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ASYMPTOTIC STABILITY OF NON-AUTONOMOUS
FUNCTIONAL DIFFERENTIAL EQUATIONS WITH

DISTRIBUTED DELAYS

LÁSZLÓ HATVANI

Abstract. We consider the integro differential equation

x′(t) = −a(t)x(t) + b(t)

Z t

t−h
λ(s)x(s) ds, o ≤ a(t), 0 ≤ t <∞,

where a, b : R+ → R, λ : [−h,∞) → R are piecewise continuous functions

and h is a positive constant. We establish sufficient conditions guaranteeing

either asymptotic stability or uniform asymptotic stability for the zero solution.
These conditions state that the instantaneous stabilizing term on the right-

hand side dominates in some sense the perturbation term with delays. Our

conditions not require a being bounded from above. The results are based on
the method of Lyapunov functionals and Razumikhin functions.

1. Introduction

Consider the scalar functional differential equation (FDE)

x′(t) = −a(t)x(t) + b(t)
∫ t

t−h
λ(s)x(s) ds, 0 ≤ a(t) t ∈ R+ := [0,∞), (1.1)

where a, b : R+ → R, λ : [−h,∞) → R are piecewise continuous and everywhere
continuous from the right, 0 < h is a constant. We will the standard notation [4]:
C is the Banach space of continuous functions ϕ : [−h, 0]→ R with the maximum
norm ‖ϕ‖ := max−h≤θ≤0 |ϕ(θ)|; CH denotes the open ball of radius H > 0 in C
around ϕ = 0. As is usual, if x : [−h, β) → R (β > 0), then xt(θ) := x(t + θ) for
−h ≤ θ ≤ 0, 0 ≤ t < β. Let x(·; t0, ϕ) : [t0 − h, t0 + α) → R denote a solution of
(1.1) satisfying the initial condition xt0(·; t0, ϕ) = ϕ. It is known [4] that for each
t0 ∈ R+ and ϕ ∈ C there is exactly one solution x(·; t0, ϕ) : [t0 − h,∞)→ R.

Equation (1.1) is the model of a system in which there act an instantaneous neg-
ative feedback stabilizing the equilibrium x = 0 and a perturbation with distributed
delays on the interval [t − h, t]. We look for sufficient conditions guaranteeing as-
ymptotic stability for the zero solution of (1.1). To this end we have to suppose
that the stabilizing term on the right-hand side dominates in some sense the per-
turbation term. In fact, if a(t) ≡ b(t)

∫ t
t−h λ, then every constant is a solution of

the equation, so the zero solution is not asymptotically stable.
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The parameters of the system are varying in time, so (1.1) is non-autonomous.
In the stability theory of the non-autonomous FDE’s

x′(t) = f(t, xt) (1.2)

it is typically supposed that f : [−h,∞) × C → R maps sets [−h,∞) × CH into
bounded sets of C (see, e.g., [4, Theorem 5.2.1]). If we apply theorems of this
type to (1.1), then we have to require boundedness on R+ also of function a (see
a similar situation in [4, equation (5.2.25)]). However, in the case of (1.1) this is
not a natural condition because, obviously, the larger a(t) is the better from the
point of view of the asymptotic stability. So we refine the techniques and allow only
conditions not requiring any boundedness type conditions from above of function
a.

Equation (1.1) is not only a model, it is also an important “test equation” in the
stability theory: authors often choose it as an example to illustrate their general
theorems on (1.2) [1, 2, 6, 14, 15]. In these applications the conditions on a, b, λ are
accorded with the requirements of the general theorems. In this article, equation
(1.1) is in the focus of the investigation, and we look for optimal conditions of
asymptotic stability finding the most adequate methods and techniques.

Equation (1.1) is linear, but we will not use the consequences of this fact deeply;
the results can be easily transformed for the more general equation

x′(t) = −a(t)f(x) + b(t)
∫ t

t−h
λ(s)g(x(s)) ds, 0 ≤ a(t), 0 (t ∈ R+)

treated in [2, Section 5]. The reason of the choice f(x) ≡ g(x) ≡ x is that the main
ideas can be demonstrated well by this special case so that the formulation of the
results is essentially simpler.

In Section 2 we give theorems based upon the combination of the method of
Lyapunov functionals [4, 1, 2] and the annulus argument [5]; in Section 3 we use
the Lyapunov-Razumikhin method [4, 9, 11, 12, 16, 17].

2. A Lyapunov functional

The following stability concepts are standard [1, 4].

Definition 2.1. The zero solution of (1.1) is:
(a) stable if for every ε > 0 and t0 ≥ 0 there is a δ(ε, t0) > 0 such that ‖ϕ‖ < δ,

t ≥ t0 imply that |x(t; t0, ϕ)| < ε.
(b) uniformly stable if for every ε > 0 there is a δ(ε) > 0 such that ‖ϕ‖ <

δ, t0 ≥ 0, t ≥ t0 imply that |x(t; t0, ϕ)| < ε.
(c) asymptotically stable if it is stable and for every t0 ≥ 0 there is a σ(t0) > 0

such that ‖ϕ‖ < σ implies limt→∞ x(t; t0, ϕ) = 0.
(d) uniformly asymptotically stable (UAS) if it is uniformly stable and there is

a D > 0 and for each µ > 0 there is a T (µ) such that t0 ∈ R+, ‖ϕ‖ < D,
t ≥ t0 + T imply that |x(t; t0, ϕ)| < µ.

It can be seen that the zero solution is stable if and only if all solutions are
bounded on R+, and it is asymptotically stable if and only if all solutions tend to
zero as t tends to infinity.

A continuous functional V : R+ × C → R+ which is locally Lipschitz in ϕ is
called a Lyapunov functional if its right derivative with respect to system (1.1) is
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non-positive:

V ′(1.1)(t, ϕ) = V ′(t, ϕ) := lim sup
δ→0+0

(1
δ

(
V (t+ δ, xt+δ(·, t, ϕ))− V (t, ϕ)

))
≤ 0.

We consider the functional

V1(t, ϕ) : = |ϕ(0)|+
∫ 0

−h

∫ 0

θ

|b(t+ ϑ− θ)| |λ(t+ ϑ)||ϕ(ϑ)|dϑ dθ

= V2(t, ϕ) + V3(t, ϕ), V2(t, ϕ) := |ϕ(0)|.
(2.1)

The following lemma says that V1 is a Lyapunov functional under appropriate
conditions.

Lemma 2.2. The derivative of the functional in (2.1) satisfies the inequality

V ′1(t, ϕ) ≤ −
(
a(t)− |λ(t)|

∫ t+h

t

|b|
)
|ϕ(0)| (t ∈ R+). (2.2)

Proof. Let us consider the solution t 7→ x(t) = x(t; t0, ϕ). If ϕ(0) 6= 0, then

V ′2(t0, ϕ) = sign(ϕ(0))x′(t0)

= −a(t0)|ϕ(0)|+ sign(ϕ(0))b(t0)
∫ t0

t0−h
λ(s)ϕ(s− t0) ds

≤ −a(t0)|ϕ(0)|+ |b(t0)|
∫ t0

t0−h
|λ(s)||ϕ(s− t0)|ds.

(2.3)

If ϕ(0) = 0, then

V ′2(t0, ϕ) = lim sup
δ→0+0

(1
δ

(|x(t0 + δ)| − |x(t0)|)
)

≤ lim sup
δ→0+0

∣∣x(t0 + δ)− x(t0)
δ

∣∣
= |x′(t0)| ≤ −a(t0)|ϕ(0)|+ |b(t0)|

∫ t0

t0−h
|λ(s)||ϕ(s− t0)|ds

(2.4)

because ϕ(0) = 0.
On the other hand,

V3(t, xt) =
∫ 0

−h

∫ t

t+θ

|b(s− θ)| |λ(s)||x(s)|dsdθ,

therefore,

V ′3(t0, ϕ)

= lim sup
δ→0+0

(1
δ

(∫ 0

−h

(∫ t0+δ

t0

|b(s− θ)||λ(s)||x(s)|ds

−
∫ t0+θ+δ

t0+θ

|b(s− θ)||λ(s)||x(s)|ds
)

dθ
))

= |λ(t0)|
(∫ 0

−h
|b(t0 − θ)|dθ

)
|ϕ(0)| − |b(t0)|

∫ t0

t0−h
|λ(s)||ϕ(s− t0)|ds.

From V ′1(t0, ϕ) ≤ V ′2(t0, ϕ) + V ′3(t0, ϕ) we obtain (2.2). �
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Lemma 2.2 suggests the first condition on the dominance of the negative feed-
back:

(A1) a(t)− |λ(t)|
∫ t+h
t
|b| ≥ 0 (t ∈ R+).

Lemma 2.3. If condition (A1) is satisfied, then the zero solution of (1.1) is stable.
If, in addition, (∫ t+h

t

|b|
)(∫ t

t−h
|λ|2

)1/2

≤ K1 (t ∈ R+) (2.5)

with some constant K1, then the zero solution is uniformly stable.

Proof. By Lemma 2.2 and condition (A1), for any solution x(·; t0, ϕ) the function
t 7→ V1(t, xt) is non-increasing. Since x(t) ≤ V1(t, xt), every solution is bounded,
which proves stability.

To prove uniform stability, let us estimate functional in (2.1):

V1(t, ϕ) = |ϕ(0)|+
∫ 0

−h
|λ(t+ ϑ)||ϕ(ϑ)|

(∫ ϑ

−h
|b(t+ ϑ− θ)|dθ

)
dϑ

≤ |ϕ(0)|+
(∫ t+h

t

|b|
)∫ 0

−h
|λ(t+ ϑ)||ϕ(ϑ)|dϑ

≤ |ϕ(0)|+
(∫ t+h

t

|b|
)(∫ t

t−h
|λ|2

)1/2(∫ 0

−h
|ϕ|2

)1/2

.

For arbitrarily fixed ε > 0 and t0 ∈ R+, let us define δ(ε) := ε/(1 + K1). If
‖xt0‖ < δ(ε), then

|xt| ≤ V1(t, xt) ≤ V1(t0, xt0) < ε (t ≥ t0)),

which proves uniformity. �

The following concept is widely used in stability theory of non-autonomous dif-
ferential equations [2, 7, 8, 9, 10, 13].

Definition 2.4. A locally integrable function η : R+ → R+ is called integrally
positive if for every δ > 0 the inequality

lim inf
t→∞

∫ t

t−δ
η > 0 (2.6)

holds.

Now we need this concept in a more general form.

Definition 2.5. Let η,M : R+ → R+ be locally integrable, and for any ν > 0
define

∆M (t, ν) := inf{τ > 0 :
∫ t

t−τ
M = ν}. (2.7)

Function η is called integrally positive with respect to M if for every ν > 0

lim inf
t→∞

∫ t

t−∆M (t,ν)

η > 0, (2.8)

i.e., for every ν > 0 there exists W (ν) > 0 and t∗(ν) such that if t > t∗(ν), then∫ t
t−∆M (t,ν)

η > W (ν).
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Remark 2.6. If M(t) ≡ c = const., then ∆M (t, ν) = ν/c, and η is integrally
positive with respect to M if and only if it is integrally positive. Furthermore, if
t 7→

∫ t
0
M is uniformly continuous, then for every ε > 0 there exists a δ(ε) > 0 such

that |t′ − t′′| < δ(ε) implies
∫ t′′
t′
M < ε, therefore ∆M (t, ν) ≥ δ(ν). Consequently,

integral positivity of η implies integral positivity of η with respect to M . It may
be also interesting that every function is integrally positive with respect to itself.
More generally, if η ≥ M , then ∆η(t, ν) ≤ ∆M (t, ν) for all t, from which it follows
that η is integrally positive with respect to M . Of course, the converse assertion is
not true.

The following lemma is based on the method of annulus argument [5].

Lemma 2.7. Suppose that condition (A1) is satisfied. If, in addition, either
M(t) := |b(t)|

∫ t
t−h |λ| is integrable on R+, or function η1(t) := a(t)− |λ(t)|

∫ t+h
t
|b|

is integrally positive with respect to M , then every solution of (1.1) has a finite
limit as t goes to infinity.

Proof. Suppose that the statement is not true, i.e., there exists a solution x having
no limit at infinity. We can suppose that |x(t)| ≤ 1 (t ≥ t0), so there exist 0 < ε1 <
ε2 and a sequence {ri, si}∞i=1 such that

r1 ≥ h ri < si < ri+1;

|x(ri)| = ε1, |x(si)| = ε2, ε1 ≤ |x(t)| ≤ ε2 (ri ≤ t ≤ si) (i ∈ N).

Using the notation v1(t) := V1(t, xt), v2(t) := V2(t, xt) = |x(t)| and inequalities
(2.2)–(2.4) we obtain the estimate

v′1(t) ≤ −v′2(t) +M(t). (2.9)

For every i there are two possibilities: (a)
∫ si

ri
M < (ε2 − ε1)/2, and (b)

∫ si

ri
M ≥

(ε2 − ε1)/2.
In case (a) we integrate (2.9) and get

v1(si)− v1(ri) ≤ −(ε2 − ε1) +
ε2 − ε1

2
= −ε2 − ε1

2
< 0.

In case (b) we have si − ri ≥ ∆M (si, (ε2 − ε1)/2), therefore, by (2.2) and (2.7)

v1(si)− v1(ri) ≤ −ε1

∫ si

ri

η1 ≤ −ε1

∫ si

si−∆M (si,(ε2−ε1)/2)

η1 ≤ −ε1W
(ε2 − ε1

2

)
,

provided that si > t∗(ε2 − ε1)/2). At least one of the last two inequalities is
satisfied for infinitely many i’s, which means that v1(t)→ −∞ as t→∞, but this
is a contradiction. �

Theorem 2.8. Suppose that condition (A1) is satisfied. If∫ ∞ (
a(t)− |λ(t)|

∫ t+h

t

|b|
)

dt =∞, (2.10)

and either M(t) := |b(t)|
∫ t
t−h |λ| is integrable on R+, or function η1(t) := a(t) −

|λ(t)|
∫ t+h
t
|b| is integrally positive with respect to M , then the zero solution of (1.1)

is asymptotically stable.
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If, in addition, conditions (2.5) and

lim
S→∞

∫ t+S

t

(
a(t)− |λ(t)|

∫ t+h

t

|b|
)

dt =∞ uniformly w.r.t. t ∈ R+ (2.11)

are assumed, then the zero solution of (1.1) is uniformly asymptotically stable.

Proof. Lemma 2.7 guaranties the existence of a finite limit for every solution of
(1.1). If this limit is not equal to zero for a solution x, then (2.2) and (2.10) imply
limt→∞ V1(t, xt) = −∞, which is a contradiction.

To proof UAS we start off uniform stability; remember that δ(ε) corresponds
to ε in this definition. Setting D = δ(1) and fixing µ > 0 we are looking for
T (µ) introduced in the definition of UAS. Let t0 ≥ 0, ϕ (‖ϕ‖ < δ(1)) be arbitrary.
According to the definition of uniform stability it is enough to proof that there
exists a T (µ) such that ‖xt0+R(·; t0, ϕ)‖ < δ(µ) for some R ∈ [t0, t0 + T (µ)]. If this
is not true, then there is a µ > 0 such that for every T there are t0, ϕ such that
‖xt0+R(·; t0, ϕ)‖ ≥ δ(µ) for all R ∈ [0, T ]. Let us choose a T arbitrarily and fix
such t0, ϕ to it. Then |x(t)|=|x(t; t0, ϕ)| takes a value not less than δ(µ) in every
subinterval of length h of the interval [t0, t0 + T ].

On the other hand, we can prove that |x| often takes values less than δ(µ)/2. In
fact, by (2.11) there exists T1(µ) such that∫ t+T1(µ)

t

η1 >
2(1 +K1)δ(1)

δ(µ)
(t ∈ R+).

If |x(t)| ≥ δ(µ)/2 on an interval [t′, t′′] ⊂ [t0, t0 + T ], then

−(1 +K1)δ(1) ≤ −v1(t0) ≤ v1(t′′)− v1(t′)

≤ −
∫ t′′

t′
η1(t)|x(t)|dt ≤ −δ(µ)

2

∫ t′′

t′
η1,

hence
∫ t′′
t′
η1 ≤ 2(1+K1)δ(1)/δ(µ). Therefore |t′′− t′| ≤ T1(µ), i.e., |x| takes values

less than δ(µ)/2 in every subinterval of length T1(µ) in the interval [t0, t0 + T ].
According to the latter two paragraphs there is a sequence {ri, si}Ni=1 such that

r1 ≥ t0, ri < si < ri+1, sN ≤ t0 + T ;

si − ri ≤ h, ri+1 − si ≤ T1(µ) + h;

|x(ri)| =
δ(µ)

2
, |x(si)| = δ(µ),

δ(µ)
2
≤ |x(t)| (ri ≤ t ≤ si).

(2.12)

If we suppose that N is the largest natural number with these properties, then
N →∞ as T →∞ because of (2.12). Integrating (2.9) and repeating the reasoning
after (2.9) in the proof of Lemma 2.7 we obtain that for every i (1 ≤ i ≤ N) either

v1(si)− v1(ri) ≤ −
δ(µ)

4
< 0

or

v1(si)− v1(ri) ≤ −
δ(µ)

2
W
(δ(µ)

4
)
< 0.

Therefore

−v1(t0) ≤ v1(sN )− v1(r1)

≤ −N δ(µ)
4

min
{

1;W
(δ(µ)

4
)}



EJDE-2016/302 ASYMPTOTIC STABILITY 7

→ −∞ (N →∞).

If T →∞, then N →∞, so T cannot be arbitrarily large, which is a contradiction.
�

Using Remark 2.6 we obtain the following corollary.

Corollary 2.9. Suppose that conditions (A1) and (2.5) are satisfied. If the func-
tion t 7→

∫ t
0
|b(u)|

∫ u
u−h |λ|du is uniformly continuous on R+, and t → a(t) −

|λ(t)|
∫ t+h
t
|b| is integrally positive, then the zero solution of (1.1) is uniformly

asymptotically stable.

In the following theorem we can weaken the condition of the integral positivity
requiring it only along a sequence {ti}.

Theorem 2.10. Suppose that (A1) holds and the following conditions are satisfied:
(i) there is a sequence {ti}∞i=1 (ti+1 − ti ≥ h) such that(∫ ti+h

ti

|b|
)(∫ ti

ti−h
|λ|2

)1/2

≤ K1 (i ∈ N) (2.13)

with some constant K1;
(ii) for every ε > 0 and for every sequence {si} (si ∈ [ti − h, ti]) there holds

∞∑
i=1

∫
max{ti−1;si−∆(si,ε)}

η1 =∞. (2.14)

Then the zero solution of (1.1) is asymptotically stable.
Suppose that, instead of (2.13) estimate (2.5) holds, and instead of (2.14),
(ii’) there are a sequence {ti}∞i=1 and a constant K2 (h ≤ ti+1 − ti ≤ K2) such

that for every ε > 0 there is a κ1(ε) > 0 with∫ t

t−∆M (t,ε)}
η1 ≥ κ1(ε) (t ∈ [ti − h, ti]); (2.15)

moreover there is a constant κ2 > 0 with

(iii’)
∫ ti−h
ti−1

η ≥ κ2 (i ∈ N).

Then the zero solution of (1.1) is uniformly asymptotically stable.

Proof. First we show that under conditions (i)-(ii) every solution x tends to zero as
t→∞. Since V1(ti, xti) ≤ (1+K1)‖xti‖, it is sufficient to prove lim infi→∞ ‖xti‖ =
0. If this is not true, then we may suppose without any loss of the generality that
‖xti‖ ≥ 3ε > 0 for all i ∈ N with some ε > 0. This means that there exists a
sequence {si ∈ [ti − h, ti]} having the properties v2(si) := |x(si)| ≥ 3ε. Then for
any i, either

(a) v2(t) ≥ ε in the interval [ti−1, si], or
(b) there exists ri ∈ [ti−1, si] such that v2(ri) = ε.

In case (a) we integrate (2.2) and obtain

v1(ti)− v1(ti−1) ≤ v1(si)− v1(ti−1) ≤ −ε
∫ si

ti−1

η1 ≤ −ε
∫ ti−h

ti−1

η1. (2.16)

In case (b) either we have
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(b/1) ∆M (si, ε) ≥ si − ri and

v1(ti)− v1(ti−1) ≤ v1(si)− v1(ri) ≤ −2ε+ ε = −ε < 0, (2.17)

or
(b/2) ∆M (si, ε) < si − ri, when

v1(ti)− v1(ti−1) ≤ −ε
∫ si

si−∆M (si,ε)

η1. (2.18)

If case (b/1) occurs infinitely many times, then limt→∞ v1(t) = −∞, which is a
contradiction. Otherwise, there is a natural number I such that for any i > I
either (a) or (b/2) is satisfied. Then from condition (2.14) we obtain

∑∞
i=I(v1(ti)−

v1(ti−1)) = −∞, which results in a contradiction again. This concludes the proof
of asymptotic stability.

Now turn to the proof of UAS. Conditions (A1) and (2.5) imply uniform stability;
let δ(ε) correspond to ε in the sense of the definition of this property. For t0 ∈ R+, ϕ
(‖ϕ‖ < 1/(1+K1)) we have v2(t) ≤ v1(t) ≤ 1 for all t ≥ t0. Let i0 denote the natural
number of the property ti0−1 < t0 ≤ ti0 . To prove UAS, for any µ > 0 we will show
the existence of an I(µ) ∈ N such that max{x(ti0+I(µ) + θ) : −h ≤ θ ≤ 0} < δ(µ).
Suppose that for a fixed µ > 0 such an index does not exists amongst i0, i0+1, . . . , i∗.
Then one of the possibilities (a), (b/1), (b/2) occurs for every i0 ≤ i ≤ i∗ with
ε := δ(µ)/3. By the estimates (2.16)-(2.18), now these cases have the consequences

(a) v1(ti)− v1(ti−1) ≤ −εκ2(ε);
(b/1) v1(ti)− v1(ti−1) ≤ −ε;
(b/2) v1(ti)− v1(ti−1) ≤ −εκ1(ε).

Consequently, there is a κ(ε) > 0 such that

−1 ≤ v1(ti∗)− v1(t0) ≤ v1(ti∗)− v1(ti0) ≤ −κ(ε)(i∗ − i0).

In other words, i∗ must not be arbitrarily large; namely, i∗ − i0 ≤ 1/κ(ε). This
means that the choice I(µ) := [1/κ(δ(µ)/3)] is appropriate, where [α] denotes the
fractional part of α ∈ R. �

Now we consider a modification of functional (2.1):

Vβ(t, ϕ) : = |ϕ(0)|+ β

∫ 0

−h

∫ 0

θ

|b(t+ ϑ− θ)||λ(t+ ϑ)||ϕ(ϑ)|dϑdθ

= V2(t, ϕ) + βV3(t, ϕ), V2(t, ϕ) := |ϕ(0)| (β > 1).
(2.19)

It is a consequence of Lemma 2.2 that

V ′β(t, ϕ) ≤ −
(
a(t)− β|λ(t)|

∫ t+h

t

|b|
)
|ϕ(0)|

− (β − 1)|b(t)|
∫ 0

−h
|λ(t+ θ)||ϕ(θ)|dθ (t ∈ R+).

(2.20)

To make Vβ non-increasing along the solutions of (1.1), we assume a stronger dom-
inance condition

(A2) a(t)− β|λ(t)|
∫ t+h
t
|b| ≥ 0 with some β > 1 (t ∈ R+).

This condition alone guaranties the existence of limits of solutions.

Lemma 2.11. Condition (A2) implies that every solution of (1.1) has a finite limit
as t goes to infinity.
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Proof. Suppose that the statement is not true, and consider a solution x and the
sequence {ri, si}∞i=1 with properties (2.8) from the proof of the analogous Lemma
2.7. By using (2.3), (2.4), and (2.20), for the function vβ(t) := Vβ(t, xt) we obtain
the inequality

v′β ≤ −(β − 1)v′2(t).

Integrating this inequality we obtain

vβ(si)− vβ(ri) ≤ −(β − 1)(ε2 − ε1) < 0 (i ∈ N),

which means that vβ(t)→ −∞ as t→∞, but this is a contradiction. �

Theorem 2.12. Suppose that (A2) is satisfied. If condition (2.10) also holds, then
the zero solution of (1.1) is asymptotically stable.

If, in addition, we assume (2.5) and (2.11), then the zero solution is uniformly
asymptotically stable.

Proof. We have to repeat the proof of Theorem 2.8 with the only modification that,
instead of (2.9), now we have v′β(t) ≤ −v′2(t). From this estimate it follows that

vβ(si)− vβ(ri) ≤ −
δ(µ)

2
(i = 1, 2, . . . , N).

Now this also implies limt→∞ vβ(t) = −∞, a contradiction. �

2.1. The case of λ(t) ≡ 1. Consider the equation

x′(t) = −a(t)x+ b(t)
∫ t

t−h
x(s) ds, a(t) ≥ 0 (t ∈ R+). (2.21)

This equation was investigated by Ting Xiu Wang in [15, pp. 849–853, Theorems
3.1 and 3.2], where he applied his abstract theorems from [14] and proved very useful
sufficient conditions for the asymptotic stability and uniform asymptotic stability
of the zero solution of (2.21). Our Theorem 2.8 becomes more comparable to these
results if we deduce a more explicit form of integral positivity for this special case.

Theorem 2.13. Suppose that condition (A1) with λ(t) ≡ 1 is satisfied. If∫ ∞ (
a(t)−

∫ t+h

t

|b|
)

dt =∞, (2.22)

and either |b| is integrable on R+, or t 7→
∫ t

0
|b| is uniformly continuous on R+ and

for every κ > 0 there exist γ(κ) > 0 and t∗∗(κ) such that

1
κ

∫ t+κ

t

a−
∫ t+κ+h

t

|b| ≥ γ(κ) (t ≥ t∗∗(κ)), (2.23)

then the zero solution of (2.21) is asymptotically stable.
If, in addition,

lim
S→∞

∫ t+S

t

(
a(t)−

∫ t+h

t

|b|
)

dt =∞ uniformly w.r.t. t ∈ R+, (2.24)

then the zero solution of (2.21) is uniformly asymptotically stable.
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Proof. The assertions follow from Theorem 2.8 if we prove that (2.23) is sufficient
for the integral positivity of t → a(t) −

∫ t+h
t
|b| with respect to |b|. Let ν > 0 be

arbitrarily fixed. Since t 7→
∫ t

0
|b| is uniformly continuous, there exists a δ(ν) > 0

such that ∆ = ∆|b|(t, ν) > δ(ν). Therefore, changing the order of the successive
integration and using (2.23) we obtain∫ t+∆

t

a−
∫ t+∆

t

∫ s+h

s

|b(u)|duds

≥
∫ t+∆

t

a−
∫ t+∆

t

∫ t+∆+h

t

|b(u)|duds

=
∫ t+∆

t

a−∆
∫ t+∆+h

t

|b|

= ∆
( 1

∆

∫ t+∆

t

a−
∫ t+∆+h

t

|b|
)

≥ δ(ν)γ(∆|b|(t, ν)) =: W (ν) > 0 for t ≥ t∗∗(∆|b|(t, ν)) =: t∗(ν),

which means the desired integral positivity. �

Parts of Wang’s results (Theorem 3.1 (a), Theorem 3.2 (a)) are consequences of
Theorems 2.8 and 2.12, another part are independent of our theorems. Theorem
2.13 does not require some key conditions of Wang’s theorem (for example, function
t→ a(t)−

∫ t+h
t
|b| is non-decreasing).

3. Lyapunov-Razumikhin method

This method uses functions V : R+ × R → R+ instead of functionals V : R+ ×
C → R+. For example, if we define the function V (ϕ(0)) := |ϕ(0)| (ϕ ∈ C) to
equation (1.1), then, by (2.3) and (2.4), the derivative of V with respect to (1.1)
allows the estimate

V ′(t, ϕ) ≤ −a(t)|ϕ(0)|+ |b(t)|
∫ t

t−h
|λ(s)||ϕ(s− t)|ds. (3.1)

In the Lyapunov-Razumikhin method function V is called a Lyapunov function if

V ′(t, ϕ) ≤ 0, provided that V (t+ θ, ϕ(θ)) ≤ V (t, ϕ(0)) (−h ≤ θ ≤ 0). (3.2)

So V (ϕ(0)) := |ϕ(0)| will be a Lyapunov function to (1.1) if we require

(A3) a(t)− |b(t)|
∫ t
t−h |λ| ≥ 0 (t ∈ R+),

which is a new dominance condition to equation (1.1). The following lemma can
be proved easily (see, e.g., [4, Theorem 5.4.1]).

Lemma 3.1. If (A3) is satisfied, and x is a solution of (1.1), then the functional
V (t, xt) := sup{V (x(t + θ)) : −h ≤ θ ≤ 0} is non-increasing in R+, and the zero
solution of (1.1) is uniformly stable.

This lemma shows that the Lyapunov-Razumikhin method can be very effec-
tive: the dominance condition (A3) alone guaranties uniform stability without any
boundedness condition of type (2.5).

Lemma 3.2. If
(A4) a(t)− β|b(t)|

∫ t
t−h |λ| ≥ 0 (t ∈ R+) with some constant β > 1,
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then every solution has a finite limit as t appraoches infinity.

Proof. Expression (3.1) and condition (A4) imply that

V ′(t, ϕ) ≤ −
(
a(t)− β|b(t)|

∫ t

t−h
|λ|
)
|ϕ(0)| ≤ 0, (3.3)

provided that V (ϕ(θ)) ≤ βV (ϕ(0)) (−h ≤ θ ≤ 0).
For an arbitrary solution x introduce the notation

v(t) := V (x(t)) = |x(t)|, v(t) := sup{v(t+ θ) : −h ≤ θ ≤ 0},
v0 := lim

t→∞
v(t). (3.4)

For any ε > 0 there is t∗(ε) such that t > t∗(ε) implies v0 ≤ v(t) < v0 + ε. If x has
no limit, then x(t) 6→ v0, and there are ε (0 < ε < v0(β − 1)/(β + 1)) and r, s with
the properties

t∗(ε) < r < s, v(r) = v0 − ε, v(s) = v0, v0 − ε ≤ v(t) ≤ v0

if r ≤ t ≤ s. Therefore, if r ≤ t ≤ s, then

βv(t) > β(v0 − ε) > v0 + ε > v(t+ θ) (−h ≤ θ ≤ 0), (3.5)

hence v′(t) ≤ 0, which is a contradiction. �

Theorem 3.3. If (A4) is satisfied, and∫ ∞ (
a(t)− β|b(t)|

∫ t

t−h
|λ|
)

dt =∞, (3.6)

then the zero solution of (1.1) is asymptotically stable.

Proof. If x is an arbitrary solution, then, by Lemma 3.2, limt→∞ |x(t)| = v0. We
have to show that v0 = 0. Suppose the contrary, i.e., v0 > 0. Then for every ε
(0 < ε < v0(β − 1)/(β + 1)) there is a t∗(ε) such that (3.5) holds for all t > t∗(ε).
Consequently, (3.3) yields

v′(t) ≤ −η4(t)(v0 − ε) η4(t) := a(t)− β|b(t)|
∫ t

t−h
|λ|,

v(t)− v(t∗) ≤ −(v0 − ε)
∫ t

t∗

η4 → −∞ (t→∞),

a contradiction. �

Theorem 3.4. If (A4) is satisfied and

lim
S→∞

∫ t+S

t

(
a(t)− β|b(t)|

∫ t

t−h
|λ|
)

dt =∞ uniformly w.r.t. t ∈ R+, (3.7)

then the zero solution is uniformly asymptotically stable.

Proof. Let δ(ε) belong to ε in the sense of uniform stability and let t0 ≥ 0, ϕ
(‖ϕ‖ < δ(1)) be arbitrary. It is sufficient to prove that for every µ > 0 there exists
a T (µ) such that ‖xt0+T (µ)(·; t0, ϕ)‖ < δ(µ).

Given µ > 0 introduce some notation. Let N = N(µ) denote the smallest natural
number for which 1/βN < δ(µ) holds. Condition (3.7) guaranties the existence of
an S∗(µ) such that∫ t+S∗(µ)

t

η4 > (β − 1)βN−1, η4(t) := a(t)− β|b(t)|
∫ t

t−h
|λ|. (3.8)
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Finally, set ti := t0 + i(S∗(µ) + h) (i = 1, 2, . . . , N).
We state that

if t > ti − h, then v(t) := |x(t)| ≤ 1
βi

for i = 0, 1, . . . , N. (3.9)

In fact, the assertion is true for i = 0. Using the method of the mathematical
induction, we assume that the assertion is true for some i (0 ≤ i < N) and prove
that it is also true for i+ 1.

If t ≥ ti and v(t) ≥ 1/βi+1, then

βv(t) ≥ 1
βi
≥ v(t+ θ) (−h ≤ θ ≤ 0),

hence, by (A4), we have
v′(t) ≤ −η4(t)v(t) ≤ 0.

This means that if s > ti and v(s) ≤ 1/βi+1, then v(s+ τ) ≤ 1/βi+1 for all τ ≥ 0.
Therefore, if t ≥ ti, v(t) > 1/βi+1, then v(s) > 1/βi+1 for s ∈ [ti, t] and

v′(s) ≤ −η4(s)v(s) ≤ − 1
βi+1

η4(s) ≤ − 1
βN

η4(s).

Consequently, if t ≥ ti + S∗(µ) and v(t) > 1/βi+1, then

v(t)− v(ti) ≤ −
1
βN

∫ ti+S∗(µ)

ti

η4 < −
1
βN

(β − 1)βN−1 = −(1− 1
β

).

On the other hand,

v(t)− v(ti) ≥
1

βi+1
− 1
βi

= − 1
βi

(1− 1
β

) ≥ −(1− 1
β

),

which is a contradiction. Consequently, if we define ti+1 := ti + S∗(µ) + h, and if
t > ti+1 − h, then v(t) ≤ 1/βi+1, i.e., assertion (3.9) is true for i + 1. By the rule
of the mathematical induction, assertion (3.9) is true for i = N . In other words,
if t > tN , then v(t) ≤ 1/βN < δ(µ). So the definition T (µ) := N(µ)(S∗(µ) + h)
completes the proof. �

In some applications it may happen that dominance condition (A4) is not sat-
isfied with a uniform (independent of t) coefficient β > 1, but it is satisfied with
β(t) ≥ 1. The remaining part of the section is devoted to this situation. Suppose
that

(A5) a(t)− β(t)|b(t)|
∫ t
t−h |λ| ≥ 0 (t ∈ R+) with some piecewise continuous func-

tion β : R+ → [1,∞).
This condition and (3.1) imply

V ′(t, ϕ) ≤ −
(
a(t)− β(t)|b(t)|

∫ t

t−h
|λ|
)
|ϕ(0)| ≤ 0, (3.10)

provided that V (ϕ(θ)) ≤ β(t)V (ϕ(0)) (−h ≤ θ ≤ 0) instead of (3.3).
Now we import two lemmas from Kato [9], in which he transformed estimate

(3.10) into a comparison statement. Let U : R+ × R → R be measurable with
respect to the first variable and locally Lipschitz with respect to the second one,
and denote by u(·; t∗, α) : [t∗ − h,∞)→ R the solution of the initial value problem

u′ = U(t, u), u(t∗) = α. (3.11)
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If v : [t0 − h,∞)→ R (t0 ≥ 0) is a continuous function, then define

v′(t) := lim sup
δ→0+0

(1
δ

(v(t+ δ)− v(t))
)
.

Lemma 3.5 ([9, Lemma 1]). Suppose that

v′(t) ≤ U(t, v(t)) if t ≥ t∗ and

v(t+ θ) ≤ u(t+ θ; t, v(t)) (−h ≤ θ ≤ 0).
(3.12)

Then
v(t) ≤ u(t; t∗, α) (t ≥ t∗),

provided that v(t∗ + θ) ≤ u(t∗ + θ; t∗, α) (−h ≤ θ ≤ 0).

As a consequence of (3.10), from [9, Lemma 2] we obtain the following lemma.

Lemma 3.6. If (A5) is satisfied, then there exists a function U : R+ × R+ → R−
such that for every solution x of (1.1) the function v(t) := |x(t)| satisfies the
differential inequality (3.12) with t∗ = t0. Namely, the choice

U(t, u) := −min
{ 1

3h
;

2
3h

min{β(t+ τ)− 1 : 0 ≤ τ ≤ h}; η5(t)
}
u

(u > 0)
(
η5(t) := a(t)− β(t)|b(t)|

∫ t

t−h
|λ| ≥ 0

) (3.13)

is appropriate.

Theorem 3.7. Suppose that (A5) is satisfied. If∫ ∞
γ =∞ (3.14)(

γ(t) := min
{

1; min{β(t+ τ) : 0 ≤ τ ≤ h} − 1; a(t)− β(t)|b(t)|
∫ t

t−h
|λ|
})
,

then the zero solution of (1.1) is asymptotically stable. If

lim
S→∞

∫ t+S

t

γ =∞ uniformly w.r.t. t ∈ R+, (3.15)

then the zero solution of (1.1) is uniformly asymptotically stable.

Proof. If U(t, u) = −Γ(t)u (Γ(t) ≥ 0) in (3.13), then the solution of the initial value
problem (3.11) is

u(t; t∗, α) = α exp
[
−
∫ t

t∗

Γ
]
.

It is easy to see that for arbitrary measurable functions A,B : R+ → R+ the
divergence ∫ ∞

min{A(t);B(t)} dt =∞

is true if and only if ∫ ∞
min{A(t); qB(t)} dt =∞

holds for all q > 0. Therefore (3.14) implies limt→∞ u(t; t∗, α) = 0 for all t∗, α.
For arbitrary t0, ϕ, applying Lemma 3.5 to v(t) = |x(t; t0, ϕ)| with t∗ = t0, α =

‖ϕ‖ we obtain |x(t; t0, ϕ)| ≤ u(t; t0, ‖ϕ‖) → 0 if t → ∞, which proves asymptotic
stability.
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For UAS, take δ(1) > 0 from the definition of the uniform stability. To prove
UAS we have to show that for every µ > 0 there is a T (µ) such that [t0 ∈ R+,
‖ϕ‖ < δ(1), t ≥ t0 + T (µ)] imply |x(t; t0, ϕ)| < µ. We show that the choice of T (µ)
with the properties ∫ t0+T (µ)

t0

γ > ln
δ(1)
µ

is appropriate. In fact, by Lemma 3.5 we have

|x(t; t0, ϕ)| ≤ u(t; t0, ‖ϕ‖) ≤ u(t0 + T (µ); t0, δ(1))

≤ δ(1) exp
[
−
∫ t0+T (µ)

t0

γ
]
< δ(1) exp

[
− ln

δ(1)
µ

]
= µ.

(3.16)

�

4. Examples

Example 4.1. Let a sequence {ti}∞i=1 and a number δ (0 < δ < h, ti+1 ≥ ti +
(2h+ δ)) be given and define the functions

a(t) :≡ 1; b(t) :=

{
0 if ti ≤ t < ti + δ,
1
h otherwise;

λ(t) :≡ 1 (4.1)

for the coefficients in (1.1).
The zero solution of equation (1.1) with coefficients (4.1) is asymptotically stable.

If there is a constant K2 such that ti+1 − ti ≤ K2, then the asymptotic stability is
uniform.

Define ti := ti + δ and apply Theorem 2.10. It is easy to see that η1(t) =
a(t)−

∫ t+h
t
|b| and M(t) = h|b(t)| have the properties

∆M (t, ε) ≥ ε (t ∈ R+),∫ t

t−∆M (t,ε)

η1 ≥
ε2

2h
=: κ1(ε) if t ∈ [ti − h, ti];∫ ti+1−h

ti

η1 ≥
δ2

h
=: κ2 (i ∈ N),

from which the assertion follows.
Interpreting the result we can say that if sometimes the delayed perturbation

underacts with respect to the balance a = hb for an arbitrarily short time, then the
instantaneous stabilizer can stabilize the equilibrium.

It may be noticed that the other results of this paper and Wang’s theorems
[14, 15] cannot be applied to this example. The same can be noticed also in the
cases of the further examples.

Example 4.2. For a given sequence {pi}∞i=1 (0 < pi ≤ 1) let us define the coeffi-
cients

a(t) :=

{
1 if (2i− 2)h ≤ t < (2i− 1)h,
0 otherwise;

b(t) :=

{
pi

h if (2i− 2)h ≤ t < (2i− 1)h,
0 otherwise

(i ∈ N); λ(t) :≡ 1.

(4.2)
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If

lim
I→∞

( i∗+I∑
i=i∗

(1− pi)
)

=∞ (i∗ ∈ N), (4.3)

then the zero solution of (1.1) with coefficients (4.2) is asymptotically sable. If the
divergence in (4.3) is uniform with respect to i∗ ∈ N, then the asymptotic stability
is uniform.

We apply Theorem 3.7. Define

β(t) :=

{
1
2 (1 + 1

pi
) if (2i− 2)h ≤ t < (2i− 1)h,

2 otherwise.
(4.4)

According to definitions (4.2) and (4.4), we have

a(t)− β(t)|b(t)|
∫ t

t−h
|λ| =

{
1
2 (1− pi) if (2i− 2)h ≤ t < (2i− 1)h,
0 otherwise;

β(t) := min{β(t+ τ) : 0 ≤ τ ≤ h} =

{
1
2 (1 + 1

pi
) if pi ≥ 1

3 ,

2 if pi < 1
3

for (2i− 2)h ≤ t < 2i, whence for γ(t) in (3.14) we obtain

γ(t) =

{
1
2 (1− pi) if (2i− 2)h ≤ t < (2i− 1)h,
0 otherwise.

Now the assertion is a corollary of Theorem 3.7.

Example 4.3. For a given α > 1 let us define the functions

a(t) := α(t+
h

2
); b(t) :=

t

h
; λ(t) := 1 (t ∈ R+). (4.5)

The zero solution of (1.1) with coefficients (4.5) is asymptotically sable.
We have η1(t) := a(t)−

∫ t+h
t
|b| = (α− 1)(t+ h/2) and a(t)− α

∫ t+h
t
|b| ≡ 0, so

Theorem 2.12 can be applied.
Let us modify the definition of λ so that

λ(t) :=

{
α if i ≤ t ≤ i+ 1

i2 ,

1 otherwise,
(i ∈ N); M(t) := |b(t)|

∫ t

t−h
|λ| ≤ αt.

Then we have

η1(t) := a(t)− |λ(t)|
∫ t+h

t

|b| =

{
0 if i ≤ t ≤ i+ 1

i2 ,

(α− 1)(t+ h
2 ) otherwise,

and ∆M (t, ν) ≥ ν/(2αt). Applying Theorem 2.8 we obtain that the assertion
remains true. Obviously Theorem 2.12 cannot be applied.
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