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MULTIPLE POSITIVE SOLUTIONS FOR KIRCHHOFF TYPE
PROBLEMS INVOLVING CONCAVE AND CONVEX

NONLINEARITIES IN R3

XIAOFEI CAO, JUNXIANG XU, JUN WANG

Abstract. In this article, we consider the multiplicity of positive solutions
for a class of Kirchhoff type problems with concave and convex nonlinearities.

Under appropriate assumptions, we prove that the problem has at least two
positive solutions, moreover, one of which is a positive ground state solution.

Our approach is mainly based on the Nehari manifold, Ekeland variational

principle and the theory of Lagrange multipliers.

1. Introduction and statement of main results

In this article, we consider the multiplicity of positive solutions for the Kirchhoff
type problem

−(a+ b

∫
R3
|∇u|2 dx)∆u+ V (x)u = f(x)|u|q−2u+ g(x)|u|p−2u,

u ∈ H1(R3),
(1.1)

where a and b are positive constants, 1 < q < 2, 4 < p < 2∗ = 6, V (x), f(x), g(x)
are continuous functions and satisfy suitable conditions.

Problem (1.1) can be written in the general form

−(a+ b

∫
RN

|∇u|2 dx)∆u+ V (x)u = h(x, u),

u ∈ H1(RN ),
(1.2)

where V : RN → R is a continuous potential, a, b > 0 are constants. For the case
of the nonlinearity h is asymptotically linear or superlinear, it has been studied
extensively by many authors, see [12, 13, 17, 18, 19, 20, 24, 26, 31, 38, 39] and their
references therein.

A special case of (1.2) is the well-known equation

−(a+ b

∫
Ω

|∇u|2 dx)∆u = h(x, u) in Ω,

u = 0 on ∂Ω,
(1.3)
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where Ω is a bounded domain in RN . This problem (1.3) is related to the stationary
analogue of the equation

utt − (a+ b

∫
Ω

|∇u|2 dx)∆u = h(x, u) in Ω,

u = 0 on ∂Ω,
(1.4)

proposed by Kirchhoff [21] in 1883 as an extension of the classical D’Alembert’s wave
equation for free vibration of elastic strings. Kirchhoff’s model takes into account
the changes in length of the string produced by transverse vibrations. In (1.4), u
denotes the displacement, h(x, u) the external force and b the initial tension while a
is related to the intrinsic properties of the string (such as Young’s modulus). Such
problems are often viewed as nonlocal because of the presence of the integral term∫

Ω
|∇u|2 dx which implies that problem (1.4) is no longer a pointwise identity. This

phenomenon causes some mathematical difficulties which makes the study of such
a class of problem particularly interesting. Besides, similar nonlocal problem also
appears in other fields such as physical and biological systems, where u describes a
process that depends on the average of itself, for example, the population density.

Here we are interested in the nonlinearity h made up of the combination of a
sublinear term and a superlinear term. This case was considered by Willem [35] for
the elliptic equation

−∆u = λ|u|q−2u+ µ|u|p−2u,

u ∈ H1
0 (Ω),

(1.5)

where 1 < q < 2 < p < 2∗(2∗ = 2N/(N − 2) if N ≥ 3, 2∗ =∞ if N = 1, 2) and Ω is
a bounded domain in RN . The author proved that for every µ > 0, λ ∈ R, problem
(1.5) has a sequence of high energy solutions, and for every λ > 0, µ ∈ R, problem
(1.5) has a sequence of negative energy solutions.

Ambrosetti, Brezis and Cerami [1] studied equation (1.5) when µ = 1. The
authors used sub- and super-solutions to prove that when µ = 1 there exists Λ > 0
such that (1.5) admits at least two positive solutions for λ ∈ (0,Λ), one positive
solution for λ = Λ and no positive solution for λ > Λ. Note that if µ 6= 0 in (1.5),
then by scaling (1.5) becomes the situation of µ = 1.

Wu [36] also studied the concave-convex elliptic equation

−∆u+ u = fλ(x)uq−1 + gµ(x)up−1 in RN ,

u ≥ 0 in RN ,

u ∈ H1(RN )

(1.6)

where 1 < q < 2 < p < 2∗ (2∗ = 2N/(N − 2) if N ≥ 3, 2∗ =∞ if N = 1, 2),

fλ(x) = λf+(x) + f−(x)(f+(x) := + max{0,+f(x)} 6= 0)

is sign-changing, gµ(x) = a(x)+µb(x) and the parameters λ, µ ≥ 0. When the func-
tions f+(x), f−(x), a(x), b(x) satisfy suitable conditions, he proved the multiplicity
of positive solutions for the problem (1.6).

Recently, Chen, Kuo and Wu [9] considered the Kirchhoff type problem

−(a+ b

∫
Ω

|∇u|2 dx)∆u = λf(x)|u|q−2u+ g(x)|u|p−2u,

u ∈ H1
0 (Ω),

(1.7)
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where Ω is a smooth bounded domain in RN with 1 < q < 2 < p < 2∗(2∗ =
2N/(N − 2) if N ≥ 3, 2∗ = ∞ if N = 1, 2), the parameters a, b, λ > 0 and the
weight functions f, g ∈ C(Ω). Using Nehari manifold they proved the existence of
solutions for (1.7) with p > 4, p = 4 and p < 4, respectively.

Motivated by these papers [9, 35, 36], we consider the Kirchhoff problem (1.1)
with potential V (x) and concave-convex nonlinearities on the whole space R3. To
the best of our knowledge, there are few papers which deal with this type of Kirch-
hoff problem (1.1). The main difficulties lie in the unboundedness of the domain
R3, the presence of the nonlocal term and the concave-convex nonlinearities.

Assume that V (x), f(x), g(x) satisfy the following conditions:
(A1) V (x) ∈ C(R3,R), V0 := infR3 V (x) > 0 and for any M > 0, there exists

a constant r0 > 0 such that meas({x ∈ Br0(y) : V (x) ≤ M}) → 0 as
|y| → +∞, where Br0(y) denotes the ball centered at y with radius r0,
meas denotes the Lebesgue measure in R3.

(A2) f ∈ C(R3) ∩ Lq∗(R3), where q∗ = p/(p− q).
(A3) g ∈ C(R3) ∩ L∞(R3) and g(x) > 0, for almost every x ∈ R3.

Let σ := (p− 2)(2− q)(2−q)/(p−2)( Sp

p−q )(p−q)/(p−2) and 0 < σ∗ := q
p−2σ < σ, where

Sp is the best Sobolev constant described in the following Lemma 2.2.

Theorem 1.1. Under the assumptions (A1)–(A3), if |f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ),

the problem (1.1) has at least two positive solutions, one of which has negative
energy. In particular, if |f |q∗ |g|(2−q)/(p−2)

∞ ∈ (0, σ∗), the solution corresponding to
the negative energy is a positive ground state solution and the other one corresponds
to positive energy.

In problem (1.1), because of the unboundedness of the domain R3 there is no
compactness, thus we bring in the hypothesis (A1) to recover the compactness.
Moreover, the presence of the nonlocal term and the concave-convex nonlinearities
prevents us from using the Nehari manifold method in a standard way as [12, 17,
18, 19, 20, 24, 26, 31, 38, 39]. Motivated by papers [6, 9, 36], we connect the Nehari
manifold with the fibering map and split the Nehari manifold into three parts
which are then considered separately. By putting suitable conditions on continuous
functions f(x), g(x) and restricting |f |q∗ |g|(2−q)/(p−2)

∞ to a suitable range, we use
Ekeland variational principle and the theory of Lagrange multipliers to obtain two
positive solutions of the problem (1.1). In addition, from the condition (A2), we
easily see that f(x) is allowed to be sign-changing as [36].

Remark 1.2. The condition (A1) was first introduced by Bartsch and Wang in
[5]. Note that it is weaker than both conditions

(1) V (x) ∈ C(R3,R), infR3 V (x) > 0, V (x)→ +∞ as |x| → +∞ (See [19]).
(2) V (x) ∈ C(R3,R), infR3 V (x) > 0, for each M > 0, meas({x ∈ R3 : V (x) ≤

M}) <∞ (See [10, 37, 40]).
These conditions are often used to recover compactness.

Remark 1.3. We can also consider the Kirchhoff problem

(a+ b

∫
RN

(|∇u|2 + V (x)u2) dx)(−∆u+ V (x)u) = f(x)|u|q−2u+ g(x)|u|p−2u,

u ∈ H1(RN ),
(1.8)
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where the parameters a, b > 0 and 1 < q < 2 < p < 2∗(2∗ = 2N/(N − 2) if
N ≥ 3, 2∗ = ∞ if N = 1, 2). Under the assumptions of Theorem 1.1, restricting
|f |q∗ |g|(2−q)/(p−2)

∞ to a suitable range as in Theorem 1.1, we can also obtain the
existence of solutions for (1.8). It is worth noting that (1.8) is similar to (1.7) in
the case of the whole space RN and that there is compactness because of condition
(A1). Hence we can also obtain the results in [9]. However, this type of Kirchhoff
(1.8) is different from that of Kirchhoff (1.1).

This article is organized as follows: Section 2 is dedicated to our abstract frame-
work and some preliminary results. Section 3 is concerned with the proof of The-
orem 1.1. Throughout this paper, C and Ci are used in various places to denote
distinct constants. Lp(RN ) is the usual Lebesgue space endowed with the standard
norm |u|p = (

∫
RN |u|pdx)1/p for 1 ≤ p < ∞ and |u|∞ = supx∈RN |u(x)| for p = ∞.

When it causes no confusion, we still denote by {un} a subsequence of the original
sequence {un}.

2. Preliminary results

In this section, we recall some preliminaries and establish the variational setting
for our problem. Under the assumption (A1), define

E := {u ∈ H1(R3) :
∫

R3
V (x)u2 dx < +∞},

with the associated norm

‖u‖ =
(∫

R3
(a|∇u|2 + V (x)u2) dx

)1/2

,

where H1(R3) is the well known Sobolev space.
Then the energy functional corresponding to (1.1) is

I(u) =
1
2

∫
R3

(a|∇u|2 + V (x)u2) dx+
b

4

(∫
R3
|∇u|2 dx

)2

− 1
q

∫
R3
f(x)|u|q dx

− 1
p

∫
R3
g(x)|u|p dx, u ∈ E.

(2.1)

Lemma 2.1. If (A1)–(A3) hold, then the functional I ∈ C1(E,R) and for any
u, v ∈ E,

〈I
′
(u), v〉 =

(
a+ b

∫
R3
|∇u|2 dx

)∫
R3
∇u∇v dx+

∫
R3
V (x)uv dx

−
∫

R3
f(x)|u|q−2uv dx−

∫
R3
g(x)|u|p−2uv dx.

(2.2)

The proof of the above lemma is a direct computation, and can be found in
[35, 37]. As pointed out previously, assumption (A1) is used to recover compactness
of embedding theorem, which is given in the next lemma.

Lemma 2.2 ([5, 40]). Under assumption (A1), the embedding E ↪→ Lp(R3) is
continuous for p ∈ [2, 2∗] and compact for p ∈ [2, 2∗). Throughout this paper, we
denote by Sp the best Sobolev constant for the embedding E ↪→ Lp(R3) which is
given by

Sp = inf
u∈E\{0}

‖u‖2

(
∫

R3 |u|p dx)2/p
> 0.
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In particular,
|u|p ≤ S−1/2

p ‖u‖, ∀u ∈ E\{0}.

It is well-known that finding a weak solution of problem (1.1) is equivalent to
finding a critical point of the corresponding functional I. In the following, we are
devoted to finding the critical point of the corresponding functional I.

As usual, some energy functional such as I in (2.1) is not bounded from below
on E but, as we will see, is bounded from below on an appropriate subset of E and
a minimizer on this set (if it exists) may give rise to a solution of corresponding
differential equation. A good exemplification for an appropriate subset of E is the
so-called Nehari manifold

N = {u ∈ E : 〈I ′(u), u〉 = 0},
where 〈·, ·〉 denotes the usual duality between E and E∗. It is clear to see that
u ∈ N if and only if

‖u‖2 + b|∇u|42 =
∫

R3
f(x)|u|q dx+

∫
R3
g(x)|u|p dx. (2.3)

Obviously, N contains all solutions of (1.1). Below, we shall use the Nehari manifold
methods to find critical points for functional I.

The Nehari manifold N is closely linked to the behavior of functions of the form
Ku : t → I(tu) for t > 0. Such maps are known as fibering maps, which were
introduced by Drábek and Pohozaev in [15]. For u ∈ E, let

Ku(t) = I(tu) =
1
2
t2‖u‖2 +

b

4
t4|∇u|42 −

1
q
tq
∫

R3
f(x)|u|q dx− 1

p
tp
∫

R3
g(x)|u|p dx;

K ′u(t) = t‖u‖2 + t3b|∇u|42 − tq−1

∫
R3
f(x)|u|q dx− tp−1

∫
R3
g(x)|u|p dx;

K ′′u(t) = ‖u‖2 + 3t2b|∇u|42 − (q − 1)tq−2

∫
R3
f(x)|u|q dx

− (p− 1)tp−2

∫
R3
g(x)|u|p dx.

Lemma 2.3. Let u ∈ E\{0} and t > 0. Then tu ∈ N if and only if K ′u(t) = 0,
that is, the critical points of Ku(t) correspond to the points on the Nehari manifold.
In particular, u ∈ N if and only if K ′u(1) = 0.

Proof. The result is an immediate consequence of the fact that

K ′u(t) = 〈I ′(tu), u〉 =
1
t
〈I ′(tu), tu〉.

�

Thus, it is natural to split N into three parts corresponding to local minima,
points of inflection and local maxima. Accordingly, we define

N+ = {u ∈ N : K ′′u(1) > 0},
N 0 = {u ∈ N : K ′′u(1) = 0},
N− = {u ∈ N : K ′′u(1) < 0}.

It is easy to see that

K ′′u(1) = ‖u‖2 + 3b|∇u|42 − (q − 1)
∫

R3
f(x)|u|q dx− (p− 1)

∫
R3
g(x)|u|p dx. (2.4)
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Define
Ψ(u) = K ′u(1) = 〈I ′(u), u〉

= ‖u‖2 + b|∇u|42 −
∫

R3
f(x)|u|q dx−

∫
R3
g(x)|u|p dx.

(2.5)

Then for u ∈ N ,
d

dt
Ψ(tu)|t=1 = 〈Ψ′(u), u〉 = 〈Ψ′(u), u〉 − 〈I ′(u), u〉 = K ′′u(1)

= ‖u‖2 + 3b|∇u|42 − (q − 1)
∫

R3
f(x)|u|q dx− (p− 1)

∫
R3
g(x)|u|p dx.

For each u ∈ N , Ψ(u) = K ′u(1) = 0. Thus, we have

K ′′u(1) = K ′′u(1)− (q − 1)Ψ(u)

= (2− q)‖u‖2 + (4− q)b|∇u|42 − (p− q)
∫

R3
g(x)|u|p dx

(2.6)

and
K ′′u(1) = K ′′u(1)− (p− 1)Ψ(u)

= (2− p)‖u‖2 + (4− p)b|∇u|42 + (p− q)
∫

R3
f(x)|u|q dx.

(2.7)

To ensure the Nehari manifold N to be a C1-manifold, we need the following
proposition. Let σ := (p− 2)(2− q)(2−q)/(p−2)( Sp

p−q )(p−q)/(p−2).

Proposition 2.4. If |f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ), then the set N 0 = {0}.

Proof. Suppose, on the contrary, there exists u ∈ N\{0} such that K ′′u(1) = 0. By
Lemma 2.2, ∫

R3
g(x)|u|p dx ≤ |g|∞S−p/2p ‖u‖p. (2.8)

Noting that 1 < q < 2 and 4 < p < 6, from (2.6) we have

(2− q)‖u‖2 ≤ (p− q)|g|∞S−p/2p ‖u‖p,
and so

‖u‖ ≥
( (2− q)S

p
2
p

(p− q)|g|∞

) 1
p−2

. (2.9)

Moreover, by Hölder inequality and Lemma 2.2, we have∫
R3
f(x)|u|q dx ≤

(∫
R3
|f(x)|q∗ dx

)1/q∗(∫
R3
|u|p dx

)q/p
= |f |q∗|u|qp ≤ |f |q∗S−q/2p ‖u‖q.

(2.10)

From (2.7) we have

(p− 2)‖u‖2 ≤ (p− q)|f |q∗S−q/2p ‖u‖q,
which implies that

‖u‖ ≤
( (p− q)|f |q∗

(p− 2)S
q
2
p

) 1
2−q

. (2.11)

Combining (2.9) and (2.11) we deduce that

|f |q∗ |g|
2−q
p−2
∞ ≥

( (2− q)S
p
2
p

p− q

) 2−q
p−2 p− 2

p− q
S

q
2
p = (p− 2)(2− q)

2−q
p−2

( Sp
p− q

) p−q
p−2

,
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which contradicts the assumptions. The proof is complete. �

Let
hb(t) := t2−q‖u‖2 + t4−qb|∇u|42 − tp−q

∫
R3
g(x)|u|p dx,

then we have
K ′u(t) = tq−1

(
hb(t)−

∫
R3
f(x)|u|q dx

)
. (2.12)

Clearly, hb(0) = 0, hb(t) > 0 for t is small enough and hb(t) → −∞ as t → ∞.
From 1 < q < 2, 4 < p < 2∗ = 6 and

h′b(t) = tp−q−1
(

(2− q)t2−p‖u‖2 + (4− q)t4−pb|∇u|42 − (p− q)
∫

R3
g(x)|u|p dx

)
= 0,

we can infer that there is a unique tb,max > 0 such that hb(t) achieves its maximum
at tb,max, increasing for t ∈ [0, tb,max) and decreasing for t ∈ (tb,max,∞) with
limt→∞ hb(t) = −∞.

Proposition 2.5. Suppose that |f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ) and u ∈ E\{0}. Then

(i) if
∫

R3 f(x)|u|q dx ≤ 0, then there is a unique t− > tb,max such that t−u ∈ N−
and

I(t−u) = sup
t≥0

I(tu);

(ii) if
∫

R3 f(x)|u|q dx > 0, then there are unique t+ and t− with 0 < t+ <

tb,max < t− such that t+u ∈ N+, t−u ∈ N− and

I(t+u) = inf
0≤t≤tb,max

I(tu), I(t−u) = sup
t≥tb,max

I(tu).

Proof. Since b > 0, we have

hb(t) > h0(t) = t2−q‖u‖2 − tp−q
∫

R3
g(x)|u|p dx,

where h0(t) = hb(t)|b=0. It is clear that h0(t) has a unique critical point at t0,max =
t0,max(u), where

t0,max =
( (2− q)‖u‖2

(p− q)
∫

R3 g(x)|u|p dx

) 1
p−2

.

It follows that

h0(t0,max) = ‖u‖q
( ‖u‖p∫

R3 g(x)|u|p dx

) 2−q
p−2
(2− q
p− q

) 2−q
p−2 p− 2

p− q

≥ ‖u‖q
( ‖u‖p

|g|∞S−p/2p ‖u‖p

) 2−q
p−2
(2− q
p− q

) 2−q
p−2 p− 2

p− q

= ‖u‖q
( (2− q)S

p
2
p

|g|∞(p− q)

) 2−q
p−2 p− 2

p− q
> 0.

(2.13)

Thus, hb(tb,max) > h0(t0,max) > 0.
From |f |q∗ |g|(2−q)/(p−2)

∞ ∈ (0, σ), (2.10) and (2.13) we also have∫
R3
f(x)|u|q dx < ‖u‖q

( (2− q)S
p
2
p

|g|∞(p− q)

) 2−q
p−2 p− 2

p− q
≤ h0(t0,max) < hb(tb,max).

(2.14)
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(i) If
∫

R3 f(x)|u|q dx ≤ 0, noting that hb(0) = 0 and hb(t) → −∞ as t → ∞,
by (2.12) there is a unique t− > tb,max such that K ′u(t−) = 0, that is t−u ∈ N .
Moreover, for tu ∈ N , K ′u(t) = 0. By (2.12) we obtain that

K ′′u(t) = tq−1h′b(t) < 0.

Thus, if
∫

R3 f(x)|u|q dx ≤ 0, there is a unique t− > tb,max such that t−u ∈ N− and

I(t−u) = sup
t≥0

I(tu).

(ii) If
∫

R3 f(x)|u|q dx > 0, by (2.12) and (2.14) we know there are unique t+

and t− with 0 < t+ < tb,max < t− such that K ′t+u(1) = 0, K ′t−u(1) = 0, that is
t+u, t−u ∈ N .

From K ′′u(t) = tq−1h′b(t) and h′b(t
+) > 0 > h′b(t

−), we have t+u ∈ N+, t−u ∈ N−
and

I(t+u) = inf
0≤t≤tb,max

I(tu), I(t−u) = sup
t≥tb,max

I(tu).

�

The forthcoming lemma obtains the minimizing sequence of the energy functional
I on Nehari manifold N .

Lemma 2.6. The energy functional I is coercive and bounded from below on N .

Proof. For u ∈ N , then, by Hölder inequality and Lemma 2.2,

I(u) = I(u)− 1
4
〈I ′(u), u〉

=
1
4
‖u‖2 −

(1
q
− 1

4

)∫
R3
f(x)|u|q dx+

(1
4
− 1
p

)∫
R3
g(x)|u|p dx

≥ 1
4
‖u‖2 −

(1
q
− 1

4

)
|f |q∗S−q/2p ‖u‖q.

This completes the proof. �

Lemma 2.7. If |f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ), the set N− is closed in E.

Proof. Let {un} ⊂ N− such that un → u in E. In the following we prove u ∈ N−.
Indeed, by 〈I ′(un), un〉 = 0 and

〈I ′(un), un〉 − 〈I ′(u), u〉 = 〈I ′(un)− I ′(u), u〉+ 〈I ′(un), un − u〉 → 0, as n→∞,
we have 〈I ′(u), u〉 = 0. So u ∈ N .

For any u ∈ N−, from (2.6) we have

(2− q)‖u‖2 + (4− q)b|∇u|42 < (p− q)
∫

R3
g(x)|u|pdx.

Similar to the proof of (2.9), we have

‖u‖ ≥
( (2− q)S

p
2
p

(p− q)|g|∞

) 1
p−2

. (2.15)

Hence N− is bounded away from 0.
By (2.6), it follows that K ′′un

(1)→ K ′′u(1). From K ′′un
(1) < 0, we have K ′′u(1) ≤ 0.

By Proposition 2.4, for |f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ),K ′′u(1) < 0. Thus we deduce

u ∈ N−. �
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The following lemma yields a (PS)c sequence from the minimizing sequence of
the energy functional I on Nehari manifold N .

Lemma 2.8. If |f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ), then for every u ∈ N+, there exist

ε > 0 and a differentiable function ϕ+ : Bε(0)→ R+ := (0,+∞) such that

ϕ+(0) = 1, ϕ+(w)(u− w) ∈ N+, ∀w ∈ Bε(0)

and
〈(ϕ+)′(0), w〉 = L(u,w)/K ′′u(1), (2.16)

where

L(u,w) = 2〈u,w〉+ 4b
∫

R3
|∇u|2∇u∇w dx− q

∫
R3
f(x)|u|q−2uw dx

− p
∫

R3
g(x)|u|p−2uw dx.

Moreover, for any C1, C2 > 0, there exists C > 0 such that if C1 ≤ ‖u‖ ≤ C2,

|〈(ϕ+)′(0), w〉| ≤ C‖w‖.
Proof. We define F : R × E → R by F (t, w) = K ′u−w(t), it is easy to see F is
differentiable. Since F (1, 0) = 0 and

Ft(1, 0) = K ′′u(1) > 0,

we apply the implicit function theorem at point (1, 0) to obtain the existence of
ε > 0 and differentiable function ϕ+ : Bε(0)→ R+ := (0,+∞) such that

ϕ+(0) = 1, F (ϕ+(w), w) = 0, ∀w ∈ Bε(0).

Thus,
ϕ+(w)(u− w) ∈ N , ∀w ∈ Bε(0).

Next, we prove ϕ+(u − w) ∈ N+, ∀w ∈ Bε(0). Indeed, by u ∈ N+ and the
set N− ∪ N 0 is closed, we know dist(u,N− ∪ N 0) > 0. Since ϕ+(w)(u − w) is
continuous with respect to w, when ε is small enough, we know for w ∈ Bε(0)

‖ϕ+(w)(u− w)− u‖ < 1
2

dist(u,N− ∪N 0),

so

‖ϕ+(w)(u− w)−N− ∪N 0‖ ≥ dist(u,N− ∪N 0)− dist(ϕ+(w)(u− w), u)

>
1
2

dist(u,N− ∪N 0) > 0.

Thus, ϕ+(w)(u− w) ∈ N+ for all w ∈ Bε(0).
Also by the differentiability of the implicit function theorem, we have

〈(ϕ+)′(0), w〉 = −〈Fw(1, 0), w〉
Ft(1, 0)

.

Note that L(u,w) = −〈Fw(1, 0), w〉 and K ′′u(1) = Ft(1, 0). So we prove (2.16).
Next we prove that for any C1, C2 > 0, if C1 ≤ ‖u‖ ≤ C2, u ∈ N+, there exists

δ > 0 such that K ′′u(1) ≥ δ > 0.
On the contrary. If there exists a sequence {un} ∈ N+, C1 ≤ ‖un‖ ≤ C2, such

that for any δn sufficiently small, K ′′un
(1) ≤ δn, δn → 0 as n → ∞. From (2.6) we

have

(2− q)‖un‖2 + (4− q)b|∇un|42 = (p− q)
∫

R3
g(x)|un|p dx+O(δn),
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where O(δn)→ 0 as n→∞.
Noting that 1 < q < 2, 4 < p < 6, C1 ≤ ‖un‖ ≤ C2 and (2.8), we have

(2− q)‖un‖2 ≤ (p− q)|g|∞S−p/2p ‖un‖p +O(δn),

and so

‖un‖ ≥
( (2− q)S

p
2
p

(p− q)|g|∞

) 1
p−2

+O(δn). (2.17)

From (2.7) we also have

(p− 2)‖un‖2 + (p− 4)b|∇un|42 = (p− q)
∫

R3
f(x)|un|q dx+O(δn).

In view of (2.10), we have

(p− 2)‖un‖2 ≤ (p− q)|f |q∗S−q/2p ‖un‖q +O(δn),

which implies

‖un‖ ≤
( (p− q)|f |q∗

(p− 2)S
q
2
p

) 1
2−q

+O(δn). (2.18)

Combining (2.17) and (2.18) as n→∞, we deduce a contradiction.
Thus if C1 ≤ ‖u‖ ≤ C2, there exist C > 0 such that

|〈(ϕ+)′(0), w〉| ≤ C‖w‖.
This completes the proof. �

Similarly, we establish the following lemma.

Lemma 2.9. Assume |f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ), then for every u ∈ N−, there

exist ε > 0 and a differentiable function ϕ− : Bε(0)→ R+ := (0,+∞) such that

ϕ−(0) = 1, ϕ−(w)(u− w) ∈ N−, ∀w ∈ Bε(0),

〈(ϕ−)′(0), w〉 = L(u,w)/K ′′u(1),

where L(u,w) is defined in Lemma 2.8. Moreover, for any C1, C2 > 0, there exists
C > 0 such that if C1 ≤ ‖u‖ ≤ C2,

|〈(ϕ−)′(0), w〉| ≤ C‖w‖.

The following lemma aims at obtaining the critical point of I on the whole space
from the local minimizer for I on Nehari manifold .

Lemma 2.10. Suppose that u is a local minimizer for I on N+ (or N−). Then
I ′(u) = 0.

Proof. If u 6= 0, u is a local minimizer for I on N+ (or N−), then u is a nontrivial
solution of the optimization problem

minimize I subject to Ψ(u) = 0,

where Ψ(u) is described in (2.5). Note that Ψ′(u) 6= 0, N+ (or N−) is a local
differential manifold. So by the theory of Lagrange multipliers, there exists µ ∈ R
such that I ′(u) = µΨ′(u). Thus

〈I ′(u), u〉 = µ〈Ψ′(u), u〉.
Since u ∈ N+ (or N−), 〈I ′(u), u〉 = 0 and 〈Ψ′(u), u〉 = K ′′u(1) 6= 0. Hence, µ = 0.
Thus the proof is complete. �
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3. Proof of Theorem 1.1

For proving Theorem 1.1, we first show that any Palais-Smale sequence of I has
a strongly convergent subsequence in E.

Lemma 3.1. Each Palais-Smale sequence {un} ⊂ N+ (or N−) for I on E has a
strongly convergent subsequence.

Proof. Assume that {un} ⊂ N+(or N−) such that I(un) → c and I ′(un) → 0 as
n→∞. As in Lemma 2.6, we know the Palais-Smale sequence {un} ⊂ N+ (or N−)
for I on E is bounded. And by Lemma 2.2, going if necessary to a subsequence,
we have

un ⇀ u in E,

un → u in Lr(R3), r ∈ [2, 2∗).

Note that

(I ′(un)− I ′(u), un − u)

= (I ′(un), un − u)− (I ′(u), un − u)

=
(
a+ b

∫
R3
|∇un|2 dx

)∫
R3
|∇(un − u)|2 dx+

∫
R3
V (x)|un − u|2 dx

− b
(∫

R3
|∇u|2 dx−

∫
R3
|∇un|2 dx

)∫
R3
∇u∇(un − u) dx

−
∫

R3
f(x)(|un|q−2un − |u|q−2u)(un − u) dx

−
∫

R3
g(x)(|un|p−2un − |u|p−2u)(un − u) dx

≥ ‖un − u‖2 − b
(∫

R3
|∇u|2 dx−

∫
R3
|∇un|2 dx

)∫
R3
∇u∇(un − u) dx

−
∫

R3
f(x)(|un|q−2un − |u|q−2u)(un − u) dx

−
∫

R3
g(x)(|un|p−2un − |u|p−2u)(un − u) dx,

then we can deduce that ‖un − u‖ → 0 as n → ∞. Indeed, from the boundedness
of {un} in E and Lemma 2.2, {un} is bounded in Lr(R3), r ∈ [2, 6). By using twice
Hölder inequality we obtain∣∣ ∫

R3
f(x)(|un|q−2un − |u|q−2u)(un − u) dx

∣∣
≤
(∫

R3
|f |q

∗
dx
)1/q∗(∫

R3
||un|q−2un − |u|q−2u|p/q|un − u|p/q dx

)q/p
≤ C|f |q∗(|un|q−1

p + |u|q−1
p )|un − u|p → 0, as n→∞,

where C is a positive constant. Similarly, we have∣∣ ∫
R3
g(x)(|un|p−2un − |u|p−2u)(un − u) dx

∣∣→ 0, as n→∞ .
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From

b
(∫

R3
|∇u|2 dx−

∫
R3
|∇un|2 dx

)∫
R3
∇u∇(un − u) dx→ 0, as n→∞,

and
(I ′(un)− I ′(u), un − u)→ 0, as n→∞,

we have ‖un − u‖ → 0 as n→∞. This completes the proof. �

Lemma 3.2. If |f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ), then the minimization problem

c1 = infN+I

is solved at a point u1 ∈ N+, moreover this value is a critical point of I.

Proof. First we prove the minimizing sequence {un} ⊂ N+ is a (PS)c1 sequence
on E. Indeed, by Lemma 2.6 and Ekeland Variational Principle [35] on N+ ∪ N 0,
there exists a minimizing sequence {un} ⊂ N+ ∪N0 such that

inf
u∈N+∪N 0

I(u) ≤ I(un) < inf
u∈N+∪N 0

I(u) +
1
n
, (3.1)

I(un)− 1
n
‖v − un‖ ≤ I(v), ∀v ∈ N+ ∪N 0. (3.2)

From Proposition 2.5, we know for each u ∈ E\{0}, there is a unique t+ such that
t+u ∈ N+, then infu∈N+I ≤ I(t+u). Now we prove that for each u ∈ N+, I(u) < 0.
Indeed, for each u ∈ N+, K ′′u(1) > 0. From (2.7), we have

(p− q)
∫

R3
f(x)|u|q dx > (p− 2)‖u‖2 + (p− 4)b|∇u|42.

Then for each u ∈ N+,

I(u) = I(u)− 1
p
〈I ′(u), u〉

=
p− 2

2p
‖u‖2 +

p− 4
4p

b|∇u|42 −
p− q
pq

∫
R3
f(x)|u|q dx

<
p− 2

2p
‖u‖2 +

p− 4
4p

b|∇u|42 −
1
pq

(
(p− 2)‖u‖2 + (p− 4)b|∇u|42

)
=

(p− 2)(q − 2)
2pq

‖u‖2 +
(p− 4)(q − 4)

4pq
b|∇u|42 < 0.

(3.3)

From the above, we know that infu∈N+ I(u) < 0.
Since I(0) = 0, we have infu∈N+∪N 0 I(u) = infu∈N+ I(u) = c1. Thus we may

assume un ∈ N+, I(un)→ c1 < 0. By Lemma 2.8 , since |f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ),

we can find εn > 0 and differentiable function ϕ+
n = ϕ+

n (w) > 0 such that

ϕ+
n (w)(un − w) ∈ N+, ∀w ∈ Bεn(0).

By the continuity of ϕ+
n (w) and ϕ+

n (0) = 1, without loss of generality, we can
assume εn is sufficiently small such that 1

2 ≤ ϕ+
n (w) ≤ 3

2 for ‖w‖ < εn. From
ϕ+
n (w)(un − w) ∈ N+ and (3.2), we have

I(ϕ+
n (w)(un − w)) ≥ I(un)− 1

n
‖ϕ+

n (w)(un − w)− un‖,

which implies

〈I ′(un), ϕ+
n (w)(un − w)− un〉+ o

(
‖ϕ+

n (w)(un − w)− un‖
)
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≥ − 1
n
‖ϕ+

n (w)(un − w)− un‖.

Consequently,

ϕ+
n (w)〈I ′(un), w〉+ (1− ϕ+

n (w))〈I ′(un), un〉

≤ 1
n
‖
(
ϕ+
n (w)− 1

)
un − ϕ+

n (w)w‖+ o
(
‖ϕ+

n (w)(un − w)− un‖
)
.

By the choice of εn and 1/2 ≤ ϕ+
n (w) ≤ 3/2, we infer that there exists C3 > 0 such

that

|〈I ′(un), w〉| ≤ 1
n
‖〈(ϕ+

n )′(0), w〉un‖+
C3

n
‖w‖+ o

(
|〈(ϕ+

n )′(0), w〉|(‖un‖+ ‖w‖)
)
.

Next we prove for {un} ⊂ N+, infn ‖un‖ ≥ C1 > 0, where C1 is a constant. Indeed,
if not, then I(un) would converge to zero, which contradict with I(un) → c1 < 0.
Moreover, by Lemma 2.6 we know that I is coercive on N+, {un} is bounded in
E. Thus, there exists C2 > 0 such that 0 < C1 ≤ ‖un‖ ≤ C2. From Lemma 2.8,
|〈(ϕ+

n )′(0), w〉| ≤ C‖w‖. So

|〈I ′(un), w〉| ≤ C

n
‖w‖+

C

n
‖w‖+ o(‖w‖)

and

‖I ′(un)‖ = sup
w∈E\{0}

|〈I ′(un), w〉|
‖w‖

≤ C

n
+ o(1),

‖I ′(un)‖ → 0, as n→∞.
(3.4)

Thus, {un} ⊂ N+ is (PS)c1 for I on E. From Lemma 3.1, there is a strongly
convergent subsequence {un}, we still denote by {un}, un → u1 in E. From the
above we know that there exist C1, C2 > 0 such that 0 < C1 ≤ ‖un‖ ≤ C2, then
0 < C1 ≤ ‖u1‖ ≤ C2. Thus u1 6= 0.

Next we prove u1 ∈ N+. Indeed, by (2.6), it follows that K ′′un
(1) → K ′′u1

(1).
From K ′′un

(1) > 0, we have K ′′u1
(1) ≥ 0. By Proposition 2.4, we know K ′′u1

(1) > 0.
Thus we deduce

u1 ∈ N+, I(u1) = lim
n→∞

I(un) = inf
u∈N+

I(u).

We recall [16] that
∫

R3 |∇|u||2 dx =
∫

R3 |∇u|2 dx, therefore I(u1) = I(|u1|) and
|u1| ∈ N+, then without loss of generality we may assume that u1 is positive.
Combining this with Lemma 2.10, we obtain the results. �

Lemma 3.3. If |f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ), then the minimization problem

c2 = inf
N−

I

is solved at a point u2 ∈ N− which is a critical point for I.

Proof. From Lemma 2.7, N− is closed in E. By Lemma 2.6, we know I is coercive
on N−. So we use Ekeland Variational Principle [35] on N− to obtain a minimizing
sequence {un} ⊂ N− such that

inf
u∈N−

I(u) ≤ I(un) < inf
u∈N−

I(u) +
1
n
,

I(un)− 1
n
‖v − un‖ ≤ I(v), ∀v ∈ N−.
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In view of (2.15) and Lemma 2.6 we know the there exist C1, C2 > 0 such that

0 < C1 ≤ ‖un‖ ≤ C2.

Hence by Lemma 2.9, in the same way as Lemma 3.2, there exists a minimizing
sequence {un} ⊂ N− is the (PS)c2 sequence on E. From Lemmas 3.1, we know
there is a strongly convergent subsequence {un}, we still denote by {un}, un → u2

in E. By Lemma 2.7 the set N− is closed, we know u2 ∈ N−. Thus, I(u2) =
limn→∞ I(un) = infu∈N− I(u). Since I(u2) = I(|u2|) and |u2| ∈ N−, then without
loss of generality we may assume that u2 is positive. Combining with Lemma 2.10,
we prove the claim. �

Now we are in a position to give the proof of the main results.

Proof of theorem 1.1. From Lemmas 3.2 and 3.3, we know if |f |q∗ |g|(2−q)/(p−2)
∞ ∈

(0, σ), then problem (1.1) has at least two positive solutions u1 and u2. From the
proof of Lemma 3.2 we know that if |f |q∗ |g|(2−q)/(p−2)

∞ ∈ (0, σ), then the positive
solution of (1.1) u1 belongs to N+ and I(u1) < 0. If 0 < |f |q∗ |g|(2−q)/(p−2)

∞ < σ∗ :=
q
p−2σ < σ, where σ is described in Proposition 2.4, then by (2.15) we can infer that

I(u) = I(u)− 1
4
〈I ′(u), u〉

=
1
4
‖u‖2 −

(1
q
− 1

4
) ∫

R3
f(x)|u|q dx+

(1
4
− 1
p

) ∫
R3
g(x)|u|p dx

≥ 1
4
‖u‖2 −

(1
q
− 1

4
)
|f |q∗S−q/2p ‖u‖q

= ‖u‖q
(1

4
‖u‖2−q − (

1
q
− 1

4
)|f |q∗S−q/2p

)
≥
( (2− q)S

p
2
p

(p− q)|g|∞

) q
p−2
(1

4

( (2− q)S
p
2
p

(p− q)|g|∞

) 2−q
p−2 −

(1
q
− 1

4
)
|f |q∗S−q/2p

)
≥
( (2− q)S

p
2
p

(p− q)|g|∞

) q
p−2
(1

4

( (2− q)S
p
2
p

(p− q)|g|∞

) 2−q
p−2 − p− q

4q
|f |q∗S−q/2p

)
> 0.

In fact, if |f |q∗ |g|(2−q)/(p−2)
∞ ∈ (0, σ∗), for any u ∈ N−, I(u) > 0, where σ∗ =

q/(p − 2)σ. From Lemma 3.3 the positive solution of problem (1.1) u2 ∈ N−,
then for |f |q∗ |g|(2−q)/(p−2)

∞ ∈ (0, σ∗), I(u2) > 0. From the above, we know that if
|f |q∗ |g|(2−q)/(p−2)

∞ ∈ (0, σ∗), then I(u1) = infu∈N I(u), and u1 is a positive ground
state solution of (1.1). This completes the proof. �
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