,_o g(t,u) = B(t) a.e. t € (7).
Theorem concerns the bifurcation diagram of the BVP . It describes the
asymptotic behavior of the two components C,j' and ¢, bifurcating from the kth-
eigenvalue pyj of the BVP . More precisely, it states that each one of the
components ¢;~ and (;  rejoins respectively the points (y;, 00) and (py ,00) where
(1 )k>1 and (p, )r>1 are the two sequences of half-eigenvalues of BVP (1.3). Note
that if either pf <1 < ug, or up <1 < pf with k = 4+ or —, then the BVP

(1.4)

£Lu=ug(t,u) in (§,n) a.e.,
au(§) + bpu'(§) = 0, (1.5)
cu(n) + dpu’(n) = 0,

where g(t,u) = m(t) + g(t,u), admits a nontrivial solution. Thus, in Section 5,
we present situations where this is the case and our contribution consists in The-
orem and its corollary (Corollary [5.2). In fact, Theorem is composed of
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four assertions and each assertion presents a situation where admits nodal
solutions. The first two assertions generalize and improve many results existing in
the literature and so far we know, the last two ones presents new existence results.

In the last section, we consider the case where f(t,u,p) = g(t,u) — pd + h,
é,h € L*(&,7), and the BVP takes the form

£u:g(t,u) —,U,¢+h in (fﬂ?) a.e.,
au(€) + bpu' (€) = 0, (1.6)
cu(n) +dpu'(n) =0,

Such a class of nonlinearities is known in the literature by jumping nonlinearities,
and the particular case of BVP (1.6)) having such a nonlinearity

—u" =(u) — psin(t) —h in (0,7), L7

u(0) = u(r) =0, (L7)
where h € C[0,7] and f; h(t)sin(t)dt = 0, has been widely investigated in the
literature. Denote by (A;)r>1 the sequence of eigenvalues of the BVP

—u" = Xu in (0,7),

u(0) = u(m) =0,

and note that sin(¢) is the eigenfunction associated with the first eigenvalue A;.
Suppose that 1) € C'(R) and set a4 = lim,_,+o %' (u), the first existence result for
BVP was obtained by Hammerstein in [20], where he proved that if a_, a4 <
A1 then BVP (1.7) admits at least one solution. Moreover, if ¢'(u) < Ay for all
u € R, then the solution is unique. Dolph extended Hammerstein’s result in [I§],
to the case where A\ < a_,ay < Apy1 for some integer £ > 1 and he proved that
the solution is unique whenever Ay < ¢’'(u) < Ag41. The nonlinearity ¢ under the
hypothesis a_,a; < Ay or up < a—,a4 < Ag41 is said to be without jump since
there is no eigenvalue in the interval I = (min(a_, a4 ), max(a_,a4)).

The case where I contains exactly one eigenvalue, has been considered for the
first time in [2], under the assumptions that ¢ € C?*(R) is convex and 0 < a_ < A\; <
a4+ < A2, in which case the authors proved by means of a generalized version of the
global inversion theorem to operators having singularities, existence of a manifold I"
in C[0, ] such that C[0, 7] \T consists of two components 'y and T's, and has
no solution if h = wsin(t) + h € Ty, exactly two solutions if h €Ty, and a unique
solution if A € T. In [32], the authors relaxed the condition 0 < a_ < A\; < ay < fi
to that —oo < a— < A1 < a4 < g9, and in [§] the authors proved existence of
such that T' = {h = psin(t) + h : p = i}, To = {h = psin(t) + h : p < i} and
[y = {h = psin(t) + h : x> ji}. Many other extensions of the Ambrosetti-Prodi
result are obtained in [I, B} [IT], [I7, 22, [38]. The case where I contains more than
one eigenvalue is considered in [10} [12] 15} 211, 241 25| 26], 27, 36| B85, 37, 39]. The
best result obtained for the minorant of the number of solutions to BVP (1.7 in
the above cited references is: if A\j_1 < a— < Aj < --- < Ay < ay < Aqq for
some integers i,j > 1 with ¢ > 2(j — 1), then the BVP (L.7) admits 2(: — (j — 1))
nontrivial solutions for u large.

In this section, we assume that g and g—i are Caratheodory functions and the
nonlinearity ¢ has the linear behavior at +oo, lim,— 1 g(t,u)/u = «(t), and
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limy,— oo g(t,u)/u = B(t) a.e. t € (§,n). Our first contribution consists in Theo-
rem m and its corollary (Corollary [6.3). This theorem provide an existence and
uniqueness result of a solution to r all p € Rand ¢,h € L'(¢,7n), and Corol-
lary consider the case where the nonlinearity g is a separated variables function
and shows that Theorem is an extension of Hammerstein’s and Dolph’s results
to the case of Sturm-Liouville BVPs posed in the Caratheodory frame-work. Theo-
rem [6.1] is proved by means of degree theory and eigenvalue properties. The second
contribution in this section consists in Theorem and its corollary (Corollary
. Theorem provides a multiplicity result for BVP (1.6) and Corollary
consider the case where the nonlinearity g is a separated variables function and
shows that Theorem [6.7] recuperates the minorant of the number of solutions to
obtained in [10, 12} 15} 21], 24, 25, 26] 27 36, B35, 37, 39] for our general case
of Sturm-Liouville BVPs posed in the Caratheodory frame-work.

In the last part of the last section, we present a result (Theorem which
states that the Ambrosetti-Prodi situation holds for the particular case of BVP (1.7
where the nonlinearity ¢ is a separated variables function; Namely we consider the
BVP

Lu=m(t)g1(u) —pp+h in (&) ae.,
au(§) + bpu'(€) = 0, (1.8)
cu(n) + dpu'(n) =0,

where g; € C?(R,R) and lim, .+ ¢} (u) = g+. We prove by means of a shooting
method that if ¢f > 0 and g— < p1 < g4+ < po where py and po are respectively
and the second eigenvalues of (|1.2), then there exists p. such that (1.8]) admits

(a) no solution if p < pus,
(b) a unique solution if § = ., and
(c) exactly two solutions if 6 > ..

The main tool used in this article to obtain multiplicity results, is the global bifurca-
tion theory established by Rabinowitz in [34] on which Dancer gives more precision
in [I6]. This theory remains a very powerful tool to prove existence and multiplicity
results for BVP (L)), see for example [4} 5, (13} 14} 19, 28] 29} 30, BT, [40].

All the above contributions are presented in Sections 3-6 and Section 2 is devoted
to some preliminary results. All these results are not original and we can find in the
literature similar utterances, for example the case where 7 € R of Theorem can
be easily found in the literature, although its extension to the case 7 = oo is easy
to prove, we haven’t find in the literature a result providing this situation. Also,
we met the spirit of Lemmas and in [6] but these two results are not clearly
stated in the above cited wok. For this reason and for sake of completeness, some
results in Section Preleminaries are stated and proved in the manner which agree
with the spirit of this work. We end this introduction with the following useful
lemma:

Lemma 1.1 ([23], Corollary 4.7]). Letp € [1,00), f € LP(Q) and (f,,) be a sequence
in LP(Q) where  is a measurable set in RN . If f,, — f a.e. in Q and lim || f,, |, =

[f1lp, then Tm || f = fullp = 0.
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2. PRELIMINARIES
2.1. Notation.
Ay ={(&n): —o0 <& <n< 400} =R xR,
Ay ={(&mp):p1=(&m) € Arand 1/pe K},
Az ={(&n.p,q9) : pr=(&m) €A1, 5(6mp) €Ay and g € L), },
Ay ={(&n,p,0,a,b,¢,d) : (£,1,p) € Ay and (a® + b?)(c? + d?) # 0},
A={(&n,p,q.a,b,c.d):(&np q) €Az and (§n,p,0,a,b,c,d) € Ay}

For p1 = (§,7n) € Ay, we define

U
L;I = {m: ({,1) — R measurable /5 Im(s)|ds < oo},

K, ={me L;l :m>0ae. in (§,n)},
K;l = {m € K,, : m is positive in a subset of positive measure},

Kl ={meK, :m>0ae in(n)},

C, = {u :(&,m) — R : u is continuous and
}eré u(t), 75151117 u(t) exist and are ﬁnite},
AC,, ={ueCy :u' €L, }.
For ps = (§,7,p) € Ag, we define the linear spaces
W,, ={uc AC,, :uP eC,}, W, ={ucW,, uecAC,},

where p; = (£,7) and ulPl = pu/ is the quasi-derivative of u. These two spaces,
respectively, with the norms

n
luly = sup |u(t)]+ sup [ull(t)], IIUI|2=|IUH1+/ |ul?! (1) |dt
te(€,m) te(€,m) 13

become Banach spaces.

For the sake of simplicity, we write for u € W,,, u(+00), ulP!(+00) instead of
limy oo u(t), limy_ ;oo ulPl(t) when n = 400 and u(—o0), ulPl(—o00) instead of
limy— oo u(t), limy—_ o ulPl(t) when ¢ = —oco. Let u € W, and ¢, be such that
€ <to<mn. If u(ty) = 0 and ulPl(ty) # 0, then t; is said to be a simple zero of w.

Throughout this paper, for ps = (§,1,p,q) € As, £,, is the differential operator

defined for u € W, where po = (§,7,p) by
£pyu(x) = —(ul) (z) + g(z)u().
For ps = (£,1,p,0,a,b,¢,d) € Ay, Bfw By, are the operators given, for u € V~Vp2
where P2 = (5777719)7 by
Bl u=au(€) + bulP(€), Bju=cu(n)+ dulP(n),
and E,, is the subspace of W,, defined by
E,, ={u€W,,: B, u= B, u=0}

For integers & > 1, S"’jf denotes the set of functions v € E,, having exactly
(k — 1) zeros in (£,7), all are simple and u is positive in a right neighbourhood
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of & It is well known that Sk, Sk~ = —Sk+ and S) = Sk+ U Sk~ are open

sets in E,, and if u € dS¥*, (k = +,—), then there exists 7 € (£,n) such that

P4 )
u(t) = ulPl(r) = 0. For u € S§4, (zj);zg with € = 20 < 21 < -+ < 2z, = n and
u(z;) =0for j =1,...,k —1, is said to be the sequence of zeros of u.

For p1 € Ay and kK = 4+ or —, let I* : C,, — C,, be defined by I"u(z) =
max(xu(z),0).
For all u € E, we have
u=TI"u—T"u, |u=ITu+I u.
This implies that, for all u,v € E,
lu—v] ] = vl
2 2

ju=ol , Jlul = Jol
2 2

and the operators I*, I~ are continuous.

[Itu— It <

< ‘U7U|a

I u—1"v|<

< |lu—vl,

Remark 2.1. Throughout this paper, when there is no confusion, we write for
p = (f?n7p7q7a/7ba ¢, d) € Av Lllﬁ Kpa K;;7 K;_a Cp7 ACp7 Wpa Wpa Epa Slp€7+7 S];’_a
Sk, £,, BY, B instead of L} , K,,, K}, K}, C,,, AC,,, Wy,, W,,, £,,, B!

pP1? pP1? pP1? P11 P11 P2 P2 p3) pa?
By, Ep,, S}’jﬁ, Sﬁi’, 554, where for i € {1,2,3,4}, p; is the projection of p onto

'

2.2. Initial value problem. In this subsection we let p3 = (£,1,p,q) € A3, p1 =
&,n), p2 = (£&,m,p), 7,0 € R and 7 is such that £ < 7 < 1. Consider the initial
value problem (IVP for short);

£ou= f(t,u),
u(t) =1, (2.2)
ul?! (r) =4,

where f: (§,17) x R — R is a Caratheodory function; that is,

(1) f(-,u) is measurable for all u € R,
(2) f(t,-) is continuous for a.e. t € (&, 7).

Suppose that

f(,00eL, . (2.3)
By a solution to , we mean a function ¢ € sz such that £,,¢ = f(t,¢) and
¢() =, ol (1) = 0.
Theorem 2.2. Assume that Hypothesis holds and there exists { € Lll)1 such
that for all x,y € R and a.e. t € (£,7),

[f(t,2) = f(t,y)] < &(t)]z —yl.

Then admits a unique solution.

Proof. Clearly, u is a solution to (2.2) if and only if (u,ulP!) is a solution to the

first-order IVP
U' = F(t,U)

U(r) = (7,9)
where for U = (u,v) and t € (&,n), F(t,U) = (ﬁ,q(t)u — f(t,u)).

(2.4)



EJDE-2016/298 STURM-LIOUVILLE BVPS 7

Let K > 1 and X = C,, x C,, be equipped with the norm,

)l = 5w (exps] [ o)+ )

te(€m

where w = |q| + ¢ + %. Note that the norm || - || is equivalent to the norm || - ||

defined for (u,v) € X by |[(u,v)|lcc = supse (e, [w(t)] + supse (e, [v(2)]-
At this stage, we have that U = (u,v) € X is a solution to (2.4) if and only if

U(t) = TU(t) where TU(t) = (v,8) + [ F(s,U(s))ds. Since

[F(s,U(s))] < |F(s,U(s)) = F(s,0)] + [F(s,0)]
1
< @W(SN + (lg(s)[ + ¥ (s))|u(s)] + | f(s,0)]
the operator T': X — X is well defined. Therefore, it suffices to prove that T is a

contraction.
To this aim let Uy = (uq,v1), Uz = (ug,v2) € X, we have

|F(s,Uy(s)) — F(s,Us(s))]
< |UI(S)p(_s)UQ(S)| + (la(s)] + ¥ (s))lur(s) — uz(s)] (25)
< w(s)|Ur(s) — Us(s)]

and
t
S(t) = exp(—/f|/ w(r)dr)|TU(t) — TU(t)]
t
= | / e M AP (5, U1 (5)) = F(5,Ua(s)))e "7 < ds).
Hence, we obtain from (2.5)) and (2.6) that if ¢ > 7, then
t
() < / = LI (s 17, (5)) — F(s, Un(s))|e=" 5 0 g
t
< / e—mfst w(r)drw(8)|U1(s) _ U2(8)|6_H f: w(r)drds
t
< (/ e @y (5)ds)|[Uy — U

1

< U = Uzl
K

and if ¢ < 7, then
S(t) S/ e T B (5, U (s)) = F(s, Uz(s)) e I <00 ds

t

< / ek I w(r)drw(s)‘Ul(s) _ U2(8)|€7N JT w(r)drds
t

< ([ wloetietas) v, - vl

t

1
= U1 — Uz||-
K

N
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The above estimates on S(t) lead to |TU; —TUs||x < ||U1 —Us||, and (2.2)) admits

- K

a unique solution, thus completing the proof. ([

The following corollary is obtained from Theorem and is an extension of [41]
Theorem 2.2.1] to the case where 7 can be infinite.

Corollary 2.3. For all ps = (£,1,p,q) € As, v, 0 ER and § <7 <nand f € Lllj1
with p1 = (§,7), the IVP

°€I)3u = fa
u(r) =1,
ulPl(r) =4,

admits a unique solution.

Now consider the IVP
£pu=ug(t,u),

u(r) =0, (2.7)
ulP) (1) =0,
where g : (§,7) Xx R — R is a Caratheodory function.
Corollary 2.4. Assume that
lg(t,u)] < P(t) for allu € R and a.e. t € (&,7)
for some ¢ € L,ln. Then the trivial function is the unique solution for (2.7)).
Proof. Indeed, if (A, u) is a solution to (2.7) then w is a solution of the IVP
—(pv') + (¢ + qu)v =0,
v(T) =0,
pl?] (r) =0,
where ¢, (t) = —g(t,u(t)). Since the hypothesis in Corollary guarantees that
qu € Lz ,» we have from Corollary that w is the unique solution of (|2.7]). O

2.3. Comparison results.

Definition 2.5. Let po = (§,1,p) € A and u,v € W,,. The function Wr(u,v) =
wl?! —ulPly is called the Wronksian of u,v.

It is easy to prove the following lemma.

Lemma 2.6. Let p = (£,1,p,q,a,b,¢,d) € A and u,v € W,. We have
i) If Bf)u = Bév =0, then Wr(u,v)(§) =0;
(ii) If Byu = Byv =0, then Wr(u,v)(n) = 0;
(iii) If Wr(u,v)(to) # 0 for some to € (&,n) and £,u = £,v =0, then {u,v}

form a basis of the space of solutions to the differential equation £,w = 0.

The proof of the following lemma is similar to that of [0, Lemma 2], so it is
omitted.
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Lemma 2.7. Let j and k be two integers such that j > k > 2. Suppose that there
exist two families of real numbers

So=86<& <& < <1 <& =1,
no=§<m<mp<---<nj-1<n=n.
Then, if &1 < n1, there exist two integers m and n having the same parity, 1 < m <

k—1and1<n<j—1 such that

gm < nn S 77n+1 S £m+1~

Lemma 2.8. Letp-(ﬁ r]p,q,a b,e,d) € A and let fori=1,2, d)ZESk ' having

a sequence of zeros (2% I=Fi I for some integers m,n withm < k1—1 andn < ko—1
J/j= 0

we have ¢1¢2 > 0 and 2}, <22 <22, <zl ., then fz%"“ 1 L£pp2 — oL 01 > 0.
2
Moreover, f;”“ P1 L2 — pa Ly =0 if and only if 2}, = 22 < 221 =z, .

Proof. Without loss of generality, suppose that ¢1,¢2 > 01in (22,22 ,,) and let Wr

be the Wronksian of ¢; and ¢5. Set I = fj‘“ 1 £,02 — g2 £,¢1 and note that
T=Wr(z2) — Wr(z2,,). '
We distlngulsh four cases:
(i) €=22< Zn+l = n: In this case we have [ = Wr(§) — ( )
(i) € = z,% < an < n: In this case we have Wr(§) = 0, ¢

$2(221) =0, qb ( 22.1) <0, leading to

= Wr(zhy) = =61(27,)08 (2240) 2 0.

Clearly, if I =0 then ¢1(22,,)=0and 2}, =22,.

(iii) € < 22 < 22, =n: In this case we have Wr(n) =0, ¢1(22) >0, ¢p2(22) =
0, (;S[p]( 2) > 0, leading to I = Wr(z ) qbl( 2) [p]( 2) > 0. Clearly, if
I = 0 then ¢1(22) = 0, proving that z}, = 22

(iv) € < 22 < 22, < n: In this case we have ¢1( 2) >0, ¢1(22,4) > 0,
02(22) = 0. Ga(=211) = 0. 6 (z2) > 0, ) (=2,1) < 0 (see Figure [I,
leading to I = ¢1(22) [p]( 2) = ¢1(22 1) [p]( n+1) > 0. Clearly, if I =0
then ¢1(22) = ¢1(22,,) = 0, proving that 2}, = 22 and 2}, =22 ;.

0.
2

(2,0) > 0,

(|
b1

P2
1 1 2
. /\}%\Z\m+l Z; Sl

FIGURE 1. Bumps
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Lemma 2.9. Let p = (&,m,p,q,a,b,¢,d) € A and let ¢1, P be respectively two
functions in S/’,f’” NW,. Then, there exist two intervals (§1,m) and (€2,m2) such
that g1¢2 > 0 in (&1,m1) and in (§2,12). Moreover,

m 2

d1Lpp2 — paL 1 >0, O1L 2 — P2 L ,91 < 0.
&1 &2
Proof. Without loss of generality, suppose that k = + and let for ¢ = 1,2, (z;);zg
the sequence of zeros of ¢;. Since the case k = 1 is obvious, we suppose that k > 2.
We distinguish two cases

(i) 21 = z}: In this case let 6 = inf(z3, 22). From Lemma[2.8] we have

>0 iff =23
<0 if 6 =2z.

21 [4
| ot entin =0, [ ¢1£p¢2—¢2£p¢1{{

Thus, if 0 = 23, we take (£1,m1) = (&, 21), (&2,m2) = (21, 23) and if 0 = 23,
we take (&1,1m1) = (&, 21), (§2,72) = (22, 23).

(ii) 22 < 2i, (the case 2; < 2z? is checked similarly): In this case Lemma
guarantees existence of two integers m,n > 1 having the same parity
such that 22, < 2} < z},; < 22,,. Thus, we take (&,m) = (& 2}) and
(&2,m2) = (23, 24 4) and we have from Lemma

m N2
O1L£pp2 — 2L ,1 > 0, p1L£pp2 — 2L ,p1 < 0.
&1 &2

This completes the proof. [l

Lemma 2.10 ([6]). Let p € A and let wy, wy be two functions in W, and assume
that wo does not vanish identically and £,w1 = miw; and £,we2 = mowy where
my, mg € Lfl) are such that (mq —mg) € K. Suppose that either

1) wy(§) = wa(n) =0, or

2) fori=1,2 Bf)wi =0 and wa(n) =0, or

3) fori=1,2 Bjw; =0 and wy(§) =0 ,or

4) fori=1,2 Blw; =0 and Byw; = 0.

Then there exists T € (§,m) such that wq(7) = 0.

P

2.4. Green’s function. For p = (£,1,p,q,a,b,¢,d) € A let &, and ¥, be respec-
tively the solutions obtained from Theorem [2:3] to the equations

Lou=0 Lou=0
u(§) = b, u(n) =d,
u[p] (5) = —a, u[p] (77) = ¢

and Wr, = Wr(®,,¥,). Note that because W'r, = 0, we have Wr,(t) =
Wr(®,,¥,)(§) for all t € (§,7).

Theorem 2.11. Let p = (§,1,p,q,a,b,¢,d) € A and assume that the trivial func-

tion 0 is the unique solution to the BVP
£,u=0 ae in(&n),
p Blu=Bu=0 (28)
ou= Bu=0.

Then, there exists a unique function G, : (§,m) x (§,m) — R such that
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(1) G, is uniformly continuous, bounded and symmetric.
(2) For so € (§,n) fized, the function Hy(t) = G,(t, so) satisfies the differen-

tial equation (2.8) in each of intervals (£, s¢) and (so,n) and the boundary
conditions in (2.8)

(3) For sg € (&§,m) fized, G[p](sg,so), G[pp](sg,so) exist and we have
GPl(sg,s0) — GPl(sy,50) = 1.
(4) Moreover, for all f € L} o UE Wp is a solution to
Lou=f ae in(&n),
Blu = Bu =0,

if and only if u(t) ff f(s)ds=L,f(t).

(5) The operator L, L — C’ 18 compact.
Proof. The function

1 D,(s)T,(t) ifs<t
Gp(t,s) — P(S) P( ) 1 S =
Wrp, | @,(t)V,(s) ift<s
is what we are seeking, where Wr, = Wr(®,,V,) = Wr(®,, ¥,)().
Since ¢,1/p € L,l)7 from [41], Theorem 2.3.1] we have that the functions, ®,, ¥,,

<I>Lp], \IIE,’)] are bounded by a constant M > 0. Therefore, for t1,ts € (§,7) we have

2 ds 2 ds
()~ (e < ] [ 5| 5

proving that ®,, ¥, are uniformly continuous. Then G, is uniformly continuous
on (&,m) x (§,n). Clearly, the function G, satisfies Properties 1, 2, 3, and Property
4 is proved by the method of variation of constants.

At the end, note that L, =i, 0 L », Where L L — W, with Epu = L,u for
all w € L}, is continuous and i, is the contmuous embeddlng of W, in C,. Because

the estimate
s )
utte) —uten) | [l
t1 p(s)

holds for all w € W, and t1,ts with £ <#; < t» <7, the embedding ¢, is compact,
and then L, is compact. ([l

[Wy(ta) = Wp(ta)] < M|

Lemma 2.12. Assume that Wr, # 0, for some p = (§,1,p,¢,a,b,¢c,d) € A, and
let for 6 € (§,m), p(0) = (£,0,p,9,a,b,1,0) and p.(0) = (6,7,p,q,a,b,1,0).
(i) If ®,(0) # 0 for all 0 € (§,n), then for all 0 € (§,1m), G,,(9) evists and we
have G, 9)(t,5) = Gy(t,5) = (W, (0)/Wr,®,(0)) P (1) Py (s).
(i) If ©,(6) # 0 for all 0 € (&, 1), then for all 0 € (&), Gy, (9) evists and we
have G, 9)(t,5) = Gy(t,5) = (Pp(0)/WrpW,(0)) W, (£) W, (s).
Proof. We need to prove that ®,(6) # 0 for all 6 € (&, 7).
(i) Let ®p,9)(t) = Pp(t) and U0y (t) = =(¥,(0)/2,(0))®,(t) + ¥y (t). Then
Dy, Uy are respectively the unique solutions to

£pl(9)u: O, £m(9)u:0,
u(§) = b, u(®) =0,
uPl(€) = —a,  ull(9) = Wr,/®,(6)

0)/
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and for all 0 € (£,7), we have Wr,, gy = Wr, # 0 and
1 ) v t) ifs<t
Gpo)(t,s) = W X @ (W 0) (1) 1 =
Tpu(0) D))V 0)(s) it <s
=Gp(t,s) = (Wp(0)/Wrp®,(0)) P, ()P (s).

(ii) Let ®, 5y and ¥, () be defined by @, () = ,(t) — (¥,(0)/P,(0))P,(t)
and W, ) (t) = ¥,(t). Then, ®, 5, ¥, (9) are respectively the unique solutions of

£pr(9)u = O7 .£pr(9)u == 0,
u(f) =0, u(n) = d,
ulPl(0) = Wr, /@, 0),  ull(n) = —c,
and we have for all 0 € (§,7n), Wr, ) = Wr, # 0 and

1 P t) ifs<t
G o)t 5) = ———— x pe(0) ()W, (0) (1) if s
WTPT(G) (I)pr(e)( ) pr (9)(8) ift<s

= Gplt,s) = (D (0)/Wr,W,(0))W,(£) W (5)-
O

2.5. Linear eigenvalue problem. For p = (§,7,p,¢,a,b,¢,d) € A and m € K},
consider the eigenvalue problem

£ou=pmu in (& n) a.e

2.9)
L, _ npr _ (
Blu= B} =0.

Theorem 2.13 ([4Il Theorem 4.9.1]). For p = ({,m,p,¢,a,b,¢,d) € A and m €
K:, BVP (2.9) admits an increasing sequences of eigenvalues (pi(p, m))g>1 such
that

(1) Tim pg(p, m) = 400,
(2) pi(p,m) is simple,
(3) If &1 is an eigenvalue associated with py(p,m), then ¢ € Sf,f.

In what follows, we present some important properties of eigenvalues needed for
the proofs of the main results of this paper.

Lemma 2.14. Let p = (§,1,p,q,a,b,¢,d) € A, my,my € K} and assume that
my < mg a.e. in (&n) and my < ma in a subset of positive measure. If for some
integer k > 1, either up(p,my1) > 0 or pr(p,me) > 0, then pr(p,my1) > ur(p, ma) >
0.

Proof. For i = 1,2, set u; = ug(p,m;) and let ¢; be the eigenfunction associated
with u; having a Sequence of zeros (z;);zg . First, we claim that there exists jg
such that zj # z7. Indeed, assume that ¢(z7) = 0 for all j € {1,...,k—1}
and g < ug "and note that there exists j1 e {1,. — 1} such that meas({msy >
mi} N (25,25 1)) > 0and g1 > 0 in (27, j1+1) Applying Lemrna we get
that there exists 7 € (27, g1+1) such that ¢1(7) = 0 and this contradicts ¢; € S&*.

Now, let ky = max{l <k : 2} = 27 for all j <1} and (SJ)J ==k and (77]); ]g 3
be the families defined by &; = Zk1+g and n; = Zk1+j Then we distinguish two
cases.
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(i) &1 = 24,11 < = 2,41+ In this case we have

m m
0< oL yp1 — P1L£,02 = / (paimy — pama)d1¢2

70 To

1 1
= / (p1 — p2)m1¢1d2 +/ p2(my — ma)d1d2
Ul

0 70
m 1
= / pa(ma — ma)p1d2 +/ (11 — p2)madido
Mo o
and this proves that in both the cases p1; > 0 or pg > 0, we have p; > po.
(i) & = z,il_i_l > = z,31+1: In this case Lemma guarantees existence of
two integers m,n having the same parity such that

_ 1 .2 .2 1
Em = Zirm <M = 2y 4n < Mntl = Zig4nt1 < Em+1 = 2l +m+1-

As above, we have

NMn+1 n+1
0< / G2 pp1 — P1 Ly = / ' (pam1 — pama)g1d2

n n

Mn+1 Mn+1
= / (1 — p2)mi 1o +/ po(ma — ma)d1d2

n n

Nn+1 Tin+1
= / w1 (mi — ma)d1o2 +/ (1 — p2)magido

n n

and this proves that in both the cases pu; > 0 or pe > 0, we have pg3 > po. This
completes the proof. (I

Lemma 2.15. Let p = (§,m,p,¢,a,b,c,d) € A, m € K;‘ and v,6 € R with
€ < v < d < n Then for all integers k > 1, up(p,m) < pip(p,m) where
p=(7,9,p,q,1,0,1,0).

Proof. Fix k > 1 and set p1 = pg(p,m) and pe = pug(p,m). For i = 1,2, let ¢;
be an eigenfunction associated with p;, having a sequence of zeros (z;)iig, and
without loss of generality, suppose that ¢1¢2 > 0 in a right neighborhood of v. We
distinguish two cases.

(i) ¢1 > 0in (v, d): In this case we have

)
0.< —h1(8)F(8) + b1 (7)dT) (v) = / $1£ b0 — do. £ pb1
Yy

5
= (p2 —M1)/ meo1 2
Y

leading to ug > py.

(ii) ¢1(to) = 0 for some ty € (,6): In this case consider the family (fj);z’g”
defined by & = v, &, = 6 and ¢1(§;) = 0 for j € {1,...,ko — 1} and note that
ko < k. Thus, from Lemma[2.7) there exist two integers m, n having the same parity,
such that &, < 22 < 22, < &y41. Therefore, we have ¢1, ¢ > 0in (22,22 ;) and

0 < —¢1(22,1)0P (22 11) + 61(22) ) (22)

Z721+1
- / T L0~ brk 0

n
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= (p2 — 1) /:H mae1da

n

leading to ug > pp. This completes the proof. (I

Lemma 2.16. Let p = (§,7,p,¢,a,b,¢,d) € A and m € K} and set for all
€ (&m), pr(0) = (6,1,p,4,1,0,¢,d) (resp. pi(0) = (£,0,p,q,a,b,1,0)). Then,
the mapping 0 — p1(p-(0),m) is continuous increasing on (£,m) (resp. 6 —
w1 (pi(0), m) is continuous decreasing on (§,1)), and we have limg_,,, 1 (pr(0), m) =
+o00 (resp. limg_¢ pu1(pi(0), m) = +00).
Proof. The continuity of the mapping 6 — pu1(p.(0), m) follows from [41, Theo-
rem 4.4.1]. Let 61,05 be such that £ < 6; < 03 < n and let for i = 1,2, ¢; be
the eigenvector corresponding to the eigenvalue p;, = u1(pr(6;), m). Taking into
consideration ¢2(f2) = 0 and Wr (1, ¢2)(n) = 0, from simple computations,

n n
(p2 — M1)/0 mb1pz = /0 P1Lp, (02)P2 — 2L, (0,1 = D1(02) [gp] (62) > 0,

thus proving that po > ;.
Now, we understand from Theorem that there exists @ > 0 such that p.(p) =
u1(p,m) + @ > 0 and this, together with 8 — py(p,-(8), m) is increasing, leads to

p(0) = pa(pr(0),m) + 10 = pa(pr(0),m) = pa(p) = pa(p,m) >0

where p,.(0) = (8,n,p,q +1m,1,0,¢,d) and p = ({,m,p,q + 1m,1,0,¢,d).

To prove limg_.,, 1 (p-(0), m) = +00, we need to prove the existence of a positive
constant M (d) such that sup,¢ g ) (Y5(t)/V5(0)) < M(d). Note that W5(t) # 0 for
all t € (£,7m); indeed, if W5(ty) = 0 for some tq € (£,7), then there exists an integer
ko > 1 such that ¥; will be an eigenfunction associated with fu, (pr(to), m) = 0
and yields the contradiction

0 = puro (pr(to), m) = p1(pr(to), m) = p(to) > 0.

Without loss of generality, suppose that W5 > 0 in (£, 7) and note then that d > 0.
We distinguish two cases:
(i) d > 0: In this case we have inf,¢ (¢ ) Y5(t) > 0 and

sup (U5(t)/W5(t)) < [|V5]l/ inf W5(t) = M(d).
te(9,n) (&m)

(ii) d = 0: In this case we have ¢ > 0 and there exists § > 0 such that \I/%?] (t) <0
for all t € (d,m). We have then sup;cg.,)(V5(t)/V5(t) = 1if 0 € (4,7) and
SuPye (g, (Y5()/P5(t)) < 95|/ infie e 5) Up(t). Thus,

sup (U5(t)/W5(t)) < M(d) = sup(L,||[¥5]l/ inf W5(t)).
te(9.m) te(&.8)

Since p.(0) > 0, G, (p) exists and we have for all § € (§,7) and all ¢ € (0,7)
1G5, (0)(t, 8)| = |G, s) — (R5(0)/WrW5(0))W5(1)W5(s)|
< Gplloo + Wit M(d)|| 5[5
Therefore,

0<1/u(f) < sup / |G 56)(t, 5)|m(s)ds
te(0,n)
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n
S(W%ﬂn+W”E”WWW¢ﬂWWﬂDL m(s)ds — 0 as 6 — 1,

thus proving that limg_.,, i (p(0), m) = +oo. This completes the proof. O

3. ON THE HALF-EIGENVALUE PROBLEM

For p = (§,1,p,q,a,b,¢,d) € A, m € K}, and o, € L;, consider the BVP

£ou=Amu+aut — Bu” in (&) ae.,

Blpu = Bu=0. 31)
Definition 3.1. We say that \g is a half-eigenvalue of if there exists a non-
trivial solution (Ao, up) of (3.1). In this situation, {(Ao,tug), t > 0} is a half-line
of nontrivial solutions of and )\ is said to be simple if all solutions (A, u) of
(3.1), with uug > 0 in a right neighborhood of &, are on this half-line. There may
exist another half-line of solutions {(Ao,tvg), ¢ > 0}, but then we say that A is
simple, if ugvg < 0 in a right neighborhood of ¢ and all solutions (Ao, v) of . lie
on these two half lines.

Berestycki [6] proved that if —oo < £ <n< +oo, pe CYE M), ¢,m,a, 3 €
C([¢,n]) and m is positive, then admits two increasing sequences of half-
eigenvalues. So, the main goal of this section is to prove that the Beresticki’s result
holds for the case 1/p,q, m,a, 3 € L}). We begin with the following list of lemmas.

Lemma 3.2. If (A, ¢) is a non trivial solution of (3.1), then ¢ € S’fj”‘, for some
integer k > 1 and k = +, —.

Proof. We have to prove that ¢ has a finite number of zeros and all are simple.
Clearly if for some 7,& < 7 < n,¢(1) = ¢[P!(1) = 0, we obtain from Corollary
that ¢ = 0 and this contradicts the lemma’s hypothesis.

Now, suppose that ¢ has an infinite sequence of zeros (t,) in (£,7) converging
to £. Then we have ¢(#) = lim,_, o &(t,,) = 0. We claim that ¢P!(f) = 0; indeed,
if for instance ¢P!(f) > 0 then there exists dy > 0 such that ¢Pl(t) > 0 for all
t €[t — 8o, t+ &), and we get

VAN >0 ifte(f,t+4
o(t) = / (7>¢[p](8)d5 1 € (Aa + 0)
i \p(s) <0 ifte(t—2bo,t)
contradicting lim¢, = f. Again, we obtain from Corollary [2.4] that ¢ = 0, contra-
dicting the Lemma’s hypothesis. Thus, we have proved that (b has a finite number

of zeros and that all are simple. In other words, ¢ € Sg”‘ for some integer k > 1
and k = +, —. The proof is complete. ([

Lemma 3.3. If A is a half-eigenvalue of (3.1)), then A is simple.

Proof. Let A be a half-eigenvalue and ¢1, ¢2 be two eigenfunctions associated with
A such that ¢1,¢2 > 0 in a right neighborhood of ¢. Therefore, ¢1, s € Sf,f** for
some integer k 2 1, and denote for i = 1,2, (z})ﬁig the sequence of zeros of ¢;.
We have that zj = 22 forall j =0,...,k. By induction clearly 28 =22 = € and
if z = z then Zj+1 = ZJ+1 Indeed, 1f for example z} i1 < 22 541, From Lemma
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we have the contradiction
%41
0< /1 ok yp1 — 1L 2 = 0.
Zj

Because of the positive homogeneity of (3.1), we have that i1 = fq&gg](z%)cbl
and Yy = — [1p ](z%)@ are eigenfunctions associated with A satisfying
() = va(z) =0 and () = 0(§) = —oF (=)o (=1).
Therefore, 1» = 1)1 — 1) satisfies
Lo = dmap +ap™ — By~ in (€,n) a.e
w(E) =yvP(E =0
and from Corollary we have 11 = 19. This shows that the half-eigenvalue A is

simple and completes the proof. [l
Lemma 3.4. Forallpe A, me K ,ﬁGL k>1and Kk =+,—, BVP (3.1)

admits at most one half-eigenvalue hcwmg an ezgenfunction m S}’;”‘“.

Proof. Let (A1,¢1), (A2, ¢2) € R x (SFF N W,) be two solutions of such that
A1 # Ao and ¢, ¢ € S}’j”‘ for some integer k > 1 and k = 4, —, and denote for
i=1,2(z Z) ':k the sequence of zeros of ¢;. First, we claim that there exists 7
such that z} ;é 27 ; indeed, assume that ¢1(z5) = 0 for all j € {1,...,k — 1}
and A\ < /\2 and note that there exists j; € {1 ..,k — 1} such that meas({m >
0} N (23,27 ,41)) > 0 and ¢1¢2 > 0in (27,2}, 4,). Applying Lemma we get
that there exists 7 € (22, 22 , ) such that ¢ () = 0 and this contradicts ¢1 € Sh".

Now, let k; = max{l <k : zj = 27 for j < l} and (5])3 =k=kand (n )]_k b be
the families defined by &; = z,i n J and n; = zkl +; and Wlthout loss of generality,
assume that §; = Zk1+1 <m= zk 4+1- We obtain from Lemma. that there exist
two integers m,n > 1 having the same parity such that

_ 1 _ L2 _ .2 _ 1
Em = Zhytm <M = Zig4n <Mt = Zig4ng1 < Emtl = 2y 4ma1

and from Lemma 2.8 we have

&1 &1
0< ¢2£p¢1 — ¢1 ,fp(bg = ()\1 — /\2)/ m¢1¢)2, (32)
& &
nnj»l (;InJrl
0> [ty bt =n-da) [ maie (33)
On the one hand, from (3.2) we have A; > Ao, and on the other hand, from (3.3)
we have \; < Ay. This completes the proof. ([

Lemma 3.5. Let p € A, m € K}, o, € L;, k>1 and k = +,— and assume
that (A1, ¢1), (A2, ¢2) are two solutions of (3.1) such that for i =1,2, ¢; € SS'“”,
If ko > ki then Ao > Aq.

Proof Fori=1,2, let (2 )] —o be the sequence of zeros of ¢; and set k; = max{l <

k:zj = 22 for all j <1}. Consider (@)J PR and (77]);.210C " the families defined
by §j = Zk1+J and n; = Zk1+j We dlstmgulsh then two cases.
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(i) &1 = 24,11 > = 2,1+ In this case we have
m m
0< D1 L€ pp2 — P2 L1 = (A2 — /\1)/ meo1o2
To 0o
proving that A\; < As.
(il) & = ziﬁl <m = zl%ﬁl: In this case, Lemma guarantees existence of
two integers m, n having the same parity such that
1 2 2 1
Em = Zky4m <M = Zky4n < T+l = 2y tnt1 < Smtl = 2k, fma1-

As above, we have

Mn+1 Tn+1
0</ ¢1£p¢2—¢2£p¢1:()\2—)\1)/ meo1¢2,
n Nn
proving that A\; < As. This completes the proof. O

Lemma 3.6. Let p= (&,m,p,q,a,b,1,0) € A, m € K;f and o, B € L}) and suppose
that for all 0, < 6 <n, X¢(pi(0),m, o, ) exists where pi(0) = (£,60,p,q,a,b,1,0).
Then, the function 8 — A (pi(0), m, o, B) is continuous and decreasing. Moreover,
we have limg_.¢ Af(pi(0), m, o, B) = +o0.

Proof. Step 1 (Monotonicity). In this step, we prove that the function § —
)\;(pl(ﬂ), m, «, ) is decreasing, the case K = — is checked similarly. Let 67,602 be
such that £ < 61 < 6y < n and let for i = 1,2, \; = A} (pi(0;),m, v, B), and ¢; be
the eigenfunction associated with \;. Denoting for ¢ = 1,2, (z;)gjg as the sequence
of zeros of ¢;, we have

E=2<zi< - <zi=0, E=23<27< - <zi=0s

For i = 17 23 let ﬁl('zi) = (57 Zi'apaq -, a, b7 170)7 and note that )\z = ﬂl(ﬁl(zi)vm)
We claim that 2] < 22. Indeed, if 2] = 2%, then we have from Lemma that
A2 > A1. Applying Lemma we get that ¢o vanishes in all intervals (2]1, zj1 1)

for all j =1,...,k — 1. This contradicts ¢5 € Sfl’?02).
At the end, Lemma [2.8] leads to

0< /§ 1 G2 L ppr — P1Lpd2 = (A — AQ)/E 1 meo1p2,

proving that Ay > As.
Step 2 (Continuity). Let 7z > 0 be such that

inf(,ul (pom m)a Hl(ﬂﬁ> m); ,Ul(p, m)) > _ﬁ

where po = (§,7,p,¢ — @, a,b,1,0) and pg = ({,1,p,q — 5,a,b,1,0). Consider the
BVP
Lyu = Amu + au™ — pu”  in (&,n) a.e.,

L, _ pr,, _
B;u- ﬁu—o,

where p = (§,1,p,q + im, a,b,1,0). Clearly, if A is a half-eigenvalue of (3.4) then
(A—n) is a half eigenvalue of (3.1)), and note that because of p(p,m) > pu1(p,m) =
pi(p,m) 4+ > 0 for all integers k > 1, G exists.

(3.4)
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Let 6,€ < 6 < nand (6,) C (£,7n) such that lim0,, = 0. Fix k > 1 and k and
set A= A (pi(), m, @, B), Ay = Ni(p1(65), m, @, B) and let for all n > 1, ¢,, be the
normalized eigenfunction corresponding to A,,. We have that

bult) = A /E " Gty s)m(s)dn(s)ds + /5 " Galt, s)a(s) 7 (s)ds

0,
_ /s Gn(t,s)B(s)oy, (s)ds

where G, = G5,(s,.)- By the change of variables s = o,,(7) with
T+ hy ifé =—-c0
on(T) = _
enT +wy if€>—00

where hy, =0, — 0, &, = (0, — &)/(0 — §) and w, = —(0,, — 6)&/(0 — &), we have
that the function ¢, defined by @, (t) = ¢, (0, (t)) satisfies

onlt) = A, /}5 Gin(t, 7Y (7)) ()7 + /g Gin(t, T)x(0n (7)) (7)dr

0 ~
- /5 Gn(t,7)B(on (7)) 05 (r)dr

where

~ _ Gn(on(t),on(T)) if £ = —o0,
Gnltom) = {enann(t),an(T)) if € > oo,

Then from Lemma we have

Gp(on(t), o (1)) = (W, (02)/25(0))

XP, (0, (1)@, (0n(T)) if { = -0
enGp (Jn(t), Jn(’r))
—En(¥p(0n)/®p(0n))Pp(0n (1) ®p(on(T)) if > —o0.

Now, we need to prove that for all x € L;(e)a L, » — L, in operator norm, where
Lx,naLx . Cﬁl(g) - O)g () are defined by

Gn(t,7) =

9 ~
Ly u(t) = / Gt )X (00 (7)) u(r)dr,

3
0
Ly ou(t) = A G0, T)x(T)u(T)dT.

For u € Cj,(9) with [lul = 1, we have
0
Ly wu(t) — Lyu(t)] < /5 1t 7)X (0n(7)) — Gy (£ 7 ()]
6 ~
< /5 (Gt 7) — Gogoy (1, D)X (@ (7))l (3.5)

0
n /€ G0y (6,7l (0 (7) — x(7)]dr
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Let ¢ > 0. Since in both the cases £ = —co and £ > —00, 0, (7) converges uniformly
to 7 in (£,m) and the functions ®, ¥5, G5 are uniformly continuous, there exists
n1 € N such that for all n > nq,

|G(t,7) — Gro)(t,7)| < e forallt and 7 with & <, 7 <.

Moreover, we have

0 On
im [ (o)l = tim | ()7 = iy,

and from Lemma (1.1l we obtain

0
lim /{: X(@n (7)) — x(7)ldr = 0.

Consequently, there exists no € N such that for all n > ng,

|| Wowtr) ~xldr < ¢ and [yl < (I, +0

and from (3.5 we obtain that for all n > max(n,ns),

sup |Ly nu(t) = Lyu(t)] < e(llxllzy, +€)+ sup |G (t,7)le
te(€,0) 4 t,TE(E,0)

proving that L, , — L, in operator norm.
Let § > 0 be such that 6,, € [0 — 4,0 — §]. We have from Step 1 that

)‘Z(pl(e + 5)7m7a76) <A = )‘Z(pl(gn)vmvavﬁ) < )‘Z(pl(a - 5)7m7aa/6)'

Hence, Agyp = limsup A, and Aips = liminf A, are finite numbers.
For all n € N and v = sup or inf, we have

On = AnLm npn + La,nIJrapn —Lg I oy
= (M = M) Lmnn + A(Ling = Li,o)n + (Lan = La,e)I T on
—(Lgn — L) I 00+ A Limopn + Laol T on — Lol pn.
This, and the compactness of the operators L, L, Lg and the fact that L,, , —

Ly, Lam — Lo, Lgn — Lg, imply that there exist ¢sup, Pint € S,I-;Z’Fe) such that for
v = sup or inf,
wy = ALy + LaI+g0U — Lgl™ p,.
In other words, each of the pairs (Asup, @sup) and (Ainf, @inf) satisfies
L5000 = Amu + au™ — Bu” a.e. in (,0),
l _ nr _
B, 0yu = B, 9t = 0,

and Ygup, Pint € S;.,;;Fe) (if psup € 85;1’59) then there exists 7,& < 7 < 7 such that
Osup(T) = npgﬁ]p(r) = 0 and by Corollary we have ¢pg, = 0 contradicting
lsupll = 1). At the end, we obtain from Lemma that Agup = Aint = A

Step 3. We have
1 < AE(pu(8), m, o, B) || Ln,oll + [ Lasoll + | Lg,oll

leading to
AR(or(0),m, a, B) = (1= [|Laoll = I Lg.ol) /I Lan.oll-
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Since ||Lq g

,HLB,G

|, | Lim.gll — 0 as 6 — £ (see the proof of Lemma [2.16]), we have
i N ((0),m, 0, 9) = +oc.
This completes the proof. O

Lemma 3.7. Forpe A, me K} anda, 8 € L), BVP (B.1) admits two increasing
sequences of simple half-eigenvalues ()\Z (p,m,a, B))k>1 and (A, (p,m, o, 5))k>1,
such that for all integers k > 1 and k = +, —, the corresponding half-line of solutions

lies in {\(p,m, «, B) x S;}. Furthermore, aside from these solutions and the trivial
one, there are no other solutions of (3.1)).

Proof. We proceed by induction on k. Clearly, for k = 1, \| = u; (p,m) and \| =
pa(p—,m) where for all p = (§,n,p,q,a,b,¢,d) € A, py = (§,n,p,q9 — ,a,b,c,d)
and ﬁ* = (6’ np,q— ﬁ7 a, ba ) d)

Now, assume that for all p € A, A\f = X (p, m, a, §) exists and let us prove that
Nip1 = Migp1(p,m, a, B) exists. Let for 0 € (€,n), A\i(0) = A\ (pi(0), m, o, 3) where
pl(a) = (6,97]9,(]7(1,1), 170) and let ,u(G) = Nl(ﬁT(G)vm) where ﬁr(e) = (9777»107q -
a,1,0,¢,d). From Lemmas and there is a unique 0541 € (£, 7n) such that
Mi(00) = u(bp). Let ¢ 9, and ¢1,9, > 0 be respectively the eigenfunction associated
with the half-eigenvalue A} (6p) the eigenvalue p(6p), then the function

Bt = Pk 0o in (&,6)
ST @, (00) /67, (00))é10, in (s0,7)

belongs to S5+1% and the pair (A7 (60), ¢r41) = (1(00), dr11) satisfies the BVP
£yu = mu+au” —pfu” in (§n) ae.,
Blu = Bju = 0.
Thus, we have proved that A7, (p, m, o, B) exists. |

Proposition 3.8. Let p € A, m € K} and oy,09,61,82 € L}, Assume that
AZ(P:”%Oél’ﬂl); Ag(pvmya%ﬂl) and )\Z(pﬂnyalaﬂZ) exist.

(1> ]fal S Qo a.e. m (577]); then )\E(Pﬂn,al’ﬁl) Z Ag(pamaQQaﬁl)-

(2) Ifﬁl S ﬁ? a.e. in (5777)) then /\l]:(ﬂm;alaﬁl) Z A’]:(p)maahBQ)'

Proof. We present the proof of property (1) only; Property (2) is checked similarly.
Fix k,x and set for i = 1,2, \; = A{(p,m, ay, B1) and let ¢; be the eigenfunction
associated with \; having a sequence of zeros (z;)gj’g We distinguish two cases:

(i) 2j = 27 for all j € {1,...,k —1}: Let j1 € {1,...,k — 1} be such that
meas({m > 0} N (27,27 ,,)) >0 and

0= /:ﬁl 2L pp1 — P1L£,p2 = (A1 — o) /;ﬁl meo1¢2
[ @oton—asgzon + [ Giore - iore)  36)

= (A1 —A2) /:ﬁl meo1¢a + /:ﬁl(al(ﬁ(ﬁz — ¢ ).

J1 J1
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Thus, from (3.6) in both the case ¢1, ¢ > 0in (27,27 ;) and the case ¢y, ¢ < 0
in (232'17zj2‘1+1), we obtain )\1 2 )\2_
(i) zjl-o #* 212‘0 for some jo: In this case set k; = max{l < k: z} = ZJ2 for all j < [}.

J
1 2
If 23,y < 2j, 41, then

Z}i1+1 lec1+1 Z/i1+1
0< /1 GaL 1 — P1Lpd2 = (A1 — A2) /1 mo1o2 + /1 (a1 — ) P12

k1 k1 k1

proving that A\; > As and if z,%l_H < 2111+1 then considering the families (gj)ijg*’“

and (nj);:’g—kl with §; = z,ﬁlﬂ- and n; = zzlﬂ-, we obtain from Lemma that
there exist two integers m,n > 1 having the same parity such that
2 1 1 2
Em = Zky4m <M = 2k 4n < Tntl = 2k 4nt1 < Smtl = 2k, 4mi1-
Therefore, Lemma [2.8] leads to

Mn+1
0</ ¢2£p¢1—¢1£p¢2=(>\1—)\2)/

n n

and then A1 > A\o. This completes the proof. [

n+1 Nn+1

meo1¢2 +/ (a1 — a2) 0102,

TIn

Proposition 3.9. Let p = (§,n,p,q,a,b,c,d) € A, my,mz € K, and o, 3 € Lfl),
Assume that mp < mg a.e. in (£,1), m1 < mag in a subset of positive measure, and
AE(pyma, o, B), AE(p, ma, o, B) exist for some integer k > 1 and k = +, —. If either
Xi(p,mi, 0, 8) > 0 or Xf(p,ma,a, ) > 0, then Xf(p,mi,a, B) > Ai(p, ma, o, (),
and if either Ni(p,mi,a,8) < 0 or Mi(p,ma,a, ) < 0, then Xg(p,mi,a, ) <
Ag(p,mg,a,ﬁ).

Proof. For i = 1,2, set u; = ux(p, m;) and let ¢; be the eigenfunction associated
with p; having a sequence of zeros (z;)izg . First, we claim that there exists jp
such that zjl-0 # z?-o. Indeed, assume that ¢>1(z]2-) =0forall j € {1,....,k -1}
and p1 < p2 and note that there exists j; € {1,...,k — 1} such that meas({mg >
my}N (232‘1’2,72'1+1)) > 0 and ¢1¢2 > 0 in (232‘1’2,72'1+1)' Applying Lemma we get

that there exists 7 € (23,27, ;) such that ¢ (1) = 0 and this contradicts ¢; € S}’;’”.

1

Now, let k; = max{l <k : zj = 27 for all j <1}, and (fj)j-z’g_kl and (nj);zg_kl
be the families defined by §; = z,iﬁ_j and n; = 2131+j- We distinguish then two
cases.

(i & = 21131+1 <m= 2'131+15 In this case

1 1
0< G2 L y1 — P1 L2 = / (pa1my — pama)d1¢2
)

1o 0

m m
= / (1 — p2)mi¢102 +/ p2(my —ma)p1d2
n

?71 ngnl
= / p1(ma — ma)d1o2 +/ (1 — p2)magido
7o 70

and this proves that in both the cases p; > 0 and pe > 0, we have puy > po.
(ii) & = z,il_‘_l > o= Z]%l"l‘l: In this case Lemma guarantees existence of
two integers m, n having the same parity such that

_ 1 .2 .2 1
Em = Zirdm < M = 2y 4n < Mntl = Zigygnt1 S Em+1 = 2l +m+1-
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As above, we have

Mn+1 Mn+1
0< / oL y1 — P1 L2 = / ' (pamy — poama)d1¢2

n n

Mn+1 Mn+1
= / (1 — p2)mi g1 +/ p2(my —ma)p1d2

Zn+1 nnn+1
= / p1(ma — ma)d1o2 +/ (1 — p2)magido

and this proves that in both the cases p; > 0 and e > 0, we have g > po.
The cases A (p, m1,«, 3) < 0 and Af(p, me,a, §) < 0 are checked in similar way
and this ends the proof. O

Theorem 3.10. Forpe A, m € K; anda, 3 € L}), BVP admits two increas-
ing sequences of simple half-eigenvalues (A} (p, m, o, B))k>1 and (A (p,m, o, 3))k>1,
such that for all integers k > 1 and k = +, —, the corresponding half-line of solu-
tions lies in {\g(p,m,a, B)} x Sf,f’“ and limy_ 4o Af(p, m, o, B) = +o00. Further-
more, aside from these solutions and the trivial one, there are no other solutions of

B1).
Proof. Let p = (§,n,p,q,a,b,c,d) € A,me K, o, 3 € Lll) and (e,,) be a decreasing
sequence of real numbers converging to 0 and let A > 0 be such that
min (1 (p, m + €1), A\ (p,m + €1, , B), A\] (p, m + €n, @, B)) > —A.
Consider the BVP
Lyu=Amu+aut —pBu” in (§n) ae.,
B%u = Bju =0,

where p = (£,7,p,q9 + Am,a,b,c,d) and note that A is a half-eigenvalue of
if and only if (A — A) is a half-eigenvalue of (3.1). For k and r fixed, let MNem =
AE(p,m + €, @, B) be associated with a normalized eigenfunction ¢y , € Sf,f’”, and
let [, 8] C (&,7) be such that m > 0 a.e. in (v, 4).

First, because

(3.7)

N = An(pym+e,a,8)+A>N(p,m+e,a,8)+A>0,
we have from property 1 in Proposition @ that for all n € N, Ay, .y > AF, >
Aka > 0.
Setaxz _(|a‘+|ﬂD?/ﬁ ::(gvn’p7q+”4nl__a;a7b7cad)andfh ::(776’p,q+ﬁAn1_
q,1,0,1,0). Then properties 2 and 3 in Proposition Lemma and Lemma
214 lead to

0 < /\zvn S Ag(ﬁa m+ €n, Z]szj) = Hk(P*vm + en) S Hk(ﬂ*ym + en) S ﬂk(p*a m)
proving that im A} |, = Af > 0.
Now, if p;(p,m) exists for some [ > 1, then u;(p,m) = w(p,m) + A (that is
wi(p,m) exists) and
pi(psm+er) = w(p,m~+e) +A>pi(p,m+e)+A>0.

We obtain from Proposition that w(p,m) > w(p,m + €;) > 0, proving that
that G exists.
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At this stage, we have

(bk,n - )\Zﬁan(bk,n + 6nL(bk,n + q)(¢k,n)
where L,,,L,® : C, — C, are defined by

n
Lpu(t) = G5(t, s)m(s)u(s)ds,
(1) /5 (t, s)m(s)u(s)
Lu(t) = G5(t, s)u(s)ds
(1) /£ 5(t, s)u(s)
B(u)(t) = /}E Gt 5) (als)ut (s) — Bls)u™ (s))ds.

Since L,, is compact, L is bounded and ® is completely continuous, ¢, converge

(up to a subsequence) to some ¢y, € Sy with ||¢x || = 1 and we have ¢y, = AL+
®(¢r). Because of Theorem ¢r € Sk and A} is a half-eigenvalue of .

Since uniqueness and simplicity of A} follow from Lemmas |3.3 and and the
monotonicity of the the sequence (\f) is assured by Lemma|3.5| it remains to show
that limg . Ajf = +00. We have from Proposition [3.8] that

Z = )\Z(ﬁ,m,a,ﬁ) > )\Z(ﬁ,m+€1,a,ﬁ) > )‘Z(ﬁ»m'i' €1, —q, _(D = Nk(ﬁam+ 61)

where p = (£,m,p,q + Am + q,a,b,c,d). Therefore, we have from Assertion 1 of
Theorem [2.13] that limy,_.o, Af = +00. This completes the proof. O

In the following three propositions, we present some important properties of
half-eigenvalues needed in the reminder of this work.

Proposition 3.11. Let for i = 1,2, p; = (§,1,p,¢i,a,b,c,d) € A, m € K} ,
a,f € L;I and suppose that fori=1,2, A\; = Ai(pi, m, o, B) exists for some integer
k>1land k=+,—. If g1 < g2 a.e. in (&,n) then A\ < Ay. Moreover, if g1 < ¢z in

a subset of positive measure, then A1 < As.

Proof. Since for i = 1,2, A\; = Ai(pi,m2,0,0) = Xf(p,m, —q;,—¢q;) with p =
(&,m,p,0,a,b,¢,d), we have from Proposition that if g1 < g2 ae. in (&,n)
then p; < ps. Now, suppose that g1 < g2 in a subset of positive measure, and for
i = 1,2, let ¢; be the eigenfunction associated with \; having a sequence of zeros
(z;);zg We distinguish two cases.

(i) zjl = z]2 =0 forall j € {1,...,k —1}: In this case , for all j we have

/ R SR O / o - )

2
Zj

= /2j+1(fh — q2)P102 (3.8)

= ()\1 - )\2) /2j+1 m¢1¢2.

]
Let j1 € {1,...,k — 1} be such that meas({g2 > q1} N (23,25, ;,)) > 0. Then from
(3.8) we have

2.72'+1
0> /2 (q1 — @2) P12

J
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#
= (A1 —A2) /2 meo1 2

leading to Ay > A1.
(i) zj, # 3, for some jo: In this case set ky = max{l < k: 2} = 27 for all j < 1}.
If z,%ﬁ_l < Zli1+1 then we have

0> [ a4 aa(aly

k1

=\ — )\2)/ o merpe — /lkﬁl(fh — q2)P102

1
k1 k1

proving that Ay > A and if 2} |, < z{ ,,, then considering the families &)=k R
and (m)?i’&fkl with §; = z,iﬁ_j and n; = z,%l_w-, we obtain from Lemma [2.7| that

there exists two integers m,n > 1 having the same parity such that

_ 1 .2 _ 2 o1
gm = Zki14+m <Mn = Rk1+n < Mn41 = k1 +n+1 < gm-&-l = Zk14+m-+1-

As above, we have

Nin+1
0> / 02 (OP) + g1 (6P

n

Mn+1 NMn+1
= (/\1 - )\2)/ meo1p2 —/ ((h - (I2)¢1¢2

n n

proving that As > A;. This proof is complete. O

Proposition 3.12. Let p = (£,1,p,q,a,b,¢,d) € A, m € K}, (¢,) C L, and
(mn) C K, such that g, — q and m, — m in L;. Set pn, = (£,1,D, Gn,a,b,c,d).
Then for all a, B € L}), k>1 and k = +,—, we have limy,_,o0 A (pn, Mn, o, B) =
Ar(p,m, o, B).

Proof. Step 1. In this first step we fix m in K}, a,f3 in L;, the integer k£ > 1
and £ = 4, — and we prove the continuity of the mapping ¢ — A} (p(q), m, a, )
on L}. Let X > 0 such that A (p,m,a, 3) > 0 for all k > 1, where p = (£,1,p,q +
Am,a,b,c,d) and let \, = ANi(pn,m,a,3) and X = Ai(p,m,, (), where p, =
(&,m, D, gn+Am, a,b,c,d). Since A = \¢(p,m, a, B)+ X and A, = Af(pn, m, a, B) + A,
we have to show that lim A,, = A\. We claim now, that the sequence (A,) is bounded.
Indeed, if this is not the case and there is a subsequence denoted also for convenience
by (\,) such that lim, . |An| = co. We have then from [23] Proposition 4.11],
that there is a function ¢ € K and a subsequence (gn,) such that |g,| < ¢. Thus,
from Proposition we have

)\Z(ﬁ_7m7a76) S)\nl :)\Z(ﬁnnm)a?ﬁ) SA;(ﬁ-‘rﬁmaaaﬁ)

where for v =+, —, p, = (&,1,p,v4 + Am, a, b, ¢, d), contradicting lim |, | = oo.
Now, let ¢,,, » be the normalized eigenfunctions associated respectively with A,
and A and note that G5 exists. Then we have
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where L,,, L,,® : C; — Cj are defined by:
n
P(u)(t) = /5 Gp(t,s)(a(s)u™(s) — B(s)u™(s))ds,

Lyu(t) = /gn G5(t, s)m(s)u(s)ds and

Lt = [ " Galt,9)(als) — ga()u(s)ds.

Let Ay = limsup )\, and A_ = liminf \,,, we obtain from the compactness of the
operators L,,, ® and the fact that L,, — 0 in operator norm, that there exist

Yo, b € SE* such that

Vi = A Lths + B(y), Yo = ALty + B(¢o).

At the end by Theorem we conclude that ¥;,¢_ € S;f"" and the uniqueness of
the half-eigenvalue leads to lim A,, = Ay = A_ = A

Step 2. We prove the proposition, we denote A, = Ai(pn,mp,a, ) and A =
Mi(p,m, a, B) where p, = (§,7,D,Gn,a, b, c,d). We claim that the sequence (A,) is
bounded. Indeed, if this is not the case, and there is a subsequence denoted also
for convenience by (A,) such that lim, .1 |A\n| = 00. Let ¢, ¢ be the normalized
eigenfunctions associated respectively with A, and A\, we have

£, O — fnMndn = adt — B¢, in (&,n) ae.,

l _ _

and
£o6— pmo = ag* — Bo~ in (1) ae.
L o
Bp(b - Bp(b - 07
from which we obtain
)‘Z(ﬁnamnaaaﬂ) = )\Z(ﬁ,m,a,ﬂ) =0,
with ﬁn = (577’71)7 dn — UnMnp, G, b7 c, d) and (39)
ﬁ = (57777p7q - /J/m7a7b7 c, d)

Suppose now, that lim A, = —oco and let w > —A\. There exists ng € N such that
— by > w for all n > ng and we have

0= A (pn,m,a, B) = ANi(Gn — pinmn) > A (gn +wmy,)  for all n > ng.
This together with Proposition leads to the contradiction
0= )‘Z(ﬁ,maa,ﬂ) = )‘Z(q - um)
< Ap(g +wm) = lim Aj (g + wmy,) < 0.

Similarly, if lim p,, = +00 and w > u, there exists ng € N such that u, > w for all
n > ng and we have

0= A (pn,m,a, B) = MNi(gn — tnmpn) < Ag(gn —wmy,)  for all n > ny.
This, and Proposition leads to the contradiction
0= )\Z(f)zm7a7ﬂ) = AZ(q - :um)
> Ap(q —wm) = lim Aj (¢, — wmy,) > 0.
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At this stage let Ay = limsup \,, and A_ = liminf \,,. From (3.9) we obtain
)\Z(ﬁ-i-’mvaaﬂ) = AZ(Q — /L+m) =0
Ap(poymy o, B) = Ni(q — pm) =0
p~+ = (é-arhpa q— pH+m, a,b,c, d)
ﬁ— = (5, n,p,q— p-m,a, b, C, d),

and uniqueness of the eigenvalue u = pg(p,m) leads to limp,, = puy = pu— = p,
completing the proof. O

Proposition 3.13. Let p = (§,n,p,q,a,b,¢,d) € A, m € K}, (a,) C L; and
(Bn) C K such that o, — o and B, — B in L;, Then for allk > 1 and k = +, —,
we have lim, .o Af(p, M, 0, Br) = A (p,m, , 3).

Proof. Fix the integer k > 1 and k = +, — and let A > 0 such that A\f(p, m, o, 3) > 0
for all k > 1, where p = (§,71,p, ¢+ Am, a,b,c,d). Set A\, = A\§(p, m, o, Bn) and A =
AE(p,m, a, B), since A = A (p,m, o, B) + Xand \, = AE(pym, o, Bn) + A, we have
to show that lim A, = A\. We claim now, that the sequence () is bounded. Indeed,
if this is not the case and there is a subsequence, denoted also for convenience by
(An), such that lim,_, o |An| = 00, we have then from [23] Proposition 4.11], that
there are two functions &, § € K, and subsequences (ay, ), (8n,) such that |a,, | < &

and |Gy, | < 3. Thus, we have from Proposition that
)‘Z(ﬁv m, dv B) < )‘m = )‘Z(ﬁnz y Ty Qs ﬂm) < Ag(ﬁv m, _dv _B)

contradicting lim |\, | = oo.
Now, let ¢,,, » be the normalized eigenfunctions associated respectively with A,
and A and note that G exists. Then we have

¢n = A Lyon + Lanl—i_((bn) —Lg, I (én)
= ALm¢n + La[+(¢n) — Lgl™ (én) + (Lan - La)I+(¢n) - (Lﬁn - L6)17(¢7z)
where for x € L}, Ly : C; — Cj is defined by Lyu(t) = f; G5(t, s)m(s)u(s)ds.

Let Ay = limsup A\, and A_ = liminf \,,, we obtain from the compactness of the
operators L,,, Lo, Lg, and the fact that (L, — L), (Lg, — Lg) — 0 in operator

norm, that there exist ¥, ,v¢_ € S,].f’“ such that
Yy = Ay Lty + Lo It (¢y) — Lal = (¥y),
W = A_Lpth_ + LoIt (p_) — LgI~ (¢_).

At the end we conclude by Theorem that ¥, ¢¥_ € Sf,f”‘”" and the uniqueness of
the half-eigenvalue leads to lim A,, = Ay = A_ = A. This concludes the proof. [

Taking a = 8 = 0 in (3.1)), we obtain from Theorem the following corollary
which is an improvement of [41], Theorem 4.9.1].

Corollary 3.14. For all p € A and m € K, BVP (2.9) admits an increasing
sequences of eigenvalues (pi(p, m))g>1 such that

(1) lim i, (p, m) = 400,

(2) pr(p,m) is simple,

(3) If ¢i is an eigenvalue associated with i (p,m), then ¢y € S}’,f.
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From Theorem and Proposition [3.9 we obtain the following property for
eigenvalues of (2.9).

Proposition 3.15. Let p = (§,7,p,q,a,b,¢,d) € A, mi,my € K}, and assume that
my < mg a.e. in (&,n) and my < ma in a subset of positive measure. If for some
integerk: > 17 either,uk(p, ml) > 0 Or#k(pamQ) > 07 then .uk(paml) > .u“k(pa m2) >
0.

At the end of this section, we consider for p = (§,7,p,q,a,b,c,d) € A, m € K,
and h € L'(&,n) the BVP
Lou=pmu+h in (1) ae.,
. , (3.10)
B,u= Bju=0,

where g is a real parameter. The following result is an extension of what is known
as the Fredholm alternative.

Theorem 3.16. For all p = (§,7,p,q,a,b,¢,d) € A, m € K and h € L[l), BVP
(3.10) admits

(1) a unique solution if 1 # pr(p,m),
(2) no solution if p = uk,(p,m) for some integer kg > 1 and fg’ droh # 0,
(

3) infinitely many solutions if u = pr,(p,m), for some integer ko > 1 and
J¢' droh = 0.

Proof. Let p=(&,n,p,q,a,b,¢,d) € A.
(1) If u # pr(p,m) for all k > 1, then 0 is the unique solution to the BVP
(£, —pm)u=0 in (&) ae.,
Blu = Bju=0.
Thus, we have from Assertion 4 in Theorem u(t) = f: G5(t,s)h(s)ds is the

unique solution to (3.10), where p = (£,1,p,q — pm, a,b, ¢, d).
(2) Suppose that g = pk,(p,m) for some integer ko > 1 and let ¢y, be the
eigenfunction associated with p = pg,(p, m). Therefore, if u satisfies (3.10)), then

n n
0= / £pu — uquﬁko = / ¢koh~
3 3

This proves that if fg ¢roh # 0 then (3.10) has no solution.
(3) Now, suppose that f; ¢roh = 0 and let ¢ be such that {¢g,, ¢} form a
fundamental system for the differential equation (£, — m)u = 0. Then Wr =

Pro P! — ¢¢Efo] is constant on (£,n) and Bﬁ)wB;w # 0. Therefore, for all o € R, the
function

I I
ut) = (o g | pwas)on, + (g [ 1(o)ow (1) vt
solves . The proof is complete. (]

Now for p = (§,1,p,q,a,b,¢,d) € A consider the BVP
Lou=Naut —pBu”) in (&n) a.e.,

(3.11)
l
B,u= Byu=0,
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where o, 3 € K. Note that the nonlinearity in is the same as in (3.1,
positively 1-homogeneous and so we can define the concept of half-eigenvalue as
it is done in Definition In [4], the authors proved in the case, where ¢ = 0,
a,—b,c,d € [0,+00) with A = ad—i—acfgn % —bc>0and a,f € K}, that
admits two sequences of half-eigenvalues having the same properties as that in

Theorem [3.10] At the end of this section, we prove that Theorem [3.10] holds for
B11).

Theorem 3.17. For all p € A, and o, € K; with a € K, BVP (3.11)
admits two increasing sequences of simple half-eigenvalues (A;(p,m,a,ﬂ))kzl and
Ay (pym,, B))k>1, such that for all integer k > 1 and k = +, —, the corresponding
half-line of solutions lies in {\f(p,m,a, 3)} X Sf,f"‘ and limg_, 4 oo Af(p,m, o, B) =
+00. Furthermore, aside from these solutions and the trivial one, there are no other

solutions of (3.11]).

Proof. Let p = (£,n,p,q,a,b,¢c,d) € A and m be an arbitrary function in K and
consider the BVP

£,u = mu+ Oau™ —0Bu” in (£,n) ae.,
L, _ pr, _
B,u= Bju=0,

where 6 is a real parameter.

Fix k > 1 and k = +,— and set A(0) = A\ (p,m,0a,03). Note that because
of Proposition the mapping A(-) is non-increasing and if for some 6y € R,
A(Bp) = 0, then 6, is a half-eigenvalue of having an eigenfunction in Sﬁ”‘.
Therefore, we have to prove that limg_,_ . A(6) = 400 and limg_, y oo A(0) = —c0.
Moreover, since A() < Ag(p,m,0v¢,0¢) for 6 < 0 and A(p) > Ai(p, m, 0, 0v) for
6 > 0, where » = sup(a, ), we have to check that limg_, o ux(f) = 400 and
limg_, o0 1 () = —o00, where p(0) = Ni(p,m,0v,0¢) = pi(p(0), m) and p(f) =
(& n,p,q—01,a,b,c,d). We present in what follows the proof of limg_, _ o px(6) =
400, the other limit is checked similarly.

To the contrary, suppose that limg_, o px(6) = p> < 400 and let ¢g > 0 be
fixed. There exists 6y > 0 such that for all § < —6y, (u™ —e€p) < pr(f) < p*>°. Let
to = Hi(pocs V) where pos = (€,1,p,q — (1> — €0)m, a,b,c,d) and ¢, gg € Ss such
that

£op — (1™ — €0)me — pop =0 in (&, 1) a.e.,

. , (3.12)
Blg = B¢ = 0.
For 6 > max(fo, o) let ¢g € S& be such that
.fp(ﬁg — ,uk(e)m(bg — 91/)¢9 = 0 in (f, ’I]) a.e.,
(3.13)

Blgo = Bl = 0.

Then from (3.12) and (3.13)) we have p(pe,, m) = 0 = up(p(0), m) where p., =
(55 m,DpP,4— (HOO _Eo)m_lu‘O’l/)v a, b7 ¢, d) and [)(0) = (fa n,p; q—pk(ﬁ)m—ﬂd), a, b7 ) d)
Since (4> — eo)m + poyp < pr(@)m + 0y a.e. in (&,n) and (4> — eo)m + poyp <
wk(0)m + 01 in a subset of positive measure; from Proposition we have the
contradiction

0= Nk(ﬁéo’m) > pi(p(0), m) = 0.
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Since Proposition guarantees that A(-) is a continuous function, we conclude
that there exists 6} such that A(f) = 0; namely, 65 is a half-eigenvalue of BVP
(3.11) having an eigenfunction in Sf,f*". This completes the proof. O

4. BIFURCATION DIAGRAM FOR AN ASYMPTOTICALLY LINEAR STURM-LIOUVILLE
BVP

Let p = (§,m,p,¢,a,b,¢,d) € A and m € K} and consider in this section, the

BVP
Lou=Imu+uf(t,u), in (& n) ae.,

Blu = Bju =0,
where A is a real parameter and f : (§,7) x R — R is a Caratheodory function.
We assume throughout this section that

(4.1)

f(t,0)=0ae. t€(&n), (4.2)
and also that there exist , 3,y € K such that
timf(tu) = B(0) e L€ (), (43)
ugrfwf(t,u) =at) ae te(&n), (4.4)
|f(t,u)| <~(t) forallu e Randae. te(&n. (4.5)

For the statement of the main result of this section and its proof, it is useful to in-
troduce the following notation. For & > 1 and k = +, —, denote A\f = \i(p, m, v, §)
and pur = pr(p,m). Without loss of generality, assume that ug # 0 for all k > 1
(otherwise consider p = (£,1,p,q + Am,a,b, c,d) with A sufficiently large). Thus,
G, exists and (\,u) € R x W, is a solution to if and only if u = T(\, u),
where T': R x C, — C, is defined by T' =io L,0o F', F : Rx C, — Lll, is the
Nymetski operator defined for u € C, by F(X, u)(t) = Am(t)u(t) + uf(t,u), and i
is the compact embedding of Wp in C,.

Let H K : C, — C, be defined by Hu(t) = fg] Gp(t,s)u(s)f(s,u(s))ds and
Ku(t) = fg’ G,(t, $)f(s,u(s))ds, where f(s,u) = uf(s,u) —a(s)u* +B(s)u~. Then

we have
T(\u) = ALpu+ Hu,

T\ w) = ALpu+ LoItu — Lgl " u+ Ku
where for x € L}, Ly : C, — C, is defined by Lyu(t) = fg’ G,(t,s)x(s)u(s)ds.
Clearly, L, is compact for all x € L/lj7 and H and K are completely continuous.
Lemma 4.1. Assume that and hold. Then H(u) = o(||ul|) near 0.
Proof. Let (u,) C C, be such lim ||u,| = 0. Because of the inequality

[Hun D)/ [[unll < /; Rp(s)ds, where R (s) = [[Gplloo| (s, un(s))l,

(4.6)

it suffices to prove that fg R, (s)ds — 0 as n — oo.

Hypothesis (4.3) implies that R,(s) — 0 as n — 400, a.e. s € (£,n) and
Hypothesis (4.5)) implies
Bn(8) = [Gpllco| (5, un(s))] < 1Gpllocv(s) ace. s € (&m).

Thus, by the Lebesgue dominated convergence theorem, we conclude that H(u) =
o(||lul) at 0. O
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Lemma 4.2. Assume that (4.3)-(4.5) hold. Then K(u) = o(||u||) near co.

Proof. Let (u,) C C, be such lim ||u, || = co. Because of the inequality

Kt (8)]/ | < /6 " Ro(s)ds,

where
Un(s) ut(s) Uy, (s)

A e N T SO

it suffices to prove that fg] P,(s)(s)ds — 0 as n — oo.

From we have
Po(s) = [Golloo(v(s) + als) + B(s)) ae. s € (&n).

It remains to prove that lim P, (s) = 0 for a.e. s € (§,7n). Let s € (§,n). We
distinguish the following cases:
(i) lim uy,(s) = +o00: In this case,

Pa($) < G lloe (F(5, un(5))) — a(s)] — 0 a5 1 — +o0.

(ii) limu,(s) = —oo: in this case,

Pa(s) < [|Gpllool (f (55 un(s))) = B(s)| = 0 as n — oc.

(ili) limu,(s) # £oo : in this case there may exist subsequences (u,:(s)) and
(un2(s)) such that (up:(s)) is bounded and limu,z (s) = £oo. Arguing as in the
above two cases we get lim P2 (s) = 0 and we have

Py (s) < G(s,5)((s) +0(s) + als) + B(5)) ([unz ()]/lunr ) — 0 as k — +oc.

Thus, we have lim P,,(s) = 0 for a.e. s € (£,n). By the Lebesgue dominated

convergence theorem, we conclude that Ku,, = o(||u,||) near oo. O

Theorem 4.3. Assume that and hold. Then for all integers k > 1 and
k=+,—, BVP admits an unbounded component ( of solutions bifurcating
from (pg,0) such that (f C R x S’]j’“. Moreover, if and hold, then ¢
rejoins the point (Af, 00).

Pa(s) = [|Gpllool B

Proof. Step 1. Note that the set of characteristic values of L,, consists of the
sequence (fk)g>1- S0, we need to prove that for all integers k > 1, yuy, is algebraically
simple. Choose u € N'((pLm —I)?) and set v = (L — I)(w) = pLyu—u. We
have pgL,,v — v = 0 and the geometric simplicity of uj implies v = z¢y, and then
i Lmu —u = x¢p, where ¢, € Sﬁ"“ is the normalized eigenfunction associated with
1. In other words, we have that u satisfies the BVP

£ou = pmu — ppmey  in &,n) a.e.,
L, _ pr,, _
Bpu = Bpu =0.
Multiplying the differential equation (4.7) by ¢ and integrating by parts on (£, ),
we obtain xpuy f! mgﬁ% = 0 leading to x = 0 and u = w¢;, for some w € R.

(4.7)

Since Hu,, = o(||un||) near 0, we conclude from [I6, Theorem 2] that for all
integer k > 1, uy is a bifurcation point of two components C,j and ¢, of non trivial
solutions and either ¢ and ¢, are unbounded or ¢} N ¢, # {(ux,0)}. Moreover,
we have from [34, Theorem 1.25 and Lemma 1.24] that, if € > 0 is sufficiently small
and (A, u) € (fNBe, where B, = {(0,v) e RxC, : |0]+||v] < e}, then |A—p| <<
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and u = a¢y +w where koo > K||ul|oo, w = o(Jar]) near 0, ¢ > 0, k € (§,7n) and
k = 4, —. Thus, considering the fact that S],f’* and Sfj’* are open sets, we obtain
from lim,_,o(u/a) = ¢y, that {f N B, C S’g’“ for K = 4+, —. In fact, ¢ does not
leave S}’;”’“. Indeed, if this occurs then there will exist a pair (A, %) € ¢ such that
w e dSy", and in this case, there is 7,& < 7 < 5 such that u(r) = @P)() and then
we have from Corollary = 0and X\ = y;(m) for some | # k. This is impossible
since near (u;,0) the possible solutions (A, u) are in R x Sf;". Finally, we conclude
from ¢ C S’S’” that ¢ is unbounded.

Step 2. Now, assume that and hold and let us prove first that for all
k > 1 and k = +, —, the projection of ¢ onto the real axis is bounded. To this aim,
for k = 4, —, let ¢y . be the eigenfunction associated with ux(ky) = pr(pry, m)
where pey = (§,0,p,9¢ + £7,a,b,¢,d) and (A, u) € (. We have from Lemma
that there exist two intervals (§1,71) and (€2, 72) such that uty , > 0 for k =, —,
f;ll Y+ £pu — ul by + <0 and f;; Yi,— £pu — uL by, > 0. We have then from
Hypothesis ,

m

0> [ PrsLpu—udpthp
&1

= [ O i+ (o) + 2w

Uit
> (=) [ mouds
and

712
0 S ’(ﬁh_fpu — u£pwk7_
&2

= [0 ek (5w = b s

n2
< (A — Mk(_V))/ maby, —uds

leading to pu(—7) < A < (7).
Step 3. Let (A,,u,) be sequence in ¢ such that lim, . ||up]c = +00. Set
vy, = 7—— and note that ||v,| =1 and

T Tlunlles
£0n = Aoy + avt — Buy + (F(t,un)/|luall) in (€,7) ae.,
avn (€) + bolf (&) = cvn(n) + dvif! (n) = 0.
Clearly, the above equation is equivalent to the equation
Uy = ALy + Lol T — Lol vy + (Kup /|| un)). (4.8)

Because of the compactness of Ly, Ly, Lg, boundedness of (),), and the fact that

Ku = o(]|ul|) at co, we have, up to subsequences, v, — v € S].f’“, and A\, — A, and
the pair (A, v) satisfies

L0 = mv+avt —Bv-  in (§,7n) ae.,

(4.9)
L., —
Blv =Bl =0,
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Since ||v|| = lim ||v,| = 1, from Theoremwe have v € Sf,f*“, and from (4.9) we
conclude that A = A¥. The proof is complete. ([

5. MULTIPLICITY RESULTS FOR AN ASYMPTOTICALLY LINEAR STURM-LIOUVILLE
BVP
Let p=(&,1,p,q,a,b,¢,d) € A and consider the BVP
£ou=ug(t,u) in (§,n) a.e.,
Blu— B'u—0 (5.1)
,u= Blu=0,

where g : (§,7) Xx R — R is a Caratheodory function.
The main result of this section will be obtained under the following conditions
on the function g: There exist m,a, 8,7 € K such that

iig%)g(t, u) =m(t) ae. te(&n),

lim g(t,u) = a(t) ae. te(&n),
“_.’+°° (5.2)
’LLEIEIOO g(t,u) =B(t) ae. te(n),
lg(t,w)| <~y(tae. t € (§m).
Set Y = inf(a,ﬁ)vw = Sup(aaﬁ) and for k Z 17 ,u'k(m) = ,Ltk(p,m), ;U'k(a) =
i (ps ), i (B) = pr(p: B), pr() = pi(p, ¥) and pi () = px(p, ) if p € K.

Theorem 5.1. Assume that (5.2)) is fulfilled.
(1) If ¢ € K}, and there exist two integers i > j > 1 such that

pi(p) < 1< pj(m), (5.3)
its i o+ i+ G- i\~ ‘
) 1 et o g s o a5 @ sohten
() < 1< (), (5.4)
then admits, in each of Sg*, ey S;’ﬂ Sg’f, ey S;’f, a solution.

(3) If there exist two integers i > j > 1 with i > 25 — 1 such that one of the

situations (5.5) or (5.6]), where

palm) < 1< (0) (55)
wilB) < 1 < piy(m) (56)
holds true, then (5.1) admits, in each of S3+, ... S+ §2=b= Gi~,

a solution.
(4) If there exist two integer i > j > 1 with ¢ > 2§ — 1 such that one of the

situation (5.7) or (5.8]), where

palm) <1< 15(a) (57)
pier) <1 < pj(m)
holds true, then (5.1) admits, in each of SHI=1+ ... S+ 2= . §h~,

a solution.
Proof. Set f(x,u) = g(x,u) —m(z)u and consider the BVP
Lou=Imu—+ f(t,u) in (& n) ae.,

5.9)
- - (
Bpu = B;u =0.
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Note that if (1,u) is a solution to (5.9) then u is solution to (5.1). Let (A\;);>1 and
(A} )i>1 be the sequences of half-eigenvalue of the problem

£ou = mu+ (@ —m)ut — (B—m)u~ in (& n) a.e.,

L, _ pr, _
B,u= Bju=0.
Since the function f satisfies Hypotheses (4.2)-(4.5), from Theorem [4.3| we have
that for all integers k > 1 and x = 4+, —, the component ¢ of nontrivial solutions

of (5.9), which bifurcate from py(p, m), rejoins the point (Aj,00). Thus we have
to compute, for each of the Cases 1-4, the number of components (; crossing the
hyperplane {1} x C,. To be brief, we present the proofs of Case 1 and Case 3 with

pp(m) <1 < p;(B3).

W

A
F T
AN
G G

FIGURE 2. p;(p) <1 < p(m;)

(1) Suppose that p;(p, ) <1 < p;(p,m) and let
p: (Svnvpvq"_m_wvaabqu)
i = wi(ps ),
ﬁ: (fﬂ?avaI"' (1 - ,U;)maa/vb7 c, d)
Then we have

AF =AM (pym, = m, B —m) < AF(p,m, o —m, o —m) = ;.

Let u be such that
Lout (L= pymu=pu in (€,n) ac.,
L., _ pr,, _
Bpu = Bpu =0.
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We conclude from the above BVP that u;(p, ¢) = 1. Thus, if pf > 1, from Propo-
sition [3.8] we have the contradiction
L= pi(p,p) = A7 (s, (7 — L)m, (7 — 1)m) < pi(p, ¢, 0,0) = pi(p, ) < 1.

We have proved that for all integers k € {j,...,i} and Kk = 4, —, (f crosses the
hyperplane {1} x C, (see .

A
1 A3,
\\
N
ng—l \ N G

FIGURE 3. p;(m) <1< p;(3)

(2) Suppose that p;(m) < 1 < p;(3). We claim also that /\;j >land Ay;_; > 1.
Indeed if )\;’j < 1 (we check Agj—1 > 1in the same way) and u, v satisfy respectively

£ou= ()\2+] —Dmu+aou® —Bu”  in (£,7) a.e.,
Blu = Bju =0,
and
Lo =p;(B)Bv i () ac.
Blpv = Bv =0,

we let (zl)ﬁigj be the sequence of zeros of u. We have for all [ =0,...,7 —1,

0 < Wr(u,v)(29142) — Wr(u,v)(z2141)

_ /221+2(()\3_j —Dm+ (1 — p;i(B))5)uv.

Z21+1
This equality implies that in each of the intervals [z9;41,22142], | = 0,...,5 — 2,
and [z2;—1,7), v vanishes at least once. This means that v admits at least j zeros
in (&,7), contradicting v € Sg. Thus, we have proved that )\;j > 1. Thus, C,j'
crosses the hyperplane {1} x C, for all integers k € {2j,...,4}, and (, crosses the
hyperplane {1} x C, for all integers k € {2j —1,...,i} (see Figure [3). a
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Now, consider the boundary value problem
£ou=w(t)uh(u) in (§,n) a.e.,

. (5.10)

B,u= Bju=0,

where w € K; and h : R — R is a continuous function such that

lim A(u) =ho >0, lim h(u)=hy >0, lim h(u)=h_>0. (5.11)

u—0 u——+00 U——00
Theorem [5.1] yields the following result.
Corollary 5.2. Assume that (5.11)) is fulfilled.

(1) If there exist two integers ¢ > j > 1 such that one of the following two
conditions holds,

ho < pj(w) < pi(w) < min(hy, h_), (5.12)
max(hy, h-) < p;(w) < pi(w) < ho, (5.13)
then (5.10) admits, in each of the sets Sg*, e S;’Jr, Sg’ﬂ e Sf;*, a solution.

(2) If there exist two integers i > j > 1 with i > 2(j — 1) and such that one of
the following two conditions holds,

he < ) < (@) < ho (5.14)
ho < pj(w) < pi(w) < h_, (5.15)
then (5.10) admits, in each of the sets S3+, ..., S;’+,S’£2j71)’7, .87, a solu-

tion.
(8) If there exist two integers i > j > 1 with i > 2(j — 1) and such that one of
the two conditions holds,

hy < pj(w) < pi(w) < ho, (5.16)
ho < p3(w) < (@) < hy, (5.17)
then (5.10) admits, in each of the sets Syj*l)’ﬁ e Sf;‘", Sﬁj’_, cee Sf;_, a solu-

tion.

Proof. Set g(t,u) =

a(t) = hyw(t), B(t)
pi(m) = pi(w)/ho, pi(a) = pi(w) /by, pa(B) = piw)/h—
pi(p) = pi(w)/min(hy, b)), pi(y) = pi(w)/ max(hy, ho).

Therefore, Assertions 1, 2 and 3 of Corollary follow from Assertions 1-4 of
Theorem [B.11 O

w(t )uh( ). Then condition (5.2) is satisfied for m(t) = how(t),
= h_w(t). For all integers i > 1, we have

Remark 5.3. Assertion 1 in Corollary shows that Assertion 1 of Theorem
implies the case 0 < fo, foo < 00 of the [33, Theorems 2 and 3] and extends to a more
general situation, since here the operator —d?/dx? is replaced by the differential
operator £,, f is not necessarily a separated variable function, no condition on the
parity of f is imposed and f is not locally Lipschitzian. Theorem extends in
some manner, [30, Theorems 1 and 2 in], [31, Theorem 1.1] and [I3] Theorem 3.3].



36 A. BENMEZA'I'7 W. ESSERHANE, J. HENDERSON EJDE-2016/298

Example 5.4. Let p = (0,7,1,0,1,0,1,0), fo, f—, f+ € (0,400), and let 4, j, k be
integers such that 1 < j < i < k. Consider the BVP

—u" = f(u) in (0,m)

5.18
w(0) =u(r) =0 (5.18)
where , ,
_ ), Jrute" o fiute™™
f(u) foue + 1+ |’U,|€u 14+ |u|e—u'
We have
lim M = fo, lim 1) =f_, lim M = fi.
u—0 U u——00 U u——4o0 U

We deduce from Corollary the following results. (1) Suppose that
G- <fo<i?<- - <P<f <(@+1)?<--<k<fy<(k+1)?
and k > 2(j — 1). From Part 1 of Corollary BVP (5.18)) admits one solution in

each of the sets S3+, ..., S4*, 67~ ... S5~ and from Part 3 of Corollary
BVP (5.18)) admits one solution in each of the sets S£2j71)’+,. L, Sht SR
S}’j’_. We conclude that: If i < 25 — 1 then (5.18) admits 2k 4 2i — 65 + 5 solutions.

If > 2j — 1 then (5.18) admits 2k — 25 + 2 solutions.
(2) Suppose that

G-12<f <2< <P<fo<(i+1)?<-- <K< f,<(k+1)
k > 2i and i > 2(j —1). From Part 2 of Corollary BVP (5.18) admits one
solution in each of the sets 52T, .. Si+, S;Qj_l)’_,. .., 857, and from Part 3 of

Corollary BVP (5.18) admits one solution in each of the sets S,(,2i+1)’+, cee
S’;"“, SEHR L, S’;’_. We conclude that (5.18)) admits 2k — 2i — 47 + 2 solutions.

6. STURM-LIOUVILLE BVP WITH JUMPING NONLINEARITIES

6.1. General setting. Throughout this section, welet p = (§,71,p,q,a,b,¢,d) € A,
a,&,B,v,w € K, h,¢ € L;, 6 is a real parameter, y € C*(R), § : [0, +o0) —
[0,400) is a nondecreasing function satisfying lim, 1. g(u) = 0 and g : (§,7) x
R — R is a Caratheodory function such that %(t, -) exists for a.e. t € (§,n) and

% is a Caratheodory function.

Set ¢ = inf(a, 8), ¢¥ = sup(a, §) and for all k > 1, up(e) = pr(p,a), pe(8) =

1 (s B)s 1 (¥) = pe(p, ¥), pi(w) = pi(p,w), and pu(9) = pu(p, @) if ¢ € K.
Also, throughout this section, we assume that

|%(t, u)| <~(t) forallu€R and ae. t € (&,1); (6.1)
Jm gt u)/u=B(t) ae. te (& n); (6.2)
ugrfwg(t,u)/u =at) ae te(&n); (6.3)

Jim o (w) = x-, Tim x(u) = x4, - xr €R (6.4)

Also, we set in this section,

—q if —c if
1o (b) = a ?b>0 oo (d) = c ?d>0
1 ifb=0, 1 ifd=0.
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and let v_o and v4 be respectively the unique solutions of

— +
£,0 = x4ywv

v(€) = b,
vlP(€) = as(b),

- X_CUU_,

and

vl (€) = —a(b).
6.2. Nonlinearities without jump. We are concerned here, with the BVP
£ou=g(z,u)+h in (§n) ae.,
: l (6.5)
B,u= Byu=0.

The main result of this subsection, Theorem is an extension of the results
obtained in [20] and [I§].

Theorem 6.1. In addition to (6.1), (6.2), (6.3), assume that p € K}, and there
exists 7 > 1 such that

(o) <1 <pjpa() or pa(y) > 1. (6.6)
Then (6.5) admits at least one solution. Moreover, if
p(t) < gg (t,u) <(t) forallueR andt in (&) a.e., (6.7)
u

then (6.5) admits a unique solution.

In fact, (6.5) under Hypotheses and (6.7) is a perturbation of (3.10) in
Case 1 of Theorem [3:16] The proof of Theorem [6.1] uses the following lemma.

Lemma 6.2. Assume that ¢ € K and holds. Then for all 7,6 € K} with

@ < 7,0 <, the trivial function is the unique solution of the BVP
Lou=~ut —6u™ in (&n) ae.,

. l (6.8)

B,u= Bju=0.

Proof. To the contrary, suppose admits a nontrivial solution ¢. In this case
there is an integer | > 1 and k = +, — such that Aj(m,~,d) = 0 for an arbitrary
m € K. Since ¢ < 1,6 <1, Proposition leads to

A=A (m, 1, 4) < Af(m,7y,6) =0 < AF(m, @, ) = . (6.9)
Let, for i = 1,2, ¢; € S/l;’”" be the eignfunction associated with A; and note that
Lo = (Y +Am)d1 in (§,7n) ae.,
Béu = Byu =0,
and
Lpd2 = (p+Aem)d2  in (§n) ae,
Bi)u = Byu=0.
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From the above BVPs, we obtain that Af (i, \ym, A1m) = 1 = A (@, Aam, Aom).
Then taking into account , from Proposition we obtain

Therefore, when pq () > 1, from (6.11]), the contradiction 1 > p;(v) > uq(¢) >
1, and when p;(¢) < 1 < pjt1(¢) for some integer j > 1, if I < j, we have from

6.10) the contradiction 1 > p;(¢) > wi(p) > 1, and if [ > j + 1, we have from
6.11) the contradiction 1 > p;(9)) > pj4+1(%) > 1. This completes the proof. O

Proof of Theorem [6.1].
Step 1 (Existence). For x € [0, 1] consider the BVP

£pu=nlg(e,u)+ 06+ )+ (1— )P0 in () ace,

2 (6.12)
Bhu = Bju=0,
and note that u € Wp is a solution to if and only if
u=krTu+ (1—k)Lu
(6.13)

= kLol u—kLgl"u+Tu+ (1 —rK)Lu

where for u € Cp,

Tu(t) = /g (Gt $)g(s,u(s)) + 06(s) + h(s))ds,

Lu(t) = /5 NAOD RPN

Tu(t) = /6 (Gt )3 (s, u(s)) + 00(s) + h(s))ds,

9(s,u) = g(s,u) — a(s)u’ + B(s)u”.

Now, we claim that there exists R > 0 large such that Equation has no
solution in dB(0, R). Indeed, if this is not the case and for all n € N there exist
kin € [0,1] and u, € dB(0,n) such that the pair (k,,uy) satisfies (6.12), then the
pair (K, v,) with v, = u,/||u,]|, satisfies

Vn = kinLol v, — kLgI v, + (Tvun/HunH) + (1 —&)Luy,.

Arguing as in the proof of Lemma we obtain that Tu, = o(||u,||) at oo and
then we obtain from the compactness of the operators L., Lg and Lg that there is
a pair (k,v), with k € [0,1] and ||v|| = 1, satisfying the equation

u=rLoITu—rLgl u+ (1 —k)Lu.
In other words, we have
Lov=A0" —Bow~  in (£n) ae.,
1. ro._
B,v=B,v=0,

1+k 11—k 11—k 1+k
- BH: —a M <AK7BK< .
At —p, ot ——B, p< <v
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This contradicts Lemmal6.2] and proves existence of R > 0 large such that Equation
(6.13) has no solution. For such a radius R > 0, we have from homotopy property
of the degree and Lemma [6.2] that

d(I-T,B(0,R),0)=d(I — L,B(0,R),0) = (—1)° #0
where € is the sum of algebraic multiplicities of characteristic values of L contained
n (0,1). Clearly, this shows that (6.15) admits a solution.
Step 2 (Uniqueness). Assume that (6.7) holds and (6.15) admits two solutions
¢1, p2. Set ¢ = ¢1 — ¢ and

R (o 70 ol ALOR L OF
29 (¢, ¢ (t)) it G1(t) = da(t).

Then ¢ is a solution of
Lou=qu=qu" —qu~ in (£n) a.e.,
l r
Bpu = Bpu =0,
with ¢ < ¢ <. This contradicts Lemma [6.2] and completes the proof. O
Consider now the separated variable case of BVP (6.5))
Lou=w(t)x(u)+h in (& n) ae., (6.14)
Blu = Bju=0. '

Setting a(t) = xyw(t) and B(t) = x_w(t), we have ¢ = min(y_, x4+ )w and ¢ =
max(x—, X+)w and for all k > 1, ug(a) = pu(w) /x+, #;(8) = pj(w)/x—. Therefore,
from Theorem [6.1] we obtain the following corollary.

Corollary 6.3. In addition to (6.4), assume that x_,x+ < p1(w), or that there
exists an integer j > 1 such that p;(w) < x—, X+ < pj+1(w). Then (6.14) admits at

least one solution. Moreover, if min(x4, x—) < x/(v) < max(xy,x—), then (6.14)
admits a unique solution.

6.3. Nonlinearities with jump. Now we consider the BVP
Lou=g(x,u)—0p+h in (&n) ae.,

Lo (6.15)
B,u= Byu=0,
and we assume the following conditions: The BVP
Lou=ou—¢ in (n) ae,
. ., (6.16)
B,u= Byu=0,
admits a unique solution ¢ € S;;"“ and
0
a—i(t,u) —a(t)| <a(t)g(u) in (&n) ae. and u > 0. (6.17)

Remark 6.4. From Hypothesis (6.17) we obtain that
lg(t, u) — a(t)u] < &(t)g(u) + |g(t,0)| for all w >0 and a.e. ¢t € (&,n).

Remark 6.5. Note that (6.16) implies p;(p,a) # 1, for all [ > 1, and then G5
exists where p = (£,7,p,q — a,a,b, ¢, d).
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Remark 6.6. Because that S} is an open set in E, and ® € S}»", there exists
ro > 0 small enough such that

_ L

BEp = {U S Ep, ||u — (I)”l < T’o} C Sp +.

The following theorem is the main result of this subsection. It gives a lower
bound of the number of solutions to (6.15) when the real parameter 6 is large.

Theorem 6.7. In addition to(6.1), (6.2), (6.3), (6.16) and (6.17), assume that

there exist two integers i,j > 1 with ¢ > 2(j — 1) such that p(a) < 1 < p;(B).
Then there exists 0 > 0 such that (6.15) admits 2(i — 2(j — 1)) solutions for all
6>0.

The proof of Theorem [6.7] uses the following lemmas.

Lemma 6.8. Assume that (6.1)), (6.3), (6.16) and (6.17) hold. Then there exists
01 > 0 such that (6.15) admits a positive solution for all 6 > 6,

Proof. Set g(x,u) = g(x,u)—a(x)u and for § # 0 consider the operator Ag : E — E,
defined for u € E by

Aana) = . [ Gy, )30, 0) + B(5) + ().

where p is that in Remark Clearly, Ay is a completely continuous operator.
We claim that there exists #; > 0 such that Ag(QhC Q for all & > 6, where

Q = Bg,(0,79) and rq is the real number in Remark Indeed, let
— 0G5
Gr = (IGsle + swp_ [p(0)52(2.5)]),
t,s€(&5m) t

and we obtain from Remark the following estimate for all u € €,
| Agulls < (@/0)(IAlzy + g 0)ls ) + a3 (ro + 12013000 + 2]):

This together with the fact that lim, . g(z) = 0, leads to sup,cq [|[Agull2 — 0
as § — +oo, proving our claim.

At the end we conclude by Schauder’s fixed point theorem that for all § > 6,
Agy admits a fixed point ug and Uy = 6(ug + P) is a positive solution of . O

We need to introduce the following notation. For 8 > 6; > 0 set

0 R _
qo(t) = 8%(15, Up(t)), p=(&m,p,q0+ gy sa,b,c,d),

9t Uo)—9ls) 4 g (1) if u# 0
go(t, u) = + i
4y (t) ifu=0.

From (6.1)-(6.16)) we have
lim go(t,u) = qq (1) in (§,n) ae,
Jm go(t,u) = B(t) + g5 (1) in (§,7) ae.

Lemma 6.9. Assume that (6.1)), (6.2), (6.3), (6.16) and (6.17) hold. Then there

exists 0> > 01 such that ,ui(p}),qg) <1< pi(pa,Bo)-
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Proof. From ([6.17)) we have
n " dg
[ lao®) -~ atotie = [ 152, U0(0) - o)
3 ¢ ou
n

a(t)g(0(ue + @ d
< /g (£)3(6(ug + D (1))t
<( /5 a(t)dt) (0(ro + @]

— 0 asf — 4oo.
This shows that g9 — « in L; as § — +oo and because of inequalities (2.1]), we
have q;r —aand g — 0in L;. Therefore, we deduce from Proposition that
QETooui(ﬁeng) = pi(a) <1< p(B) = ogffooﬂj(ﬁe’ﬂe)

and there exists 63 > 6; such that for all § > 0, ,ui(ﬁ.g,q;') <1 < p;(pe,Bo),
completing the proof. O
Proof of Theorem[6.7. For 6 > 65, we consider the BVP
£ou=uge(t,u) in (§,7n) a.e.,
L, _ pr,, _
B,u=Bju=0,
and note that if v is a solution to (6.18) then u + Uy is a solution of (6.15]).
In addition to pi([)g,q;') < 1 < p;j(pg,Be), from hypothesis (6.1) we have that

lgo(t,u)] < v+ q4 . This shows that all conditions of Part 3 in Theorem are
satisfied and in addition to the trivial solution, (6.18) admits for{ = 1,...,i—2j+1,

(6.18)

a solution u;” € S0+ and for | = 1,...,i — 2j + 2, a solution u;” € S27-2th~,
We conclude that Uy, Uy + ul+, forl =1,...,i—2j+1, and Up +u; , for | =
1,...,1—2j 4 2, are solutions to (6.3)). O

Now we consider the separated variables case of (6.15]),
Lou=w(t)x(u) —0p+h in (& n) ae.,
l ) (6.19)
B,u=B,u=0,
and suppose that the BVP
Lou=xywu—¢ in (§,n) ae.,
l (6.20)
B,u= Byu=0,

admits a unique solution ® € S };*.

Remark 6.10. Let ¢; € S;"" be the eigenfunction associated with uy(w), ¢ =
—wey and py(w) < x4+ # pr(w) for all & > 2 (to get uniqueness from Theorem
is a typical example where is satisfied with ® = ¢1/(x+ — p1(w)).
Setting a(t) = xyw(t) and B(t) = x—_w(t), we have ¢ = min(x_, x+)w, ¥ =
max(x_, x+)w and if x_, x+ > 0, then for all k¥ > 1, px(a) = up(w)/x+, 1;(8) =
pi(w)/x—. Therefore, from Theorem we obtain the following corollary.

Corollary 6.11. In addition to (6.4) and (6.20]), assume that there exist two inte-
gersi,j > 1 withi > 2(j —1) such that x+ > pi(w) > pj(w) > x— > 0. Then there
exists 0 > 0 such that the (6.19) admits 2(i — 2(j — 1)) solutions for all § > 0.
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Example 6.12. Let p = (0,7,1,0,1,0,1,0), g_,g+ € (0,+0c0) and let 7,5 be
integers such that 1 < j <idand ¢ > 2(j — 1). Consider the BVP

—u" =g(u) —0p+h in (0,7)

6.21
w(0) =u(r) =0 (6:21)
where h € L; and
2 u 2, —u
gru‘e g_u’e
glu) = == —.
1+ Juler 14 |ule—v
We have
lim 7g(u) =g_, lim 7g(u) =gy.
u——00 U u—+oo U

Example 6.13. Suppose that 0 < g < 1 < g4 < 4. Denote by ® the unique
solution of the BVP

—u" =gru—¢ in (0,7)
u(0) = u(mr) = 0.
(1) If ¢(t) = 1, then

1 —cos(y/g+7

8(t) = - (~ cos(y/g71)  sin(y/750) + 1)

g+ sin(\/g+)
_ 22O O o) sin(ty2)
g+ sin(/g5m)

and ¢ € S’})"“. Therefore, from Corollary we deduce that (6.21)) admits
at least 2 nontrivial solutions for 6 large.

(2) If ¢(t) = t, then

B(t) = ‘7”) sin(,/g51) + i

g+ sin(\/g5m

—1
~ g+sin(y/g5)

(m sin(y/grt) — H(y/Grm)).

It is easy to see that there exists o* € (1, %) such that ® € S},"* whenever

g+ € (1,9). Therefore, we deduce from Corollary that (6.21) admits
at least 2 nontrivial solutions for ¢ large and g4 € (1, ).

6.4. Ambrosetti-Prodi situation.

Theorem 6.14. In addition to (6.4) and (6.20), assume that x € C%(R), ¥ >0
and x— < p1(w) < x4+ < p2(w). Then there exists a real number 0* such that

(6.19) admits

i) no solution if 0 < 6*,
ii) a unique solution if 6 = 0*, and
ili) ezactly two solutions if 6 > 6*.

The proof of the above theorem uses the following lemmas.

Lemma 6.15. In addition to (6.4) and (6.20), assume that x_ < p1(w) < X4+.

Then there exists a real number 03 such that | ) admits no solutions.
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Proof. Let € > 0 be such that € < min((x+ — x—)/2, x+ — #1(m), x— — p1(m)). We
claim that there exist two positive constants C; and Cy such that

x(u) > (x+ —€u—C;p for all u e R, (6.22)
x(u) > (x— +€u—Cy forall u e R. (6.23)
Indeed, for such a real number € there exists A > 0 such that
x(u) > (x+ —€)u> (x— +€)u for all u> A,
x(u) > (x— +€)u> (x+ —e€)u for all u < —A.

This leads to existence of positive constants Cy and Cs such that y(u) > (x4 —
e)u — C and x(u) > (x— + €)u — Cy for all uw € R.
Now, let u € W, be a solution of (6.19). Then

n n n n
0= /5 b1 £ — Ly, — /g () — s @)y — 0 /5 16+ /5 bih (6.24)
and

n n n

[ o=t mmen [Cwme— [0 at,0

n
= (vs —m) [ wore >0
Therefore, if fg weiu < 0, then inserting (6.23)) into (6.24]), we obtain
" " " "
0 [(o16= (- + - m) [ worut [onz [

13 19 3 1

leading to 6 > fg o1h/ f; ¢1¢, and if f,;.n wéru > 0, then inserting (6.22) into (6.24]),

we obtain
n n n n
0 [ 016 (e~ —m() [ worut [omz [ o
3 13 13 1
leading also to 6 > f; é1h/ f; ¢1¢ = 03. This shows that if § < #3, BVP (6.19)
has no solution. The proof is complete. [

In what follows and without loss of generality, we assume that the real parameters
b and d are nonnegative.

Lemma 6.16. Suppose that x— < p1(w) < x4 < pa(w). Then
oo (d) 0100 (1) + 0 () < 0 < Coc(d)v—oc (n) + oL ().

Proof. We present the proof for v;.; the proof for v_o is similar. First, we claim
that vy, admits at most one zero, Indeed, if there are £ < 1 < 2 < 7 such that
Vioo(Z1) = Vioo(x2) = 0, then for ¢ € S};* we have an eigenfunction associated
with p1(w), yielding the contradiction

0 < —1 (w2)0 (22) + b1 (1)L (1)

= / P1L£pVs00 — Voo L pd1

= (11 () — x_) /  whrvse < 0.

1
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Therefore, we distinguish two cases:
(1) V400 > 0in (&,m): In this case,

n
(oL () + P () vse(n) = /E 1L s — Vi £ bt

n (6.25)
=(x- - /M(cu))/E WHL1V 400 > 0
and
— d1 (o () + S (0)v400 (1)
_ {d’lé 21 (cv o0 (n )+dv[”] (n) ifd>0 (6.26)
P (0)vsoo () ifd=0.

Since ¢1(n) > 0 if d > 0, and ¢ () < 0if d = 0, from and (6.26) we obtain
Coo(d)v1o0(n) + d0PL (1) < 0.
(ii) v1oo(x1) = 0 for some x; € (€,71): In this case we have vgz_j(])o(xl) < 0 and

— d1 (L () + S () vsoo ()
— / ¢1£pv+oo — 'U+00£p¢1 (627)

7
= —or(ea)olhe (@) + (-~ () [ wroe >0
Ty
As with the above case, from (6.27)) and ([6.26]) we obtain oo (d)v400 (1 )—i—dv[p] (n) <
0. This completes the proof O

Lemma 6.17. Let for 0 € R, v, = v(-,0,0) be the unique solution of

Lp=XT) _go  h
P g g g
v(€) =b

vPH(€) = ano (b)
and~assume that (6.4) holds. Then limgy_._ oo V5 = V_oo and liMy_ 1 o0 Vo = Vioo

in W,.

Proof. We prove that lim,_, {0 Vg = Vyeo in Wp; the other limit is checked simi-
larly. Let x(u) = x(u) — x+u™ + x—u~ and note that there exists M > 0 such that
Ix(u)] < M. For o > 0, let w, = vy — V4o and observe that w, satisfies

£pwa = )A((Sa wo)
wo(g) =0,
wil(¢) =0,
where
X(5,1) = WX4 (U A V100(5)) T = 0L00(8)) = X-w((U 4 V400(8)) T = 0300(5))
X0 (utvi00(5)) _ po(s) L+ h(s)

(o g

+w
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Set W, = (w,, w?!), then W, satisfies W’ = F(s, W,) and W, (¢) = (0,0) where
for X = (z,y), F(s,X) = (%y7q(s)u — X(s,u)) and W,(¢t) = f; F(s,W,(s))ds.
From (2.1)) we obtain the estimates

[F'(s, Wo(s))|

< la(s)[[wo ()] +

|)2(a(wg(s);— Vioo($)))] + X+ w(8) (W (8) + vi00(s)) T — vioo(sﬂ

+ X-w(8)[(we (8) + v100(8))” = v300(8)]

WP ° -
< P B (e xopololn ()] + (o) - + 01 T
M I66) ko)

< @ (s) ([ (5)] + [wo (5)]) +w(s)— +0 .

where w(s) = (1/p(s)) + |¢(s)| + (x+ + x—)w(s). Let £ > 1. The above estimates
lead to

+w(s)

eXp(—li/ = (r)dr)| W (8)]

3
</ (s, W ()| expl— / ) exp(—r [ ' o(r)dr)ds

IN

t t 1
Wl | woyesp(r [ (e)drds + 204 + 0ol + il

IN

1 1
Wl + = (M + 019l + 1b]1),

and then
1

1
(1= DIWalle < (M +llglls + Al — 0 as & — ~+oc.

Thus, we have proved that w, — 0 in Wp; the proof is complete. (]

Proof of Theorem[6.1]} Without loss of generality, suppose that b,d > 0. For ¢ €
R, let u(-,0,0) be the unique solution given by Theorem [2.3| of the IVP

£ou=wx(u)—0o+nh
u(€) = bo
ulPl(€) = ass(b)o.
Consider the function v : R2 — R given by
Y(E,0) = Byu(n,0,0) = coo(d)u(n, 0,0) + dulP! (n,0,0).

Fix 0 and let v4(0) = v(0, 6). We have that lim,_,_ o vo(0) = limgy— 1o Y9(0) =
—00. We present the proof of lim,_, o0 V9(0) = —o0; the other limit is checked
similarly. For o > 0, let v, = u/o, and note that v, satisfies the IVP
¢ h

— 0= 4+ —
g g

Lou=w

x(ou)

u(§) = b
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ulP!(€) = ans (b).

From Lemma we have lim,_. 4o Vs = V4o in W,. In particular, we have

u(n, ull(n,0,0)
g

. o,0 .
limg 4 00 T) = Vyoo(n) and lim, 4o

account Lemma we obtain
lim Yo(0)

o——+00 o

= v[flo(n). Then taking into

= Coo(d)v 400 (1) + A0 (1) < 0

and obviously, limy,_ 1o v9(0) = —00.
Now, we claim that the mapping vy admits a unique critical point at which it

reaches its maximum value. Let 0 be such that v, (c*) = 0 and set u, = u(-,0%,6),

Ve = %(.’0*79) and Wy = %(',0‘*,0) and note that

£,0, = wx (u)v,

6.28
Blv, =B, =0 (628)
and
£ow, = wx" (u) (v:)? + wx' (u*)w,
w(§) =0 (6.29)

w(§) =0.

We have that v, € S}, indeed, from BVP (6.28) we obtain (g — wx'(u*)) =
pu(p*,m) = 0 for some integer [ > 1 and arbitrary m € K, where p* = (§,71,p,q —
wx'(u*),a,b,c,d). Let ¢1, o be respectively eigenfunctions associated with uq(w),
2 (w) and note that we obtain also that

p1(q — p(ww) = pa(p1,m) = pa(q — p2(w)w) = p2(pz,m) =0
where for i = 1,2, p; = (£,1,p,q — pi(w)w, a, b, c,d).
Since x— < x'(u*) < x4 < p2(w), from Proposition for [ > 2, we have the
contradiction

0= pu(q —wx'(u") > pulq — pa(w)w) = pa(q — pa(w)w) = 0.
This shows that { = 1 and since v.(§) = b > 0 and o7 (&) =1if b =0, we have

v € Syt
At this stage, we have

n
ol o) 4w (e = [ £ <t
. (6.30)
:/ X (W) ()% > 0
3

and since

—w (). () + w. ()P () =

— ety ifd > 0
W)y (e*) ifd >0

and v, (n) > 0if d > 0, and P (n) < 0ifd =0, from (6.30) we conclude that
vy (0*) < 0 and -y reaches at o* its maximum value.
Now, let for § € R, I'(0) = v(c(0),0) where o(0) is the unique critical point of
the mapping v and z = %(-, 0,0). Then
oy B @

I'(0) = 2(0(0), 0)0'(0) + 9 (0(6),6) = 5 ((6),0)
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and

2(§) =0

2(e) =0
ING

20
o(0.) o(0") _ .
a(6)
INC,
Yo~
6.

FIGURE 4. The mapping 7y

Similar calculations lead to

n n n
/ Vi = / DLy, — v L,P — / (X (1) — x4 )wPv,
3 3 3

- /5 "(es = X))o, > 0

and

— v v (5(9) 9) ifd >0

S = {v“’] ()5 0(0).0) ifd—0
* 20 ) =

n
:/ Vi pWy — Wi £ p0s
13

n
:—/ v < 0.
&

This shows that the mapping T is increasing.From Lemma we have T'(63) < 0,
and from Theorem we have I'(f) > 0, then there exists a unique #* € R such
that I'(6*) = 0 and consequently has no solution if < #*, a unique solution
(u(-,0(6%),0%)) if 6 = 6*, and exactly two solutions (u(-,01,60) and u(-, 09,0) with
v(o1,0) = v(02,0) =0 and 01 < 0(f) < 02) if @ > 6*. The proof is complete. O
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