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MULTIPLICITY OF SOLUTIONS TO A NONLOCAL
CHOQUARD EQUATION INVOLVING FRACTIONAL

MAGNETIC OPERATORS AND CRITICAL EXPONENT

FULIANG WANG, MINGQI XIANG

Abstract. In this article, we study the multiplicity of solutions to a nonlocal

fractional Choquard equation involving an external magnetic potential and

critical exponent, namely,

(a+ b[u]2s,A)(−∆)sAu+ V (x)u

=

Z
RN

|u(y)|2
∗
µ,s

|x− y|µ
dy|u|2

∗
µ,s−2u+ λh(x)|u|p−2u in RN ,

[u]s,A =
“Z

RN

Z
RN

|u(x)− ei(x−y)·A( x+y2 )u(y)|2

|x− y|N+2s
dx dy

”1/2

where a ≥ 0, b > 0, 0 < s < min{1, N/4}, 4s ≤ µ < N , V : RN → R is a sign-
changing scalar potential, A : RN → RN is the magnetic potential, (−∆)sA is

the fractional magnetic operator, λ > 0 is a parameter, 2∗µ,s = 2N−µ
N−2s

is the

critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality and
2 < p < 2∗s . Under suitable assumptions on a, b and λ, we obtain multiplicity of

nontrivial solutions by using variational methods. In particular, we obtain the

existence of infinitely many nontrivial solutions for the degenerate Kirchhoff
case, that is, a = 0, b > 0.

1. Introduction and statement of main results

In this article we consider the multiplicity of solutions to the Choquard-Kirchhoff
type problem

(a+ b‖u‖2s,A)(−∆)sAu+ V (x)u

=
∫

RN
|u|2

∗
µ,sKµ(x− y)dy|u|2

∗
µ,s−2u+ λh(x)|u|p−2u in RN

(1.1)

where a ≥ 0, b > 0, s ∈ (0, 1), N > µ ≥ 4s, 2∗µ,s = 2N−µ
N−2s , 2∗s = 2N

N−2s , V : RN → R
is the scalar potential, Kµ(x) = |x|−µ, A : RN → RN is the magnetic potential,
h : RN → R+

0 , λ > 0 and (−∆)sA is the fractional magnetic operator which, up to
normalization, defined as

(−∆)sAu(x) = 2 lim
ε→0+

∫
RN\Bε(x)

u(x)− ei(x−y)·A( x+y2 )u(y)
|x− y|N+2s

dy, ∀x ∈ RN ,
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along any ϕ ∈ C∞0 (RN ,C), see [10] and the references therein for further details
on this kinds of operators. Here Bε(x) denotes the ball in RN with radius ε > 0
centered at x ∈ RN . As showed in [44], up to correcting the operator with factor
(1− s) it follows that (−∆)sAu converges to −(∇u− iA)2u in the limit s ↑ 1, where

−(∇u− iA)2u = −∆u+ 2iA(x) · ∇u+ |A(x)|2u+ iudivA(x).

Thus, up to normalization, we may think the nonlocal case as an approximation of
the local case. In recent years, the following magnetic Schrödinger equations like

−(∇u− iA)2u+ V (x)u = f(x, u)

have been extensively studied; see [4, 12, 1, 43]. We also collect some recent results
on the fractional magnetic operators; see [29, 6, 38, 39] and the references cited
there.

Clearly, the operator (−∆)sA is consistent with the definition of fractional Lapla-
cian (−∆)s if A ≡ 0. For more details on the fractional Laplacian, we refer to [13].
The fractional Laplacian operator (−∆)s can be seen as the infinitesimal generators
of Lévy stable diffusion processes (see [1]). This type of operators arises in a quite
natural way in many different applications, such as, continuum mechanics, phase
transition phenomena, population dynamics and game theory, as they are the typ-
ical outcome of stochastically stabilization of Lévy processes, see [3, 8, 28, 19, 7].
In the context of fractional quantum mechanics, non-linear fractional Schrödinger
equation has been proposed by Laskin [20, 21] as a result of expanding the Feynman
path integral, from the Brownian-like to the Lévy-like quantum mechanical paths.
The literature on non-local operators and on their applications is very interesting
and quite large, we refer the interested readers to see [15, 14, 30, 35, 36, 5, 41] and
the references therein.

Equation (1.1) is a nonlocal elliptic type equation and covers in particular for
s = 1, 2∗µ,s = 2, A ≡ 0 the Choquard-Pekar equation, which appears as a model in
quantum theory of a polaron at rest, see [37]. The time-dependent form of (1.1) also
describes the self-gravitational collapse of a quantum mechanical wave function, in
which context it is called Hartree equation or the Newton-Schrodinger eqution [31].
In recent years, the Choquard and related equations have been studied by many
authors, see [23, 24, 27, 32] and the references therein. Very recently, D’Avenia,
Siciliano and Squassina studied the existence, regularity and asymptotic of the
solutions for the following fractional Choquard equation

(−∆)su+ ωu = (Kα ∗ |u|p)|u|p−2u, u ∈ Hs(RN ), (1.2)

where s ∈ (0, 1), ω > 0, N ≥ 3, 1 + α
N < p < N+α

N−2s , α ∈ (0, N) and Kα(x) =
|x|α−N . The existence of groundstates for fractional Choquard equations with
general nonlinearities was obtained by Shen, Gao and Yang [42] using variational
methods. In [40], Pucci, Xiang and Zhang extended equation (1.2) to the fractional
p-Laplacian and obtained several existence results by using variational methods.

Fiscella and Valdinoci [17] proposed a stationary Kirchhoff variational model, in
bounded regular domains of RN , which takes into account the nonlocal aspect of the
tension arising from nonlocal measurements of the fractional length of the string,
and obtained the existence and multiplicity of solutions for fractional Kirchhoff
problems by using variational method and the concentration-compactness principle.
Nyamoradi [34] studied a class of fractional Kirchhoff type equation in a bounded
domain Ω and obtained three solutions by using three critical point theorem. For
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more details about stationary Kirchhoff problems involving the fractional Laplacian,
we refer the interested readers to [10, 16, 45, 46, 47].

Inspired by the above cited papers, we consider the critical case of (1.2) and
prove multiplicity results depending on λ, a b and N . In particular, when N > µ =
4s, a = 0, b > 0, V ≡ 0, we obtain infinitely many solutions for (1.1) by applying
critical point theory. Since equation (1.1) contains a critical nonlinearity, it is
difficult to get the global (PS) condition. To overcome this difficulty, we borrow
some tricks from articles [33, 25].

Definition 1.1. We say that u ∈ Ds
A(RN ,C) is a weak solution of (1.1), if

(a+ b‖u‖2s,A)

×<
∫

RN

∫
RN

(u(x)− ei(x−y)·A( x+y2 )u(y))(ϕ(x)− ei(x−y)·A( x+y2 )ϕ(y))
|x− y|N+2s

dx dy

+ <
∫

RN
V (x)uϕdx

= <
∫

RN
(Kµ ∗ |u|2

∗
µ,s)|u|2

∗
µ,s−2uϕdx+ λ<

∫
RN

h(x)|u|p−2uϕdx,

for any ϕ ∈ Ds
A(RN ,C).

The best constant of Hardy-Littlehood-Sobolev inequality is

SH,L := inf
u∈DsA(RN ,C)\{0}

[u]2s,A

(
∫

RN
∫

RN
|u(x)|2

∗
µ,s |u(y)|2

∗
µ,s

|x−y|µ dx dy)
1

2∗µ,s

. (1.3)

Theorem 1.2. Assume that s ∈ (0, 1), N > µ ≥ 4s, V ∈ L N
2s (RN ), 2 < p < 2∗s,

h ≥ 0, h 6≡ 0, h ∈ L
2∗s

2∗s−p (RN ) and A ∈ C(RN ,RN ). If µ = 4s, a ≥ 0 and b > S
−2∗µ,s
H,L

or µ > 4s, a > 0, b > 0 and

a > (2− 2∗µ,s)
( b

2∗µ,s − 1

)− 2∗µ,s−1

2−2∗µ,s S
−

2∗µ,s
2−2∗µ,s

H,L , (1.4)

then there exists λ∗ > 0 such that (1.1) admits at least two nontrivial solutions in
Ds
A(RN ,C) for all λ > λ∗.

Theorem 1.3. Assume that s ∈ (0, 1), N > µ = 4s, a = 0, b > S
−2∗µ,s
H,L , V ≡ 0,

2 < p < 2∗s, h ≥ 0, h 6≡ 0, h ∈ L
2∗s

2∗s−p (RN ) and A ∈ C(RN ,RN ). Then (1.1)
has infinitely many pairs of solutions in Ds

A(RN ,C) for all λ > 0. Moreover, any
nontrivial solution u ∈ Ds

A(RN ,C) \ {0} satisfies

[u]s,A ≤

[ λ‖h‖
L

2∗s
2∗s−p (RN )

Sp/2(b− S−2∗µ,s
H,L )

] 1
4−p

,

where S is the best constant of the embedding Ds
A(RN ,C) ↪→ L2∗s (RN ,C) defined by

S := inf
u∈DsA(RN ,C)\{0}

[u]2s,A
‖u‖2

L2∗s (RN ,C)

. (1.5)
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Remark 1.4. We say that equation (1.1) is non-degenerate if a > 0, b ≥ 0; and
degenerate if a = 0, b > 0. To the best of our knowledge, this article is the first
to deal with the multiplicity of solutions for fractional Choquard-Kirchhoff type
equations with external magnetic operator and critical exponent.

This article is organized as follows. In Section 2, we recall some necessary defi-
nitions and properties of spaces Ds(RN ) and Ds

A(RN ,C). In Section 3, the multi-
plicity of solutions of (1.1) is obtained by using variational methods.

2. Preliminaries

In this section, we first give some basic results of fractional Sobolev spaces that
will be used later. Let N > 1, 0 < s < 1 be real number satisfying 2s < N and
the fractional critical exponent 2∗s be defined as 2∗s = 2N

N−2s . The fractional Sobolev
space Ds(RN ) is defined as the closure of C∞0 (RN ) with respect to the norm

[u]s =
(∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

,

The embedding Ds(RN ) ↪→ L2∗s (RN ) is continuous by [13, Theorem 6.7]. Suppose
that A : RN → RN is a continuous function. Consider the magnetic Gagliardo
semi-norm defined by

[u]s,A :=
(∫∫

R2N

|u(x)− ei(x−y)·A( x+y2 )u(y)|2

|x− y|N+2s
dx dy

)1/2

,

and define Ds
A(RN ,C) as the closure of C∞0 (RN ,C) with respect to [·]s,A.

Lemma 2.1. For each u ∈ Ds
A(RN ,C) it holds |u| ∈ Ds(RN ). More precisely,[

|u|
]
s
≤ [u]s,A, for all u ∈ Ds

A(RN ,C).

Proof. The proof follows by using the pointwise diamagnetic inequality∣∣|u(x)| − |u(y)|
∣∣ ≤ ∣∣u(x)− ei(x−y)·A( x+y2 )u(y)

∣∣,
for a.e. x, y ∈ RN , see [10, Lemma 3.1, Remark 3.2]. �

Finally, we introduce the well-known Hardy-Littlewood-Sobolev inequality, see
[22].

Lemma 2.2. Assume 1 < r, t < ∞ and 0 < µ < N with 1
r + 1

t + µ
N = 2. If

u ∈ Lr(RN ) and v ∈ Lt(RN ), then there exists C(N,α, r, t) > 0 such that∫
RN

∫
RN

|u(x)||v(y)|
|x− y|µ

dx dy ≤ C(N,µ, r, t)‖u‖Lr(RN )‖v‖Lt(RN ).

3. Proof of Theorem 1.2

The functional associated with (1.1) is defined as

I(u) =
a

2
[u]2s,A +

b

4
[u]4s,A +

1
2

∫
RN

V (x)|u|2dx

− 1
22µ,s

∫
RN

∫
RN

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dx dy − λ

p

∫
RN

h(x)|u|pdx.

for all u ∈ Ds
A(RN ,C).
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From V ∈ L N
2s (RN ) and h ∈ L

2∗s
2∗s−p (RN ), the Hardy-Littlehood-Sobolev inequal-

ity and the fractional Sobolev inequality, one can show that I is well-defined, of
class C1 and

〈I ′(u), v〉
= (a+ b[u]2s,A)

×<
∫

RN

∫
RN

[u(x)− ei(x−y)·A( x+y2 )u(y)][v(x)− ei(x−y)·A( x+y2 )v(y)]
|x− y|N+2s

dx dy

+ <
∫

RN
V uvdx−<

∫
RN

(K ∗ |u|2
∗
µ,s)|u|2

∗
µ,s−2uvdx− λ<

∫
RN

h|u|p−2uvdx,

for all u, v ∈ Ds
A(RN ,C). Hence a critical point of I is a (weak) solution of (1.1).

Definition 3.1. For any c ∈ R, {un} is called a (PS)c sequence of I in Ds
A(RN ,C),

if I(un)→ c and I ′(un)→ 0 as n→∞. We say that I satisfies (PS)c condition if
any (PS)c sequence of I admits a convergent subsequence in Ds

A(RN ,C).

Now we give a key lemma for proving the main results.

Lemma 3.2. Under the conditions of Theorem 1.2, functional I satisfies the (PS)c
conditions in Ds

A(RN ,C) for all λ > 0.

Proof. Suppose that {un} ⊂ Ds
A(RN ,C) is a (PS)c sequence of functional I, i.e.

I(un)→ c, I ′(un)→ 0

as n→∞.
By Hölder’s inequality, (1.3) and (1.5), we deuce

I(u) ≥ a

2
[u]2s,A +

b

4
[u]4s,A −

1
2
S−1‖V ‖

L
N
2s (RN )

[u]2s,A (3.1)

− 1
22∗µ,s

S
−2∗µ,s
H,L [u]

22∗µ,s
s,A − 1

p
S−

p
2 λ‖h‖

L

2∗s
2∗s−p (RN )

[u]ps,A, (3.2)

for all u ∈ Ds
A(RN ,C). When µ = 4s, since 2

2∗µ,s
S−4
H,L < b, 2∗µ,s = 2 and 2 <

p < 2∗s < 4 by N > 4s, it follows that I is coercive and bounded from below on
Ds
A(RN ,C). When N > µ ≥ 4s, since a > 0, b > 0, 2∗µ,s < 2 and 2∗s < 4, it follows

that I is coercive and bounded from below on Ds
A(RN ,C). Hence, {un} is bounded

in Ds
A(RN ,C). Then there exists u ∈ Ds

A(RN ,C) such that, up to a subsequence,
it follows that

un ⇀ u in Ds
A(RN ,C) and in L2∗s (RN ,C),

un → u a.e. in RN and in Lploc(RN ), 1 ≤ p < 2∗s,

|un|2
∗
s−2un ⇀ |u|2

∗
s−2u weakly in L

2∗s
2∗s−1 (RN ,C),

(3.3)

as n→∞. We first show that

lim
n→∞

∫
RN

V (x)|un|2dx =
∫

RN
V (x)|u|2dx. (3.4)

Since V ∈ L N
2s (RN ), for any ε > 0 there exists Rε > 0 such that(∫

RN\BRε (0)

|V (x)| N2s dx
)2s/N

< ε.
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By Hölder’s inequality, we deduce∣∣ ∫
RN\BRε (0)

V (x)(|un|2 − |u|2)dx
∣∣

≤
(∫

RN\BRε (0)

|V (x)| N2s dx
)2s/N

‖un‖2L2∗s (RN )

+
(∫

RN\BRε (0)

|V (x)| N2s dx
)2s/N

‖u‖2
L2∗s (RN )

≤ C
(∫

RN\BRε (0)

|V (x)| N2s dx
)2s/N

≤ Cε.

(3.5)

On the other hand, by the boundedness of {un}, for any measurable non-empt
subset Ω ⊂ BRε , we have∣∣ ∫

Ω

V (x)(|un|2 + |u|2)dx
∣∣ ≤ C(∫

Ω

|V (x)| N2s dx
)2s/N

.

It follows from V ∈ L
N
2s (RN ) that the sequence {V (x)(|un|2 − |u|2)} is equi-

integrable in L1(BRε(0)). Thus the Vitali convergence theorem implies

lim
n→∞

∫
BRε (0)

V (x)|un|2dx =
∫
BRε (0)

V (x)|u|2dx. (3.6)

Combining (3.5) with (3.6), we obtain the desired result (3.4). By using a similar
discussion, we can deduce from h ∈ L2∗s (RN ) that

lim
n→∞

∫
RN

h(x)|un|pdx =
∫

RN
h(x)|u|pdx. (3.7)

Let wn = un − u. Then by (3.3), we obtain
2
s,A = [wn]2s,A + [u]2s,A + o(1),

[un]4s,A = [wn]4s,A + [u]4s,A + 2[un]2s,A[u]2s,A + o(1).
(3.8)

By the Brezis-Lieb type lemma (see [18]), one has∫
RN

(Kµ ∗ |wn|2
∗
µ,s)|wn|2

∗
µ,sdx

=
∫

RN
(Kµ ∗ |un|2

∗
µ,s)|un|2

∗
µ,sdx−

∫
RN

(Kµ ∗ |u|2
∗
µ,s)|u|2

∗
µ,sdx+ o(1).

(3.9)

Without loss of generality, we assume that limn→∞[wn]s,A = η. From {un} is a
(PS)c sequence and the boundedness of {un}, we have

〈I ′(un), un〉 = a[un]2s,A + b[un]4s,A +
∫

RN
V (x)|un|2dx

−
∫

RN
(Kµ ∗ |un|2

∗
µ,s)|un|2

∗
µ,sdx− λ

∫
RN

h(x)|un|pdx = o(1)
(3.10)

and

lim
n→∞

〈I ′(un), u〉 = a[u]2s,A + b[u]4s,A + bη2[u]2s,A +
∫

RN
V (x)|u|2dx

−
∫

RN
(Kµ ∗ |u|2

∗
µ,s)|u|2

∗
µ,sdx− λ

∫
RN

h(x)|u|pdx = 0.
(3.11)
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Here we have used that

lim
n→∞

∫
RN

(Kµ ∗ |un|2
∗
µ,s)|un|2

∗
µ,s−2unudx =

∫
RN

(Kµ ∗ |un|2
∗
µ,s)|un|2

∗
µ,sdx. (3.12)

Indeed, by the Hardy-Littlewood-Sobolev inequality, the Riesz potential defines a
linear continuous map from L

2N
2N−µ (RN ) to L

2N
µ (RN ). Then

Kµ ∗ |un|2
∗
µ,s ⇀ Kµ ∗ |u|2

∗
µ,s in L

2N
µ (RN ), (3.13)

as n→∞. Note that for any measurable subset U ⊂ RN , we have∫
U

∣∣|un|2µ,s∗−2unu
∣∣ 2∗s
2∗µ,s dx ≤ ‖un‖

2∗µ,s−1

2∗µ,s

L2∗s (RN )
‖u‖

1
2∗µ,s

L2∗s (U)
,

which implies that {||un|2
∗
µ,s−2unu|

2∗s
2∗µ,s } is equi-integrable in L1(RN ). Observe that

|un|2
∗
µ,s−2unu→ |u|2

∗
µ,s a.e. in RN , then the Vitali convergence theorem yields

|un|2
∗
µ,s−2unu→ |u|2

∗
µ,s in L

2∗s
2∗µ,s (RN ). (3.14)

Combining (3.13) with (3.14) and 2∗s
2∗µ,s

= 2N
2N−µ , we obtain the desired result (3.12).

It follows from (3.10) and (3.11) that

a[u]2s,A + a[wn]2s,A + b[u]4s,A + b[wn]4s,A + 2b[wn]2s,A[u]2s,A

−
∫

RN
(Kµ ∗ |u|2

∗
µ,s)|u|2

∗
µ,sdx−

∫
RN

(Kµ ∗ |wn|2
∗
µ,s)|wn|2

∗
µ,sdx = o(1).

Then

a[wn]2s,A + b[wn]4s,A + b[wn]2s,A[u]2s,A −
∫

RN
(Kµ ∗ |wn|2

∗
µ,s)|wn|2

∗
µ,sdx = o(1).

From the definition of SH,L, we obtain∫
RN

(Kµ ∗ |wn|2
∗
µ,s)|wn|2

∗
µ,sdx ≤ S2∗µ,s

H,L [wn]
22∗µ,s
s,A .

Using this and letting n→∞, we arrive at the inequality

aη2 + bη2[u]2s,A + bη4 ≤ S−2∗µ,s
H,L η22∗µ,s ,

which implies

aη2 + bη4 ≤ S−2∗µ,s
H,L η22∗µ,s . (3.15)

When µ = 4s and S
−2∗µ,s
H,L < b, it follows from (3.15) that η = 0. Thus, un → u in

Ds
A(RN ,C).
When µ > 4s, it follows from (3.15) and the Young inequality that

aη2 + bη4 ≤ 1
1

2∗µ,s−1

(η42∗µ,s−4)
1

2∗µ,s−1
[( b

2∗µ,s − 1

)2∗µ,s−1] 1
2∗µ,s−1

+
1
1

2−2∗µ,s

( b

2∗µ,s − 1

)− 2∗µ,s−1

2−2∗µ,s S
−

2∗µ,s
2−2∗µ,s

H,L

(
η4−22∗µ,s

) 1
2−2∗µ,s

= bη4 + (2− 2∗µ,s)
( b

2∗µ,s − 1

)− 2∗µ,s−1

2−2∗µ,s S
−

2∗µ,s
2−2∗µ,s

H,L η2.



8 F. WANG, M. XIANG EJDE-2016/306

Consequently, {
a− (2− 2∗µ,s)

( b

2∗µ,s − 1

)− 2∗µ,s−1

2−2∗µ,s S
−

2∗µ,s
2−2∗µ,s

H,L

}
η2 ≤ 0,

which together with (1.4) implies that η = 0. Hence un → u in Ds
A(RN ,C). �

Remark 3.3. Clearly, when a = 0, V ≡ 0, µ = 4s, 2 < p < 2∗s and b > S
−2∗µ,s
H,L , the

functional I also satisfies the (PS)c condition in Ds
A(RN ,C).

Proof of Theorem 1.2. We first show that (1.1) has a nontrivial global minimizer
solution. By (3.3), we know m := infu∈DsA(RN ,C) I(u) is well-defined. Now we claim
that there exists λ∗ > 0 such that m < 0 for all λ > λ∗. Actually, we can choose
ϕ0 ∈ Ds

A(RN ,C) with [ϕ0]s,A = 1 and
∫

RN h(x)|ϕ0|pdx > 0, then

I(ϕ0) ≤ a

2
+

1
2
‖V ‖

L
N
2s (RN )

S−1 +
b

4
− 1

22∗µ,s

∫
RN

(Kµ ∗ |ϕ0|2
∗
µ,s)|ϕ0|2

∗
µ,sdx

− λ

p

∫
RN

h(x)|ϕ0|pdx

≤ a

2
+

1
2
‖V ‖

L
N
2s (RN )

S−1 +
b

4
− λ

p

∫
RN

h(x)|ϕ0|pdx < 0,

for all λ >
p( a2 + 1

2‖V ‖
L
N
2s (RN )

S−1+ b
4 )R

RN h(x)|ϕ0|pdx . Hence our claim holds true. Further, by Lemma

3.2 and [26, Theorem 4.4], there exists u1 ∈ Ds
A(RN ,C) such that I(u1) = m.

Therefore, u1 is a nontrivial global minimizer solution of (1.1) with I(u1) < 0.
Now we prove that (1.1) has a mountain pass solution. Since p ∈ (2, 2∗s), we

obtain that 0 a local minimum point of I in Ds
A(RN ,C). Define

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], Ds
A(RN ,C)) : γ(0) = 0, γ(1) = u1}. Then c > 0. By

Lemma 3.2, we know that I satisfies the conditions of the mountain-pass lemma
(see [2, Theorem 2.1]). Then there exists u2 ∈ Ds

A(RN ,C) such that I(u2) = c > 0
and I ′(u2) = 0. Thus, u2 is a nontrivial solution of equation (1.1). �

To obtain the existence of infinitely many solutions, we introduce the following
theorem (see [9]).

Theorem 3.4 ([9, Theorem 5.2.23]). Let X be a Banach space, and J ∈ C1(X,R)
be an even functional satisfying the (PS)c condition. Assume α < β and either
J(0) < α or J(0) > β. If further,

(1) there are an m-dimensional linear subspace E and a constant ρ > 0 such
that supE∩∂Bρ(0) J(u) ≤ β, where ∂Bρ(0) = {u ∈ X : ‖u‖ = ρ};

(2) there is a j-dimensional linear subspace F such that infF⊥ J(u) > α, where
F⊥ is a complementary space of F ;

(3) m > j,
then J has at least m− j pairs of distinct critical points.

Proof of Theorem 1.3. Clearly, I is an even functional. By Remark 3.3, I satisfies
the (PS)c condition. Choose E = Ds

A(RN ,C) and F = ∅, then F⊥ = Ds
A(RN ,C).
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We can choose φ0 ∈ Ds
A(RN ,C) such that [φ0]s,A = 1 and

∫
RN h(x)|φ0|pdx > 0.

Then

I(tφ0) =
b

4
t4[φ0]4s,A − t22∗µ,s

1
22∗µ,s

∫
RN

(K ∗ |φ0|2
∗
µ,s)|φ0|2

∗
µ,sdx

− tpλ
p

∫
RN

h(x)|φ0|pdx

≤ b

4
t4[φ0]4s,A −

λ

p
tp
∫

RN
h(x)|φ0|pdx

=
[ b

4
t4−p[φ0]4s,A −

λ

p

∫
RN

h(x)|φ0|pdx
]
tp,

for all t > 0. It follows from 2 < p < 4 that there exist β < 0 and ρ > 0 small
enough such that I(tφ0) ≤ β < 0 for all 0 < t < ρ. Thus, we obtain

sup
E∩∂Bρ(0)

I(u) ≤ β < 0,

where ∂Bρ(0) := {u ∈ Ds
A(RN ,C) : [u]s,A = ρ}. By (3.3), we easily deduce

inf
u∈F⊥

I(u) > −∞.

Therefore, I satisfies the conditions of Theorem 3.4. Hence I has infinitely many
pairs distinct critical points in Ds

A(RN ,C), that is, equation (1.1) has infinitely
many pairs distinct solutions. Let u ∈ Ds

A(RN ,C) \ {0} be a solution of (1.1).
Then

b[u]4s,A =
∫

RN
(Kµ ∗ |u|2

∗
s )|u|2

∗
sdx+ λ

∫
RN

h(x)|u|pdx.

It follows that

b[u]4s,A ≤ S
−2∗µ,s
H,L [u]

22∗µ,s
s,A + λ‖h‖

L

2∗s
2∗s−p (RN )

S−
p
2 [u]ps,A.

Since b > S−2∗µ,s and 2∗µ,s = 2 by µ = 4s, we have

(b− S−2∗µ,s
H,L )[u]4s,A ≤ λ‖h‖

L

2∗s
2∗s−p (RN )

S−
p
2 [u]ps,A.

Further, [
(b− S−2∗µ,s

H,L )[u]4−ps,A − λ‖h‖
L

2∗s
2∗s−p (RN )

S−
p
2

]
[u]ps,A ≤ 0,

which implies

[u]s,A ≤
[λ‖h‖

L

2∗s
2∗s−p (RN )

S−
p
2

b− S−2∗µ,s
H,L

] 1
4−p

.

This completes the proof. �
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