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BOUNDARY-VALUE PROBLEMS WITH INTEGRAL
CONDITIONS FOR A SYSTEM OF LAMÉ EQUATIONS IN THE

SPACE OF ALMOST PERIODIC FUNCTIONS

VOLODYMYR S. IL’KIV, ZINOVII M. NYTREBYCH, PETRO YA. PUKACH

Abstract. We study a problem with integral boundary conditions in the time

coordinate for a system of Lamé equations of dynamic elasticity theory of

an arbitrary dimension. We find necessary and sufficient conditions for the
existence and uniqueness of solution in the class of almost periodic functions

in the spatial variables. To solve the problem of small denominators arising
while constructing solutions, we use the metric approach.

1. Introduction

Many physical, biological and other processes can be described using problems
with nonlocal conditions for partial differential equations. As a particular case of
such conditions, there are integral conditions, which may be interpreted as mea-
suring the solution’s mean values (local conditions are interpreted as measuring at
certain points).

Problems with integral conditions for partial differential equations have been
studied by many research; see the references in this article and their references.
Generally speaking, such problems are ill-posed in the sense of Hadamard, and their
solvability in corresponding spaces of functions is connected with lower estimates
of small denominators with complex nonlinear structure [8, 15].

The problem of finding almost periodic solutions in spatial coordinates for the
system of equations of dynamic elasticity theory with conditions in time variable
that are linear combinations of moment-type integral conditions and local boundary
conditions on the time interval [0, T ], was studied in [7, 12, 17]. The Cauchy problem
for this system was investigated in [10, 14].

In this article, we study the problem with integral boundary conditions in the
time variable on [0, T ] for generalized systems of Lamé equations in almost periodic
function spaces.

The problem statement is made in the first section of the paper. In the second
one, we distinguish two specific cases of the problem and give appropriate formal
solutions. In the third and fourth sections, we establish the solvability conditions of
the problem for each of the two cases. The paper is finalized by giving a conclusions
section.
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Problem statement. In this section, we introduce the domain in which we con-
sider the problem, the system of partial differential equations (Lamé system) and
the integral boundary conditions, as well as the spaces of almost periodic functions
and the definition of solution.

In the domain Q = [0, T ]× Rp, p ∈ N, T > 0 of variables (t, x) = (t, x1, . . . , xp),
we consider the problem of finding an almost periodic (in vector variable x) solution
with the spectrum

M = {µk = (µk1, . . . , µkp) ∈ Rp : k ∈ Zp}

of the system of partial differential equations

σ∂2
t u = µ∗∂x∂

†
xu+ (λ∗ + µ∗)∂†x∂xu, (1.1)

which on the interval [0, T ] satisfies the integral boundary conditions

α1u(0, x) + β1

∫ T

0

r1
t u(t, x) dt = ϕ1(x),

α2u(T, x) + β2

∫ T

0

r2
t u(t, x) dt = ϕ2(x),

(1.2)

where x = (x1, . . . , xp) ∈ Rp, ∂x =
(
∂
∂x1

, . . . , ∂
∂xp

)
, ∂t = ∂

∂t and
r
t = tr

r! ; the system
parameters σ, λ∗, µ∗ are positive numbers, ~α = (α1, α2), the vector parameters
~β = (β1, β2) from conditions (1.2) are complex, and vector parameter ~r = (r1, r2) is
integer-valued, in particular, |α1|2 + |β1|2 > 0, |α2|2 + |β2|2 > 0, r1 ≥ 0, r2 ≥ 0, and
† is the transposition operation. The given functions ϕ1 and ϕ2 and the desired
solution u are p-dimensional vectors.

When p = 3, system (1.1) is called the Lamé system [13, 14], which describes
the stress state of an isotropic homogeneous elastic solid in displacements, where σ
is the medium density, λ∗, µ∗ are the Lamé coefficients, t and x are the time and
spatial point respectively.

If ~β = 0, then the functions ϕ1 and ϕ2 in conditions (1.2) can be considered as
the results of the function u = u(t, ·) measurements at the [0, T ] interval extreme
points (left and right). In the opposite case, the measurements at specified points
are supplemented with integral measurements of the r1- and r2-order moments
of function u through the whole interval [0, T ]. Moreover, if ~α = 0, then point
measurements are not conducted.

The solution of problem (1.1), (1.2) is being searched as a function of variable
t, with values in the scale {Hq

M}q∈R of Hilbert spaces Hq
M of almost periodic with

spectrum M functions [14], obtained by the completion of the set HM of trigono-
metric vector polynomials of the form

v(x) =
∑

vk exp (iµk, x) ≡
∑

vk exp (iµk1x1 + · · ·+ iµkpxp),

by the norm

‖v;Hα
M‖ =

( ∑
k∈Zp

‖vk‖2
(
1 + ‖µk‖2

)α)1/2

,

where µk = (µk1, . . . , µkp) ∈ M , ‖ · ‖ is the Euclid norm. The embedding HM ⊂
Hq
M ⊂ H ′M , where H ′M is the adjoint space to HM , is continuous for all q ∈ R.
Let us impose on the spectrum M of almost periodic functions from the scale of

spaces Hα
M , the condition of distinctness of the spectrum elements (µk̃ 6= µ˜̃

k
when
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k̃ 6= ˜̃
k) and also the increase condition

d1‖k‖θ1 ≤ ‖µk‖ ≤ d2‖k‖θ2 (1.3)

with real parameters ~d = (d1, d2) and ~θ = (θ1, θ2), where 0 < d1 ≤ d2, 0 < θ1 ≤ θ2
(therefore µ0 = 0).

Let us denote by H2,α
M the space of functions u = u(t, x) such that ∂jt u ∈

C([0, T ];Hα−j
M ), and assume that

‖u;H2,α
M ‖

2 =
2∑
j=0

‖∂jt u; C([0, T ];Hα−j
M )‖2.

Definition 1.1. A function u from the space H2,q
M , where q ∈ R, which satisfies

on the interval (0, T ) equation (1.1) and conditions (1.2) in the space H ′M , is called
the solution of problem (1.1), (1.2).

Definition 1.1 implies that ϕ1 ∈ Hq
M and ϕ2 ∈ Hq

M are the necessary conditions
for the existence of a solution u of problem (1.1), (1.2) in the space H2,q

M , and, in
particular

‖ϕj ;Hq
M‖

2 ≤ 2
(
|αj |2 + |βj |2

r1+1

T
)
‖u;H2,q

M ‖
2, j = 1, 2.

Definition 1.2. If there exist such real numbers q and q′ so that for two arbitrary
functions ϕ1 and ϕ2 from the space Hq′

M there is a unique solution for the problem
(1.1), (1.2) in the space H2,q

M , then this problem is called uniquely solvable.

The necessary conditions imply that q ≤ q′ in definition 1.2.

2. Solution formulas

In this section, we introduce the denotations for moments of imaginary exponent,
present the solution of problem (1.1), (1.2) with necessary and sufficient conditions
of its solvability, and also distinguish two specific cases in conditions (1.2). Let us
denote I±(−1) ≡ I±(−1, γ) = 1, and also

I+(r) ≡ I+(r, γ) =
∫ T

0

r
teiγt dt, I−(r) ≡ I−(r, γ) =

∫ T

0

r
te−iγt dt, (2.1)

It,+(r) = 2 Re
[
eiγtI−(r)

]
, It,−(r) = 2i Im

[
eiγtI−(r)

]
, (2.2)

I+(~r) = 2 Re
[
I+(r1)I−(r2)

]
, I−(~r) = 2i Im

[
I+(r1)I−(r2)

]
, (2.3)

where r, r1, r2 are positive integers, ~r = (r1, r2) and γ is a positive parameter.
The solution of problem (1.1), (1.2) was found in [15] in the form

u =
∑
k∈Zp

ei(µk,x)
2∑
j=1

(gj(t, γ0‖µk‖)
∆(γ0‖µk‖)

Π0
k +

gj(t, γ1‖µk‖)
∆(γ1‖µk‖)

Π1
k

)
ϕjk, (2.4)

where Π1
k = µ†kµk

‖µk‖2 and Π0
k = Ip−Π1

k are the projection operators on one-dimensional
space induced by the vector µk, and on its complement in the space Rp respectively,
0 < γ2

0 ≡ µ∗/σ < γ2
1 ≡ (λ∗ + 2µ∗)/σ,

∆(0) = α1α2T + α1β2(r2 + 1)
r2+2

T + α2β1

r1+2

T + β1β2
r2 − r1
T

r1+2

T
r2+2

T , (2.5)
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∆(γ) = −2iα1α2 sin γT + α1β2I0,−(r2)− α2β1IT,−(r1) + β1β2I−(~r), γ > 0,
(2.6)

g1(t, 0) = α2(T − t) + β2

r2+1

T
(r2 + 1
r2 + 2

T − t
)
, (2.7)

g2(t, 0) = α1t− β1

r1+1

T
(r1 + 1
r1 + 2

T − t
)
, (2.8)

g1(t, γ) = 2iα2 sin γ(t− T ) + β2It,−(r2), γ > 0, (2.9)

g2(t, γ) = −2iα1 sin γt− β1It,−(r1), γ > 0. (2.10)

For the unique solvability of problem (1.1), (1.2), it is necessary and sufficient
[7, Theorem 1] that, for all k ∈ Zp the estimate below holds:∣∣∆(γl‖µk‖)

∣∣ ≥ C0l(1 + ‖µk‖2)−q0/2, (2.11)

where q0 ≥ 0, C0l > 0 for l = 1, 2.
Such estimate is established in when α1α2 6= 0 [7, Theorem 2] and in case when

α1 = α2 = 0 [7, Theorems 3-5]. The other two cases:
Case (1) α1 = 0, α2β1 6= 0 and
Case (2) α2 = 0, α1β2 6= 0 are investigated in this article.

In case (1), conditions (1.2) take the form

∫ T

0

r1
t u(t, x) dt = ϕ0

1(x), u(T, x) + β0
2

∫ T

0

r2
t u(t, x) dt = ϕ0

2(x),

and formulas (2.4)–(2.10) are transformed into:

u =
∑
k∈Zp

ei(µk,x)
1∑
l=0

(g1(t, γl‖µk‖)
∆(γl‖µk‖)

Πl
kϕ

0
1k +

g2(t, γl‖µk‖)
∆(γl‖µk‖)

Πl
kϕ

0
2k

)
,

ϕ0
1k =

ϕ1k

β1
, ϕ0

2k =
ϕ2k

α2
,

(2.12)

∆(0) =
r1+2

T + β0
2

r2 − r1
T

r1+2

T
r2+2

T , ∆(γ) = −IT,−(r1) + β0
2I−(~r),

γ > 0, β0
2 =

β2

α2
,

(2.13)

g1(t, 0) = T − t+ β0
2

r2+1

T
(r2 + 1
r2 + 2

T − t
)
, g2(t, 0) = −

r1+1

T
(r1 + 1
r1 + 2

T − t
)
, (2.14)

g1(t, γ) = 2i sin γ(t− T ) + β0
2It,−(r2), g2(t, γ) = −It,−(r1), γ > 0. (2.15)

The first condition from (1.2) indicates the measurement of the solution’s mo-
ment, and the second indicates the measurement at the point T , which, in the case
of β0

2 6= 0 is complemented with the moment measurement.
In the case (2) one can obtain the formulas

u(0, x) + β0
1

∫ T

0

r1
t u(t, x) dt = ϕ0

1(x),
∫ T

0

r2
t u(t, x) dt = ϕ0

2(x)



EJDE-2016/304 BOUNDARY-VALUE PROBLEMS WITH INTEGRAL CONDITIONS 5

for the conditions (1.2). For the solution is

u =
∑
k∈Zp

ei(µk,x)
1∑
l=0

(g1(t, γl‖µk‖)
∆(γl‖µk‖)

Πl
kϕ

0
1k +

g2(t, γl‖µk‖)
∆(γl‖µk‖)

Πl
kϕ

0
2k

)
,

ϕ0
1k =

ϕ1k

α1
, ϕ0

2k =
ϕ2k

β2
,

(2.16)

∆(0) = (r2 + 1)
r2+2

T + β0
1

r2 − r1
T

r1+2

T
r2+2

T , ∆(γ) = I0,−(r2) + β0
1I−(~r),

γ > 0, β0
1 =

β1

α1
,

(2.17)

g1(t, 0) =
r2+1

T
(r2 + 1
r2 + 2

T − t
)
, g2(t, 0) = t− β0

1

r1+1

T
(r1 + 1
r1 + 2

T − t
)
, (2.18)

g1(t, γ) = It,−(r2), g2(t, γ) = −2i sin γt− β0
1It,−(r1), γ > 0. (2.19)

Herein, the second condition from (1.2) means the measurement of the solution’s
moment, and the first one means the measurement at the point 0, which, in the
case of β0

1 6= 0 is also complemented with the moment measurement.
We also denote the function ζ(q) =

∑
k∈Zp(1 + ‖µ‖2)−q/2, the number γ′ =√

1 + γ2
0 + γ2

1 , and the π(τ)-dimensional projection operator Πτ for τ ≥ 0, which
is defined by the formula Πτϕ =

∑
‖µk‖<τ ϕke

i(µk,x), where

ϕ = ϕ(x) =
∑
k∈Zp

ϕke
i(µk,x)

and π(τ) is the quantity of the solutions in integers k1, . . . , kp of the inequality
‖µk‖ < τ .

3. Solvability conditions for case (1)

In this section, we investigate the first case for r1 ≥ 1 and r1 = 0 separately.
We prove that the solvability of the problem in the scale of spaces {Hα

M}α∈R for all
T ∈ [T0, T1] (excluding a finite number of points) when r1 ≥ 1. Providing r1 = 0,
namely the measurement of the function mean value, the problem is ill-posed in
the sense of Hadamard, and its solvability highly depends on the estimate of the
present small denominators.

Theorem 3.1. Let α1 = 0 (therefore, α2β1 6= 0), and ϕ1 ∈ Hq+1
M , ϕ2 ∈ Hq

M be
given functions. If the condition r1 ≥ 1 is satisfied, then the null space of problem
(1.1), (1.2) belongs to the space Πτ∗1

C2([0, T ];HM ). This space consists of almost
periodic polynomials, and there exists a set T0 such that [T0, T1] \ T0 is a finite set.
Also for all T ∈ T0 there exists the unique solution (2.16) of problem (1.1), (1.2) in
the space H2,q

M , for which the following inequality holds

‖(I −Πτ1)u;H2,q
M ‖

2

≤ 2
( C2

11

|β1|2
‖(I −Πτ1)ϕ1;Hq+1

M ‖2 +
C2

12

|α2|2
‖(I −Πτ1)ϕ2;Hq

M‖
2
)
,

(3.1)

where

τ1 = τ1(T ) =
4
γ0

(r1
T

+ 2|β0
2 |
r2
T
)
, τ∗1 = max

(
τ1(T0), τ1(T1)

)
,
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C11 = 3γ1γ
′/
r1
T , C12 = 4γ′

r2
T/

r1
T .

Proof. It follows from (2.13), (2.15) and the formula I±(r) = ±i
γ

(
I±(r − 1) −

r

Te±iγT
)

that

∆(γ) = −2i
γ

r1
T +

2i
γ

Re
[
eiγTI−(r1 − 1)

]
+ β0

2I−(~r),

g
(α)
1 (t, γ) = (iγ)α

(
It−T,(−1)α+1

(−1) + β0
2It,(−1)α+1

(r2)
)
,

g
(α)
2 (t, γ) = −(iγ)αIt,(−1)α+1

(r1).

Taking into account the estimates |It,±(−1)| ≤ 2, |It,±(r)| ≤ 4
γ

r

T , |I−(~r)| ≤ 8
γ2

r1
T
r1
T

from [15, pages 32-33], where t ∈ [0, T ], r ≥ 0, provided γ ≥ 4
(
r1
T + 2|β0

2 |
r2
T
)
> 0,

the following inequalities are given

max
t∈[0,T ]

|g(α)
1 (t, γ)| ≤ γα

(∣∣It−T,(−1)α+1
(−1)

∣∣+ |β0
2 |
∣∣It,(−1)α+1

(r2)
∣∣) ≤ 3γα, (3.2)

max
t∈[0,T ]

|g(α)
2 (t, γ)| ≤ 4

r1
Tγα−1, (3.3)

|∆(γ)| ≥ 2
γ

r1
T − 2

γ

∣∣I−(r1 − 1)
∣∣− |β0

2 |
∣∣I−(~r)

∣∣ ≥ 1
γ

r1
T > 0. (3.4)

The inequalities (3.4) imply that for a given T ∈ [T0, T1] the possible elements
of the null space of problem (1.1), (1.2) belong to the π(τ∗1 )-dimentional space
Πτ∗1

C2([0, T ];HM ), and the null space is trivial for those T ∈ [T0, T1] which are
not in the set of roots (finite, considering the multiplicities) of the finite number of
equations ∆(γ0‖µk‖)∆(γ1‖µk‖) = 0, where ‖µk‖ < τ∗1 .

Let us denote the set of such T points as T0. The solution of problem (1.1),
(1.2) exists for all T ∈ T0 in the form u = Πτ1u + (I − Πτ1)u where Πτ1u is an
almost periodic polynomial, and the estimate of the second term follows from the
estimates (3.2), (3.4) and the formula (2.12), which induces the obvious inequality

‖(I −Πτ )u;H2,q
M ‖

2

≤ 2
∑
‖µk‖<τ

2∑
j=1

( 2∑
α=0

max
l=0,1

∣∣∣g(α)
j (t, γl‖µk‖)
∆(γl‖µk‖)

∣∣∣2(1 + ‖µk‖2
)q−α)‖ϕ0

jk‖2,
(3.5)

for τ ≥ 0. This completes the proof. �

With the conditions of Theorem 3.1, problem (1.1), (1.2) is also solvable for
[T0, T1] \ T0, if the functions ϕ1 and ϕ2 satisfy a finite number of orthogonality
conditions (orthogonal to the elements of null space of the problem). In case when
r1 = 0, the solvability conditions of problem (1.1), (1.2) require more smooth
functions ϕ1 and ϕ2 and the narrowing of the set T0. The null space of the problem
can be infinite-dimensilonal, and the problem, affected by small denominators, can
be unsolvable in the scale of spaces {Hα

M}α∈R for T in set [T0, T1] \ T0.

Theorem 3.2. Let α1 = 0 = r1 and the conditions ϕ1 ∈ Hq+1+2q∗
M , ϕ2 ∈ Hq+2q∗

M ,
where q∗ > p/θ1 are satisfied. Then for almost all T ∈ [T0, T1], namely for all
T ∈ T0 ⊂ [T0, T1], meas T0 = T1 − T0, there exists a unique solution of problem
(1.1), (1.2) in the space H2,q

M . Also for each ε ∈ (0, 2cζ(q∗)) there exists a set Tε
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with measure meas Tε ≥ T1−T0−ε such that for all T ∈ Tε the following inequality
is satisfied

‖(I −Πτ2)u;H2,q
M ‖

2

≤ C2
2

ε4

( 9γ2
1

|β1|2
‖(I −Πτ2)ϕ1;Hq+1+2q∗

M ‖2 +
16
|α2|2

‖(I −Πτ2)ϕ2;Hq+2q∗
M ‖2

)
,

(3.6)

where c = c(r2, T1 − T0), C2 = 16c2γ′ζ2(q∗), and

γ0τ2 = max
(

4|β0
2 |
r2
T +

√(
4|β0

2 |
r2
T
)2 + 4|β0

2 |
r2−1

T , 1
)
.

Proof. Inequalities (3.2) can be interpreted with the formula maxt∈[0,T ] |g
(α)
j (t, γ)| ≤

(2 + j)γα+1−j , if γ ≥ 4|β0
2 |
r2
T , and the quasipolynomial of variable T

∆(γ) =
2i
γ

(cos γT − 1)− 2iβ0
2 Im[I+(0)I−(r2)] (3.7)

is a small denominator in the formula (2.12), which can be estimated below (using
the metrics lemma below) for γ = ±γl‖µk‖ with the measure of the the set of all
such T ∈ [T0, T1] for which this estimate holds.

Lemma 3.3 ([2]). Let f be a quasipolynomial of the form

f(y) =
m∑
j=1

pj(y)eλjy, λj 6= λq (j 6= q),

where λj ∈ C, |λ1| ≤ · · · ≤ |λm|, pj is a polynomial of degree nj − 1, nj ∈ N,
m ∈ N. If, for δ > 0 and certain complex numbers a1, . . . , an, the condition

∀y ∈ [a, b] ⊂ R
∣∣f (n)(y) +

n∑
j=1

ajf
(n−j)(y)

∣∣ ≥ δ,
is satisfied, then for any ε in the interval

(
0, δ

2n+2

(
1 + max1≤j≤n |aj |1/j

)−n), and
for a certain c = c(b− a, n1 + · · ·+ nm, n), we have the estimate

meas{y ∈ [a, b] : |f(y) < ε|} ≤ c(1 + |λm|) n
√
ε/δ.

Let us apply this Lemma to the quasipolynomial (3.7), where [a, b] = [T0, T1],
m = 3, λ1 = 0, λ2,3 = ±iγl‖µk‖, nj = r2. For this purpose, we estimate below the
function

Γγ
d∆(γ)
dT

=
( d2

dT 2
+ iγ

d

dT

)
∆(γ),

where Γγ = d
dT + iγ is a first order differential operation (according to Lemma,

n = 2, a1 = iγ, a2 = 0). From the formula

Γγ
d∆(γ)
dT

= −2iγeiγT+2iβ0
2

(
γeiγTI−(r2)−γ

r2
T e−iγTI+(0)+

r2−1

T Im
[
e−iγTI+(0)

])
,

we conclude the inequality∣∣Γγ d∆(γ)
dT

∣∣ ≥ 2γ − 4|β0
2 |
(

2
r2
T +

1
γ

r2−1

T
)
≥ γ
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in the case of γ ≥ 4|β0
2 |
(

2
r2
T + 1

γ

r2−1

T
)

or

γ ≥ 4|β0
2 |
r2
T +

√(
4|β0

2 |
r2
T
)2 + 4|β0

2 |
r2−1

T = γ0τ2.

According to Lemma 3.3, the measure of the set of points T ∈ [T0, T1] for which
the inequality

|∆(γl‖µk‖)| ≥
ε2γl‖µk‖
4c2ζ2(q∗)

(1 + ‖µk‖2)−q∗

(1 + γl‖µk‖)2
(3.8)

is not satisfied, is less than

c(1 + γl‖µk‖)

√
ε2γl‖µk‖
4c2ζ2(q∗)

(1 + ‖µk‖2)−q∗

(1 + γl‖µk‖)2
1

γl‖µk‖
=
ε

2
(1 + ‖µk‖2)−q∗/2

ζ(q∗)
.

From the convergence of the series
∑
k∈Zp(1 + ‖µk‖2)−q∗/2, that follows from (1.3),

owing to the Borel-Cantelli lemma [15], for almost all T ∈ [T0, T1] one can get the
estimate (3.8) for large ‖µk‖. Let us exclude from this set of points T the roots
of the equations ∆(γl‖µk‖) = 0, where l = 0, 1, ‖µk‖ < τ2 and denote by T0 the
obtained subset from the interval [T0, T1]. The measure of T0 is equal to T1 − T0

and for T ∈ T0 the first statement of the solvability theorem is established, since
the solvability condition (2.11) is satisfied. In particular, for ‖µk‖ ≥ τ2 the function
∆(γ) can be estimated below by

|∆(γl‖µk‖)| ≥
1
γl

( ε

4cζ(q∗)

)2

(1 + ‖µk‖2)−q∗−1/2. (3.9)

Let us exclude from the interval [T0, T1] the set of such T , for which the inequality
(3.8) is not satisfied, and denote the obtained set by Tε. Note that the measure of the
excluded set is less than ε

ζ(q∗)

∑
‖µk‖≥τ2(1+‖µk‖2)−q∗/2 = ε. Then, meas Tε ≥ T1−

T0−ε and inequality (3.6) is satisfied for all T ∈ Tε, that follows from inequality (3.5)
for τ = τ2 and from the estimates (3.2) and (3.9). This completes our proof. �

4. Solvability conditions for case (2)

In this section, we investigate the second case of problem (1.1), (1.2), where the
influence of small denominators on the solvability conditions is regulated by the
non-negative integer parameter r2 – the order of the measured moment.

Theorem 4.1. Let α2 = 0 (therefore, α1β2 6= 0), r2 ≥ 1 and the conditions
ϕ1 ∈ Hq+q∗

M , ϕ2 ∈ Hq+1+q∗
M , where q∗ > p/θ1, be satisfied. Then, for almost all

numbers T ∈ [T0, T1], namely for all T ∈ T0 ⊂ [T0, T1] with meas T0 = T1 − T0,
there exists a unique solution (2.16) of problem (1.1), (1.2) in the space H2,q

M . Also

for each ε ∈ (0, 2c/
r2
T0) there exists a set Tε with meas Tε ≥ T1 − T0 − ε such that

for all T ∈ Tε,

‖(I −Πτ3)u;H2,q
M ‖

2

≤ C2
3

ε2

(16
( r2
T
)2

γ2
0 |α1|2

‖(I −Πτ2)ϕ1;Hq+q∗
M ‖2 +

9
|β2|2

‖(I −Πτ2)ϕ2;Hq+1+q∗
M ‖2

)
,

(4.1)
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where c = c(~r, T1 − T0), C3 = 4cγ′ζ(q∗)/
r2
T0, and

τ3 =
4
γ0

max
T∈[T0,T1]

(r2
T

+ 4|β0
1 |
r1
T
)
.

Proof. The inequality (3.5) follows from formula (2.16). From (2.19) we derive the
equalities

g
(α)
1 (t, γ) = (iγ)αIt,(−1)α+1

(r2),

g
(α)
2 (t, γ) = −(iγ)α

(
It,(−1)α+1

(−1) + β0
1It,(−1)α+1

(r1)
)
,

where It,(−1)α(r) = It,+(r) when α is even, and It,(−1)α(r) = It,−(r) when α is

odd; and, as in Theorem 3.1, for γ ≥ 4|β0
1 |
r1
T we derive the inequalities

max
t∈[0,T ]

|g(α)
1 (t, γ)| ≤ 4

r2
Tγα−1,

max
t∈[0,T ]

|g(α)
2 (t, γ)| ≤ γα

(∣∣It,(−1)α+1
(−1)

∣∣+ |β0
1 |
∣∣It,(−1)α+1

(r1)
∣∣) ≤ 3γα.

(4.2)

Let us estimate the expressions (2.17), which are the denominators in formula
(3.5) and tend to zero when γ →∞. Assuming γ ≥ γ0τ3 in the equality

Γγ∆(γ) = −2
r2
T eiγT + I0,+(r2−1) + β0

1

( r1
TIT,−(r2)−

r2
TIT,−(r1) + iγI−(~r)

)
.

for r2 ≥ 1 one can get the below estimate:∣∣Γγ∆(γ)
∣∣ ≥ 2

r2
T−

∣∣I0,+(r2−1)
∣∣−|β0

1 |
( r1
T
∣∣IT,−(r2)

∣∣+ r2
T
∣∣IT,−(r1)

∣∣+γ∣∣I−(~r)
∣∣) ≥ r2

T0.

According to Lemma 3.3 (m = 3, λ1 = 0, λ2,3 = ±iλ, n1 = r1 + r2 − 1,
n2 = n3 = max(r1, r2), n = 1, a1 = iγ), the measure of the set of points T ∈ [T0, T1],
for which the inequality

|∆(γl‖µk‖)| ≥
ε
r2
T0

2cζ(q∗)
(1 + ‖µk‖2)−q∗/2

1 + γl‖µk‖
(4.3)

is not satisfied, where ‖µk‖ ≥ τ3, is not greater than

c(1 + γl‖µk‖)
ε
r2
T0

2cζ(q∗)
r2
T0

(1 + ‖µk‖2)−q∗/2

1 + γl‖µk‖
≤ ε

2
(1 + ‖µk‖2)−q∗/2

ζ(q∗)
.

From the Borel-Cantelli lemma, we conclude the estimate (4.3) for almost all
T ∈ [T0, T1] (on the set T0) and for large ‖µk‖. Provided ‖µk‖ ≥ τ3 the inequality
(4.3) gives the estimate

|∆(γl‖µk‖)| ≥
ε
r2
T0

2
√

2cγlζ(q∗)
(1 + ‖µk‖2)−(1+q∗)/2,

i.e., the solvability condition (2.11) is satisfied, where q0 = 1 + q∗ and C0l = C0l(T )
are some positive constants, and the first statement of the theorem (taking into
account the estimates (4.2) for functions gj = gj(t, γ)) is satisfied as well.

Let Tε be the set of such T ∈ [T0, T1] that the inequality (4.3) is satisfied for all
k ∈ Zp provided ‖µk‖ ≥ τ3. Then meas Tε ≥ T1 − T0 − ε and the solution satisfies
condition (4.1). This completes our proof. �
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Theorem 4.2. Let α2 = 0 = r2, ϕ1 ∈ Hq+2q∗
M , and ϕ2 ∈ Hq+1+2q∗

M , where q∗ >
p/θ1. Then for almost all T ∈ [T0, T1], namely for all T ∈ T0 ⊂ [T0, T1] with
meas T0 = T1 − T0, there exists a unique solution (2.12) of problem (1.1), (1.2) in
the space H2,q

M . Also for each ε ∈ (0, c
√

2/3) there exists a set Tε with meas Tε ≥
T1 − T0 − ε such that for all T ∈ Tε,

‖(I −Πτ4)u;H2,q
M ‖

2

≤ C2
4

ε4

( 16
|α1|2

‖(I −Πτ4)ϕ1;Hq+2q∗
M ‖2 +

9γ1

|β2|2
‖(I −Πτ4)ϕ2;Hq+1+2q∗

M ‖2
)
,

(4.4)

where c = c(r1, T1 − T0), C4 = 16c2γ′ζ2(q∗), and

γ0τ4 = max
(

4|β0
1 |
r1
T +

√(
4|β0

1 |
r1
T
)2 + 4|β0

1 |
r1−1

T , 1
)
.

Proof. Using estimates (4.2) for functions gj , for r2 = 0, the quasipolynomial ∆(γ)
can be written as

∆(γ) =
4i
γ

sin
γT

2

(
sin

γT

2
− β0

1 Im
[
eiγT/2I−(r1)

])
and tends to zero when γ → ∞. For estimating the speed of tending to zero of
∆(γ), we use the metric approach and Lemma 3.3 with n = 2, m = 3, nj = r1.
Similar to Theorem 3.2, we write

Γγ
d∆(γ)
dT

= −2iγeiγT + 2β0
1

r1
T
(
eiγT − 1

)
+ 2iβ0

1

r1−1

T

γ

(
1− cos γT

)
− 2iγβ0

1I−(r1),

which yields the estimate

∣∣Γγ d∆(γ)
dT

∣∣ ≥ 2γ − 4|β0
1 |
r1
T − 4|β0

1 |
r1−1

T

γ
− 4|β0

1 |
r1
T = 2γ − 4|β0

1 |
r1
T
( r1
γT

+ 2
)
≥ γ,

if γ ≥ 4|β0
1 |
r1
T
(
r1
γT + 2

)
. According to Lemma 3.3, the measure of the set of such

points T from [T0, T1], that estimate (3.8) is not satisfied, is not greater than

c(1 + γl‖µk‖)

√
ε2γl‖µk‖

4c2ζ2(q∗)γl‖µk‖
(1 + ‖µk‖2)−q∗

(1 + γl‖µk‖)2
=
ε

2
(1 + ‖µk‖2)−q∗/2

ζ(q∗)
.

By the Borel-Cantelli lemma and the above estimates, we can conclude the solv-
ability of problem (1.1), (1.2) for almost all T ∈ [T0, T1], namely for T ∈ T0,
where meas T0 = T1 − T0. For an arbitrary ε ∈ (0, c

√
2/3), the measure of such

points T ∈ [T0, T1] that inequality (3.8) is not satisfied at least for one ‖µk‖ from
‖µk‖ ≥ τ4, is not greater than

ε

ζ(q∗)

∑
‖µk‖≥τ4

(1 + ‖µk‖2)−q∗/2 < ε,

so the second part of the theorem, including inequality (4.4), follows from estimates
(3.8), (4.2) and formulas (2.16), (3.5). The proof is complete. �
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Conclusions. We established conditions for the unique solvability of the problem
with integral boundary conditions for the system of Lamé equations in spaces of
almost periodic functions. Such problem is ill-posed in the sense of Hadamard
and raises the problem of small denominators that are specific for such integral
boundary conditions. To solve the problem of small denominators, we use the
metric approach and the methodology of estimating the measures of exclusive sets
on the real semiaxis.

We also determined the influence of the parameters α1, α2, β1, β2 and the ex-
ponent θ1, θ2 on the solvability of the problem, in particular, the effectiveness of
the combination of boundary and integral conditions and the corresponding spaces
of almost periodic functions. We show that the impact of small denominators in-
creases for zero and first order moments. We obtained the strengthening and the
supplement for the results of the paper [12] (on the well-posed solvability of the
problem (1.1), (1.2) in particular case p = 3 for real α1, α2, β1, β2 and r1 < r2).
Besides, the results of the paper [7] are also supplemented.
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