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EXISTENCE OF MULTIPLE PERIODIC SOLUTIONS FOR
SECOND-ORDER DISCRETE HAMILTONIAN SYSTEMS WITH

PARTIALLY PERIODIC POTENTIALS

QIN JIANG, SHENG MA, ZHIHUA HU

Abstract. In this article, we use critical point theory to obtain multiple peri-

odic solutions for second-order discrete Hamiltonian systems, when the nonlin-
earity is partially periodic and its gradient is linearly and sublinearly bounded.

1. Introduction and statement of main results

In this article, we are interested in the existence of multiple periodic solutions
for the second-order discrete Hamiltonian system

∆2u(t− 1) +∇F (t, u(t)) = 0, ∀t ∈ Z, (1.1)

where ∆u(t) = u(t + 1) − u(t), ∆2u(t) = ∆(∆u(t)), F (t, x) :=
∫ x
0
∇F (t, s)ds is

continuously differentiable in x for every t ∈ Z, and satisfies the assumption
(A1) F (t, x) = F (t+ T, x) for all t ∈ Z[1, T ] and x ∈ RN .

Here R denotes the set of real numbers, T denotes a positive integer, Z denotes the
set of integers, and for a, b ∈ Z with a ≤ b, Z[a, b] denotes the set {a, a+ 1, . . . , b}.

It is worthwhile to explore discrete problems since they occur widely in numerous
setting and form both in mathematics and in its applications to combinatorial anal-
ysis, quantum physics, chemical reactions, population dynamics, biology and other
fields. Many authors have studied discrete problems and obtain important conclu-
sions, see for example [1, 2, 9, 12, 13]. Especially, in 2003, Yu and Guo [4, 5, 6],
using operator theory, established a variational structure and variational methods
to study discrete Hamiltonian systems and obtained the solvability condition of pe-
riodic solution for discrete systems. Since then many authors have contributed to
the study second-order discrete Hamiltonian systems. Using a powerful tool named
the critical point theory, many interesting results have been obtained; see for exam-
ple [3, 7, 10, 15, 16, 17, 18, 19]. Xue and Tang [16] constructed a variational setting
unlike the one in [4] to study the second-order superquadratic discrete Hamiltonian
system (1.1) and obtain the existence of periodic solutions. This result generalized
the one in [3]. Xue and Tang [15] studied system (1.1) under condition (A1), the
assumption
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(A2) There exist M1 > 0, M2 > 0, α ∈ [0, 1) such that

|∇F (t, x)| ≤M1|x|α +M2,

for all (t, x) ∈ Z[1, T ]× RN ,
and the condition

|x|−2α
T∑
t=1

F (t, x)→ +∞ as |x| → ∞, x ∈ RN ,

for all t ∈ Z[1, T ]. Subsequently, Yan, Wu and Tang [17] extended the result in [15]
and obtained multiple periodic solutions of system (1.1) under assumptions (A1),
(A2),

(A3) F (t, x) is Ti-periodic in xi, 1 ≤ i ≤ r, where the integer r ∈ [0, N ] and xi
is the ith component of x = (x1, x2, . . . , xN ) ∈ RN ,

and the condition

|x|−2α
T∑
t=1

F (t, x)→ +∞ or −∞ as |x| → ∞, x ∈ {0} × RN−r, (1.2)

for all t ∈ Z[1, T ].
We set

F (t, x) = sin(
2πt
T

)
(
r + 1 +

r∑
j=1

sin2(xj) +
1
2

N∑
j=r+1

x2
j

)7/8

− 23/4 · 49
8λ1

(
r + 1 +

r∑
j=1

sin2(xj) +
1
2

N∑
j=r+1

x2
j

)3/4

,

(1.3)

where the integer r ∈ [0, N ], λ1 = 2− 2 cos(2π/T ) > 0 and x = (x1, x2, . . . , xN ) ∈
RN .

Let y = r + 1 +
∑r
j=1 sin2(xj) + 1

2

∑N
j=r+1 x

2
j . A simple computation yields

∇F (t, x) =
7
8

sin(
2πt
T

)y−1/8z − 23/4 · 49
8λ1

· 3
4
y−1/4z

where z = (sin 2x1, . . . , sin 2xr, xr+1, . . . xN ). Then one has

|∇F (t, x)| ≤ 7
8
y−1/8|z|+ 23/4 · 49

8λ1
· 3

4
y−1/4|z|

≤ 7
8
y−1/8(2y)1/2 +

23/4 · 49
8λ1

· 3
4
y−1/4(2y)1/2

≤ 7
√

2
8

(r + 1 + |x|2)3/8 +
23/4 · 49

8λ1
· 3

4

√
2(r + 1 + |x|2)1/4

≤ (
7
√

2
8

+ ε)|x|3/4 +A(ε)

where A(ε) > 0 is a function for ε ∈ (0, 1).
Set α = 3/4, M1 = 7

√
2/8 + ε, M2 = A(ε). Thus F (t, x) satisfies (A1)–(A3)

with Ti = π, i = 1, . . . , r. However, noting |x|2 =
∑N
j=r+1 x

2
j , for x ∈ {0} × RN−r,

one obtains

F (t, x) = sin(
2πt
T

)
(
r + 1 +

1
2
|x|2
)7/8

− 23/4 · 49
8λ1

(
r + 1 +

1
2
|x|2
)3/4
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and

lim
|x|→∞

∑T
t=1 F (t, x)
|x|2· 34

= − 49
8λ1

T

which means that such a function F does not satisfies (1.2). Hence it is valuable
to further improve conditions (1.2).

Hence, it is natural to ask if existence of multiple solutions still holds for α = 1.
With α = 1, (A2) changes to the linearly bounded gradient condition:

(A2’) There exist constants M1 ∈ (0, λ1) and M2 > 0 such that

|∇F (t, x)| ≤M1|x|+M2

for all (t, x) ∈ Z[1, T ]× RN , where λk = 2− 2 cos( 2kπ
T ) are the eigenvalues

of the problem

−∆2u(t− 1) = λku(t), k ∈ Z[0, [T/2]],

and
0 = λ0 < λ1 < · · · < λ[T/2] ≤ 4.

Motivated by references [14, 15, 17], we study the multiple periodic solutions for
the second-order discrete Hamiltonian system (1.1) under the following assump-
tions:

(A4) lim inf |x|→+∞ |x|−2α
∑T
t=1 F (t, x) > 2λ[T/2]+4λ1

λ2
1

M2
1T , x ∈ {0} × RN−r.

(A5) lim sup|x|→+∞ |x|−2α
∑T
t=1 F (t, x) < −M

2
1T
λ1

, x ∈ {0} × RN−r.
(A6) lim inf |x|→+∞ |x|−2

∑T
t=1 F (t, x) > λ[T/2]+2λ1−M1

2(λ1−M1)2
M2

1T , x ∈ {0} × RN−r.

(A7) lim sup|x|→+∞ |x|−2
∑T
t=1 F (t, x) < − M2

1T
λ1−M1

, x ∈ {0} × RN−r.
Our main results read as follows.

Theorem 1.1. Under assumptions (A1)–(A4), problem (1.1) possesses at least
r + 1 geometrically distinct periodic solutions.

Theorem 1.2. Under asumptions (A1)–(A3), (A5), problem (1.1) possesses at
least r + 1 geometrically distinct periodic solutions.

Theorem 1.3. Under asumptions (A1), (A2’), (A3), (A6), problem (1.1) possesses
at least r + 1 geometrically distinct periodic solutions.

Theorem 1.4. Under assumptions (A1), (A2’),(A3), (A7), problem (1.1) pos-
sesses at least r + 1 geometrically distinct periodic solutions.

Remark 1.5. Theorems 1.1 and 1.2 extend [17, Theorems 2.1 and 2.2] respectively.
Theorems 1.3 and 1.4 are extensions of [17, Theorems 2.1 and 2.2] corresponding
to α = 1. There are functions F satisfying our Theorems but not satisfying the
existing results. Detailed examples can be seen later.

2. Proofs of main results

To apply critical point theory, we first define the Hilbert space

HT = {u : Z→ RN |u(t+ T ) = u(t), t ∈ Z}
and equip it with the inner product

〈u, v〉 =
T∑
t=1

(u(t), v(t)), for u, v ∈ HT .
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and the induced norm

‖u‖ := ‖u‖2 =
( T∑
t=1

|u(t)|2
)1/2

, for u ∈ HT

where (·, ·) and | · | denote the usual inner product and the usual norm in RN .
Obviously, Hilbert space HT is finite dimensional. We define a functional ϕ on HT

by

ϕ(u) =
1
2

T∑
t=1

|∆u(t)|2 −
T∑
t=1

F (t, u(t))

Then one has ϕ ∈ C1(HT ,R) and

〈ϕ′(u), v〉 =
T∑
t=1

(∆u(t),∆v(t))−
T∑
t=1

(∇F (t, u(t)), v(t))

for all u, v ∈ HT . From reference [16], we know that the problem of finding a T -
periodic solution of (1.1) is equivalent to finding a critical point of the functional
ϕ on HT .

We can equip HT with another norm ‖u‖r for any positive number r > 1, where

‖u‖r =
( T∑
t=1

|u(t)|r
)1/r

, for u ∈ HT .

From reference [16], one has

T−1‖u‖r ≤ ‖u‖ ≤ T‖u‖r, ∀u ∈ HT . (2.1)

For the reader’ convenience, we give some useful lemmas presented in [16, 8, 11].

Lemma 2.1 ([16]). As a subspace of HT is defined as

Nk := {u ∈ HT : −∆2u(t− 1) = λku(t)},
where λk = 2− 2 cos(2kπ/T ), k ∈ Z[0, [T/2]]. Then we claim that

(i) Nk⊥Nj, k 6= j, k, j ∈ Z[0, [T/2]].
(ii) HT = ⊕[T/2]

k=0 Nk.

Lemma 2.2 ([16]). Define Hk := ⊕kj=0Nj, H
⊥
k := ⊕[T/2]

j=k+1Nj, k ∈ Z[0, [T/2]− 1],
then one has

T∑
t=1

|∆u(t)|2 ≤ λk‖u‖2, ∀u ∈ Hk, (2.2)

T∑
t=1

|∆u(t)|2 ≥ λk+1‖u‖2, ∀u ∈ H⊥k . (2.3)

For u ∈ HT , put

ū =
1
T

T∑
t=1

u(t), ũ(t) = u(t)− ū, û(t) = Pū+Qū+ ũ(t),

where

Pū =
N∑

i=r+1

(ū, ei)ei, Qū =
r∑
i=1

(
(ū, ei)− kiTi

)
ei,
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where {ei|1 ≤ i ≤ N} is the canonical basis of RN and ki is the unique integer such
that

0 ≤ (ū, ei)− kiTi < Ti,

for 1 ≤ i ≤ r. Hence, there is a constant M > 0 satisfying

|Qū| < M. (2.4)

By (A3), one obtains

F (t, u(t)) = F
(
t, û(t) +

r∑
i=1

kiTiei

)
= F (t, û(t)),

∇F (t, u(t)) = ∇F
(
t, û(t) +

r∑
i=1

kiTiei

)
= ∇F (t, û(t)).

Thus, ϕ(u) = ϕ(û) and ϕ′(u) = ϕ′(û). Set

G =
{ r∑
i=1

kiTiei : ki ∈ Z, 1 ≤ i ≤ r
}
,

Y = span{er+1, . . . , eN}, V = span{e1, . . . , er}/G,

X = Y +W, W =
{
u ∈ HT |ū =

1
T

T∑
t=1

u(t) = 0
}
.

It is obvious that HT /G = X × V and V is isomorphic to the torus T r, Define
f : X × V → R by f(π(u)) = ϕ(u), where π : HT → HT /G is the canonical
surjection.

Lemma 2.3 (generalized saddle point theorem [8]). Let X be a Banach space with
a decomposition X = Y +W , where Y and W are two subspaces of X with dimW <
+∞. Let V be a finite-dimensional, compact C2-manifold without boundary. Let
f : X × V −→ R be a C1-function and satisfy the (PS) condition. Suppose that
there exist constants ρ > 0 and γ < β such that

(a) infx∈Y×V f(x) ≥ β,
(b) supx∈S×V f(x) ≤ γ,

where S = ∂D,D = {z ∈ W ||z| ≤ ρ}. Then the functional ϕ has at least
cuplength(V ) + 1 critical points.

Lemma 2.4 ([11, Theorem 4.12]). Let ϕ ∈ C1(HT , R) be a G-invariant functional
satisfying the (PS) condition. If ϕ is bounded from below and if the dimension r of
the space generated by G is finite, then ϕ has at least r + 1 critical orbits.

Proof of Theorem 1.1. This proof relies on Lemma 2.3. Firstly, we prove that ϕ
satisfies the (PS) condition. Suppose that {π(uk)} ⊂ HT is a (PS) sequence, that
is f(π(uk)) is bounded and f ′(π(uk))→ 0 as k →∞. Then ϕ(uk) is bounded, and
ϕ′(uk)→ 0 as k →∞. Then for sufficiently large k, one has

−‖uk‖ ≤ 〈ϕ′(uk), uk〉 ≤ ‖uk‖.

By (A4), one chooses a constant a1 > 1/λ2
1 such that

lim inf
|x|→+∞

|x|−2α
T∑
t=1

F (t, x) >
(
2λ[T/2]a1 + 4

√
a1

)
M2

1T, x ∈ {0} × RN−r. (2.5)
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By (A2), (2.1), (2.4), Hölder inequality and Young inequality, one has

∣∣ T∑
t=1

(F (t, û(t))− F (t, P ū))
∣∣

≤
T∑
t=1

∫ 1

0

|(∇F (t, P ū+ s(Qū+ ũ(t))), Qū+ ũ(t))|ds

≤
T∑
t=1

∫ 1

0

(M1|Pū+ s(Qū+ ũ(t))|α +M2) · |Qū+ ũ(t)|ds

≤
T∑
t=1

2αM1|Pū|α|Qū|+
T∑
t=1

2αM1|Pū|α|ũ(t)|

+
T∑
t=1

2αM1(|Qū|+ |ũ(t)|)α+1 +
T∑
t=1

M2(|Qū|+ |ũ(t)|)

≤ 2M1MT |Pū|α +
T∑
t=1

2M1|Pū|α|ũ(t)|

+
T∑
t=1

2M1(|Qū|+ |ũ(t)|)α+1 +M2MT +M2

√
T‖ũ‖

≤ 2M1MT |Pū|α + 2
√
a1M

2
1T |Pū|2α +

1
2
√
a1
‖ũ‖2

+ 8M1M
α+1T + 8M1

√
Tα+1‖ũ‖α+1 +M2MT +M2

√
T‖ũ‖.

(2.6)

By using the same method, we obtain

∣∣ T∑
t=1

(∇F (t, û(t)), ũ(t))
∣∣

=
T∑
t=1

|(∇F (t, Qū+ ũ(t) + Pū), ũ(t))|

≤ 2a1λ1M
2
1T |Pū|2α +

1
2a1λ1

‖ũ‖2 + 2M1

√
Tα+1‖ũ‖α+1

+ (2M1M
α +M2)

√
T‖ũ‖.

(2.7)

It follows from (2.7) and (2.3), respectively, that

T∑
t=1

(∆uk(t),∆ũk(t)) = −〈ϕ′(uk), ũk〉+
T∑
t=1

(∇F (t, uk(t)), ũk(t))

≤ ‖ũk‖+ 2a1λ1M
2
1T |Pūk|2α +

1
2a1λ1

‖ũk‖2

+ 2M1

√
Tα+1‖ũk‖α+1 + (2M1M

α +M2)
√
T‖ũk‖

and
T∑
t=1

(∆uk(t),∆ũk(t)) =
T∑
t=1

(∆ũk(t),∆ũk(t)) ≥ λ1‖ũk‖2. (2.8)
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Thus from the two inequalities above, one has

2a1λ1M
2
1T |Pūk|2α

≥ (λ1 −
1

2a1λ1
)‖ũk‖2 − 2M1T

α+1
2 ‖ũk‖α+1 − (1 + 2M1M

αT 1/2 +M2T
1/2)‖ũk‖

≥ λ1

2
‖ũk‖2 + C1,

where

C1 = min
s∈[0,+∞)

{
(
λ1

2
− 1

2a1λ1
)s2−2M1T

α+1
2 sα+1−(1+2MαM1T

1/2+M2T
1/2)s

}
< 0.

Hence one gets

‖ũk‖2 ≤ 4a1M
2
1T |Pūk|2α −

2C1

λ1
(2.9)

and so
‖ũk‖ ≤ 2M1

√
a1T |Pūk|α + C2, (2.10)

holds for all large k, where C2 > 0. From the boundedness of ϕ(uk), (2.6), (2.9)
and (2.10) it follows that, for all large k,

C3 ≥ ϕ(uk) = ϕ(ûk)

= −1
2

T∑
t=1

|∆ûk(t)|2 +
T∑
t=1

[F (t, ûk(t))− F (t, P ūk)] +
T∑
t=1

F (t, P ūk)

≥ −1
2
λ[T/2]‖ũk‖2 − 2M1MT |Pūk|α − 2

√
a1M

2
1T |Pūk|2α

− 1
2
√
a1
‖ũk‖2 − 8M1M

α+1T − 8M1

√
Tα+1‖ũk‖α+1

−M2MT −M2

√
T‖ũk‖+

T∑
t=1

F (t, P ūk)

≥ −
(λ[T/2]

2
+

1
2
√
a1

)(
4a1M

2
1T |Pūk|2α −

2C1

λ1

)
− 2M1MT |Pūk|α

− 2
√
a1M

2
1T |Pūk|2α − C4 − 8M1

√
Tα+1

(
2M1

√
a1T |Pūk|α

+ C2

)α+1 −M2

√
T (2M1

√
a1T |Pūk|α + C2) +

T∑
t=1

F (t, P ūk)

≥ −
(
2λ[T/2]a1 + 4

√
a1

)
M2

1T |Pūk|2α − C5 − C6|Pūk|α(α+1)

− C7|Pūk|α +
T∑
t=1

F (t, P ūk)

= |Pūk|2α
[∑T

t=1 F (t, P ūk)
|Pūk|2α

−
(
2λ[T/2]a1 + 4

√
a1

)
M2

1T

− C6|Pūk|α(α−1) − C7|Pūk|−α
]
− C5,

(2.11)

where Ci > 0, i = 3, 4, 5, 6, 7. With it and (2.5), {Pūk} is bounded. Then it follows
from (2.10) that {ũk} is bounded. Hence {ûk} is bounded. Since HT is a finite
dimensional space and π(uk) = π(ũk), {uk} contains a convergent subsequence in
HT . Thus ϕ satisfies (PS) condition.
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Secondly, we need to verify the linking conditions (a) and (b) of Lemma 2.3. For
π(u) ∈ Y × V , u = Qū+ Pū, we have

f(π(u)) = ϕ(u) =
T∑
t=1

F (t, Qū+ Pū).

It follows from (A4) that

T∑
t=1

F (t, Qū+ Pū)→ +∞

uniformly for π(Qū) ∈ V as |Pū| → ∞. Thus part (a) of Lemma 2.3 is verified.
By (A2), there is a constant C8 > 0, such that for all t ∈ Z[1, T ] and x ∈ RN ,

|F (t, x)| ≤ |
∫ 1

0

(∇F (t, sx), x)ds|+ |F (t, 0)|

≤
∫ 1

0

|∇F (t, sx)||x|ds+ C8

≤ M1

α+ 1
|x|α+1 +M2|x|+ C8.

By (2.1), (2.4) and the above inequality, for any π(u) ∈ W × V , u = Qū + ũ, one
obtains

f(π(u)) = f(π(Qū+ ũ)) = ϕ(Qū+ ũ)

= −1
2

T∑
t=1

|∆ũ(t)|2 +
T∑
t=1

F (t, Qū+ ũ(t))

≤ −1
2
λ1‖ũ‖2 +

T∑
t=1

[ M1

α+ 1
|Qū+ ũ(t)|α+1 +M2|Qū+ ũ(t)|+ C8

]
≤ −1

2
λ1‖ũ‖2 + C9‖ũ‖α+1 + C10‖ũ‖+ C11,

where Ci > 0, i = 9, 10, 11. Noting 0 ≤ α < 1, we choose ‖ũ‖ so large enough that

sup
π(u)∈W×V

f(π(u)) ≤ γ < β.

Then part (b) of Lemma 2.3 holds and f has at least r + 1 critical points. Thus
the proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2. We use Lemma 2.4 in this proof. By (A5), one takes a
constant a2 >

1
λ1

satisfying

lim sup
|x|→+∞

|x|−2α
T∑
t=1

F (t, x) < −2a2M
2
1T, x ∈ {0} × RN−r. (2.12)
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In a way similar to (2.6), one obtains

∣∣ T∑
t=1

(F (t, û(t))− F (t, P ū))
∣∣

≤ 2M1MT |Pū|α + 2a2M
2
1T |Pū|2α +

1
2a2
‖ũ‖2

+ 8M1

√
Tα+1‖ũ‖α+1 +M2

√
T‖ũ‖+ C12,

(2.13)

where C12 > 0. We se ψ(u) = −ϕ(u), u ∈ HT . It is easy to see that ψ(u) is a
G-invariant functional. Hence, from (2.13), for all u ∈ HT , we obtain

ψ(u) = ψ(û)

=
1
2

T∑
t=1

|∆ũ(t)|2 −
T∑
t=1

[F (t, û)− F (t, P ū)]−
T∑
t=1

F (t, P ū)

≥ λ1

2
‖ũ‖2 − (2M1MT |Pū|α + 2a2M

2
1T |Pū|2α +

1
2a2
‖ũ‖2

+ 8M1

√
Tα+1‖ũ‖α+1 +M2

√
T‖ũ‖+ C12)−

T∑
t=1

F (t, P ū)

≥
(λ1

2
− 1

2a2

)
‖ũ‖2 − 8M1

√
Tα+1‖ũ‖α+1 −M2

√
T‖ũ‖ − C12

− |Pū|2α
(∑T

t=1 F (t, P ū)
|Pū|2α

+ 2a2M
2
1T + 2M1MT |Pū|−α

)
.

(2.14)

Thus (2.11) and (2.14) imply that ψ is bounded from below.
Moreover, we draw a conclusion that the functional ψ satisfies the (PS) condition.

In fact, the boundedness of ψ(uk), (A5) and (2.14) imply that |Pūk| and ‖ũk‖
are bounded and then ûk = Pūk + Qūk + ũk is bounded by (2.4). In finite-
dimensional space HT , {ûk} contains a convergent subsequence. Hence, π(uk)
contains a convergent subsequence by π(uk) = π(ûk). Then the proof is complete
by using Lemma 2.4. �

Proof of Theorem 1.3. By (A6), one chooses a positive constant a3 >
1

λ1−M1
such

that

lim inf
|x|→+∞

|x|−2
T∑
t=1

F (t, x) >
[(λ[T/2] +M1

2
+

1
2a3

) a3

λ1 −M1
+
a3

2

]
M2

1T, (2.15)

for all x ∈ {0} × RN−r. In a way similar to (2.6), one has

∣∣ T∑
t=1

(F (t, û(t))− F (t, P ū))
∣∣

≤
T∑
t=1

∫ 1

0

|(∇F (t, P ū+ s(Qū+ ũ(t))), Qū+ ũ(t))|ds

≤
T∑
t=1

(M1|Pū|+
1
2
M1|Qū+ ũ(t)|+M2) · |Qū+ ũ(t)|
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≤
T∑
t=1

M1|Pū||Qū|+
T∑
t=1

M1|Pū||ũ(t)|

+
1
2

T∑
t=1

M1(|Qū|2 + |ũ(t)|2 + 2|Qū||ũ(t)|) +
T∑
t=1

M2(|Qū|+ |ũ(t)|)

≤M1MT |Pū|+ a3M
2
1T

2
|Pū|2 +

1
2a3
‖ũ‖2

+
1
2
M1‖ũ‖2 + (M1M +M2)

√
T‖ũ‖+ C13 (2.16)

and ∣∣ T∑
t=1

(∇F (t, û(t)), ũ(t))
∣∣

=
T∑
t=1

|(∇F (t, Qū+ ũ(t) + Pū), ũ(t))|

≤ a3

2
M2

1T |Pū|2 +
1

2a3
‖ũ‖2 +M1‖ũ‖2 + (MM1 +M2)

√
T‖ũ‖,

(2.17)

where C13 > 0. By (2.17), one obtains
T∑
t=1

(∆uk(t),∆ũk(t))

= −〈ϕ′(uk), ũk〉+
T∑
t=1

(∇F (t, uk(t)), ũk(t))

≤ ‖ũk‖+
a3

2
M2

1T |Pū|2 +
1

2a3
‖ũ‖2 +M1‖ũk‖2 + (MM1 +M2)

√
T‖ũk‖.

With this and (2.8),

a3

2
M2

1T |Pūk|2 ≥ (λ1 −M1 −
1

2a3
)‖ũk‖2 − (1 +MM1T +

√
TM2)‖ũk‖

≥ λ1 −M1

2
‖ũk‖2 + C14

is implied, where

C14 = min
s∈[0,+∞)

{
(
λ1 −M1

2
− 1

2a3
)s2 − (1 +MM1T +

√
TM2)s

}
< 0.

Hence one gets

‖ũk‖2 ≤
a3M

2
1T

λ1 −M1
|Pūk|2 −

2C14

λ1 −M1
. (2.18)

So

‖ũk‖ ≤
M1

√
a3T√

λ1 −M1

|Pūk|+ C15 (2.19)

holds for all large k, where C15 > 0. It follows from the boundedness of ϕ(uk),
(2.16), (2.18) and (2.19) that

C3 ≥ ϕ(uk) = ϕ(ûk)
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= −1
2

T∑
t=1

|∆ûk(t)|2 +
T∑
t=1

[F (t, ûk(t))− F (t, P ūk)] +
T∑
t=1

F (t, P ūk)

≥ −
λ[T/2]

2
‖ũk‖2 −M1MT |Pūk| −

a3M
2
1T

2
|Pūk|2 −

1
2a3
‖ũk‖2

− C13 −
1
2
M1‖ũk‖2 −M1M

√
T‖ũk‖ −M2

√
T‖ũk‖+

T∑
t=1

F (t, P ūk)

≥ −
(λ[T/2]

2
+
M1

2
+

1
2a3

)( a3M
2
1T

λ1 −M1
|Pūk|2 −

2C14

λ1 −M1

)
−M1MT |Pūk|

− a3M
2
1T

2
|Pūk|2 − C13 − (M1M +M2)

√
T
( M1

√
a3T√

λ1 −M1

|Pūk|+ C15

)
+

T∑
t=1

F (t, P ūk)

= |Pūk|2
{∑T

t=1 F (t, P ūk)
|Pūk|2

−
[(λ[T/2] +M1

2
+

1
2a3

) a3

λ1 −M1
+
a3

2

]
M2

1T

− C16|Pūk|−1
}
− C17,

for all large k, where C16, C17 > 0. This inequality, with (2.15), implies that {Pūk}
is bounded. Then from (2.19) it follows that {ũk} is bounded. Thus, in a way
similar to the proof of Theorem 1.1, one obtains ϕ satisfies (PS) condition.

Subsequently, we verify the linking conditions (a) and (b) of Lemma 2.3. Part
(a) is easy to verify by (A6) and the same method in the proof in Theorem 1.1. By
(A2’), there exists a constant C18 > 0, such that for all t ∈ Z[1, T ] and x ∈ RN ,

|F (t, x)| ≤ M1

2
|x|2 +M2|x|+ C18. (2.20)

By (2.4) and (2.20), for any π(u) ∈W × V , u = Qū+ ũ, one obtains

f(π(u)) = f(π(Qū+ ũ)) = ϕ(Qū+ ũ)

= −1
2

T∑
t=1

|∆ũ(t)|2 +
T∑
t=1

F (t, Qū+ ũ(t))

≤ −1
2
λ1‖ũ‖2 +

T∑
t=1

(
M1

2
|Qū+ ũ(t)|2 +M2|Qū+ ũ(t)|+ C7)

≤ −1
2

(λ1 −M1)‖ũ‖2 + (MM1 +M2)
√
T‖ũ‖+ C18.

With it and the fact M1 ∈ (0, λ1),

sup
π(u)∈W×V

f(π(u)) ≤ γ < β

is implied for all large enough ‖ũ‖. Thus part (b) of Lemma 2.3 holds and then the
proof is complete. �

Proof of Theorem 1.4. Via (A7), one takes a4 >
2

λ1−M1
> 0 such that

lim sup
|x|→+∞

|x|−2
T∑
t=1

F (t, x) < −a4

2
M2

1T, x ∈ {0} × RN−r. (2.21)
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In a way similar to (2.16), one obtains∣∣ T∑
t=1

(F (t, û(t))− F (t, P ū))
∣∣ ≤M1MT |Pū|+ a4

2
M2

1T |Pū|2 +
1

2a4
‖ũ‖2

+
M1

2
‖ũ‖2 + (MM1 +M2)

√
T‖ũ‖+ C19,

(2.22)

where C19 > 0. It is easy to know ψ(u) is a G-invariant functional. Hence, from
(2.22), we obtain

ψ(u) = ψ(û)

=
1
2

T∑
t=1

|∆ũ(t)|2 −
T∑
t=1

[F (t, û)− F (t, P ū)]−
T∑
t=1

F (t, P ū)

≥
(λ1

2
− 1

2a4
− M1

2

)
‖ũ‖2 − (MM1 +M2)

√
T‖ũ‖ − C19

− |Pū|2
(∑T

t=1 F (t, P ū)
|Pū|2

+
a4

2
M2

1T +M1MT |Pū|−1
)
,

for all u ∈ HT . With it and the fact M1 ∈ (0, λ1), one deduces that ψ is bounded
from below.

We prove that the functional ψ satisfies the (PS) condition by the same method
in the proof of Theorem 1.2. Then the proof is complete by using by Lemma 2.4. �

3. Examples

In this section, some examples illustrate our results.

Example 3.1. Let

F (t, x) = sin(
2πt
T

)
(
r + 1 +

r∑
j=1

sin2(xj) +
1
2

N∑
j=r+1

x2
j

)7/8

+
23/4 · 49(2 + λ1)

2λ2
1

(
r + 1 +

r∑
j=1

sin2(xj) +
1
2

N∑
j=r+1

x2
j

)3/4

,

where λ1 = 2− 2 cos(2π/T ) > 0 and x = (x1, x2, . . . , xN ) ∈ RN . Then one has

|∇F (t, x)| ≤
(7
√

2
8

+ ε
)
|x|3/4 +A1(ε),

where A1(ε) > 0 is a function in ε ∈ (0, 1).
Set α = 3/4, M1 = 7

√
2/8 + ε, M2 = A1(ε). Thus F (t, x) satisfies (A1)–(A3)

with Ti = π, i = 1, . . . , r. Also, for x ∈ {0} × RN−r, one obtains

|x|2 =
N∑

j=r+1

x2
j

and

lim inf
|x|→∞

∑T
t=1 F (t, x)
|x|2· 34

=
49(2 + λ1)

2λ2
1

T >
4(4 + 2λ1)

2λ2
1

(
7
√

2
8

+ ε)2T

>
2λ[T/2] + 4λ1

λ2
1

M2
1T,
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for all ε ∈ (0, 1). This implies that such a function F satisfies (A4). By Theorem
1.1, problem (1.1) has at least r + 1 geometrically distinct periodic solutions.

Example 3.2. Let F (t, x) be defined as in (1.3). α = 3/4, M1 = 7
√

2/8 + ε,
M2 = A(ε). Thus F (t, x) satisfies (A1)–(A3) with Ti = π, i = 1, . . . , r. Also, for
x ∈ {0} × RN−r, one obtains

lim sup
|x|→∞

∑T
t=1 F (t, x)
|x|2· 34

= − 49
8λ1

T < −
( 7
√

2
8 + ε)2

λ1
T = −M

2
1

λ1
T,

for all ε ∈ (0, 1). This implies that such a function F satisfies (A5). By Theorem
1.2, problem (1.1) has at least r + 1 geometrically distinct periodic solutions.

Example 3.3. Let

F (t, x) = sin(
2πt
T

)
r∑
j=1

sin(xj) + a

N∑
j=r+1

x2
j ,

where a =
λ1+1−

r
(λ1+1)2−λ

2
1
2

4 . Then one has

|∇F (t, x)| ≤ 2a|x|+
√
r.

Set M1 = 2a, M2 =
√
r. A computation yields M1 < λ1 and F (t, x) satisfies (A1),

(A2’) and (A3) with Ti = π, i = 1, . . . , r. On the other hand, for x ∈ {0} × RN−r,
one has

lim inf
|x|→∞

∑T
t=1 F (t, x)
|x|2

= aT >
4 + 2λ1 −M1

2(λ1 −M1)2
M2

1T ≥
λ[T/2] + 2λ1 −M1

2(λ1 −M1)2
M2

1T.

This implies that F satisfies (A6). By Theorem 1.3, problem (1.1) has at least r+1
geometrically distinct periodic solutions.

Example 3.4. Let

F (t, x) = sin(
2πt
T

)
r∑
j=1

sin(xj)−
λ1

8

N∑
j=r+1

x2
j .

Then one has

|∇F (t, x)| ≤ λ1

4
|x|+

√
r.

Set M1 = λ1/4, M2 =
√
r. Obviously, F (t, x) satisfies (A1),(A2’) and (A3) with

Ti = π, i = 1, . . . , r. On the other hand, for x ∈ {0} × RN−r, one has

lim sup
|x|→∞

∑T
t=1 F (t, x)
|x|2

= −λ1

8
T < −λ1

12
T = − M2

1

λ1 −M1
T.

Then F satisfies (A7). By Theorem 1.4, problem (1.1) has at least r + 1 geometri-
cally distinct periodic solutions.

Acknowledgements. The authors want to thank the editors and the referee for
their many valuable comments which helped improving this article. This research
was partly supported by the Science Foundation of Huanggang Normal University,
China (No. 201617503).



14 Q. JIANG, S. MA, Z. HU EJDE-2016/307

References

[1] R. P. Agarwal; Difference equations and inequalities. Theory, methods, and applications.
Second edition. Monographs and Textbooks in Pure and Applied Mathematics, 228. Marcel

Dekker, Inc., New York, 2000.

[2] R. P. Agarwal, J. Popenda; Periodic solutions of first order linear difference equations. Math.
Comput. Modelling, 22 (1995), No. 1, 11–19.

[3] H. H. Bin, J. S. Yu, Z. M. Guo; Nontrivial periodic solutions for asymptotically linear reso-

nant difference problem, J. Math. Anal. Appl., 322 (1) (2006), 477-488.
[4] Z. M. Guo, J. S. Yu; The existence of periodic and subharmonic solutions of subquadratic

second order difference equations, J. London Math. Soc., (2) 68 (2003), No. 2, 419–430.
[5] Z. M. Guo, J. S. Yu; Periodic and subharmonic solutions for superquadratic discrete Hamil-

tonian systems, Nonlinear Anal., 55 (2003), No. 7-8, 969–983.

[6] Z. M. Guo, J. S. Yu; Existence of periodic and subharmonic solutions for second-order su-
perlinear difference equations, Sci. China Ser. A, 46 (2003), No. 4, 506–515.

[7] Z. M. Guo, J. S. Yu; Applications of critical theory to difference equations. Differences and

differential equations, 187–200, Fields Inst. Commun., 42, Amer. Math. Soc., Providence, RI,
2004.

[8] J. Q. Liu; A generalized saddle point theorem, J. Differ. Equ., 82 (1989) 372-385.

[9] G. Michael; Periodic solutions of abstract difference equations. Appl. Math. E-Notes, 1
(2001), 18–23.

[10] M.J. Ma, J. S. Yu; Existence of multiple positive periodic solutions for nonlinear functional

difference equations, J. Math. Anal. Appl., 305 (2005), No. 2, 483–490.
[11] J. Mawhin, M. Willem; Critical point theory and Hamiltonian systems, Applied Mathematical

Sciences, 74. Springer-Verlag, New York, 1989.
[12] A. Pankov, N. Zakharchenko; On some discrete variational problems, Acta Appl Math, 65

(2005), 295-303.

[13] A. Pankov, N. Zakharchenko; Solutions in discrete nonlinear Schrodinger equation with sat-
urable non-linearity, Proc. R. Soc. Lond. Ser. A, 464 (2008), 3219-3236.

[14] X. H. Tang, Q. Meng; Solutions of a second-order Hamiltonian system with periodic boundary

conditions, Nonlinear Anal., 11 (2010), 3722-3733.
[15] Y. F. Xue, C. L. Tang; Existence of a periodic solution for subquadratic second-order discrete

Hamiltonian systems, Nonlinear Anal., 67 (2007), 2072-2080.

[16] Y. F. Xue, C. L. Tang; Multiple periodic solutions for superquadratic second-order discrete
Hamiltonian systems. Appl. Math. Comput., 196 (2) (2008) 494-500.

[17] S. H. Yan, X. P. Wu, C. L. Tang; multiple periodic solutions of second order discrete Hamil-

tonian systems. Appl. Math. Comput., 234 (2014), 142-149.
[18] J. S. Yu, Z. M. Guo, X. F. Zou; Periodic solutions of second order self-adjoint difference

equations, J. London Math. Soc., (2) 71 (2005), No. 1, 146–160.

[19] Z. Zhou, J. S. Yu, Z. M. Guo; Periodic solutions of higher-dimensional discrete systems,
Proc. Roy. Soc. Edinburgh Sect. A, 134 (5) (2004), 1013-1022.

Qin Jiang

Department of Mathematics, Huanggang Normal University, Hubei 438000, China
E-mail address: jiangqin999@126.com

Sheng Ma
Department of Mathematics, Huanggang Normal University, Hubei 438000, China

E-mail address: masheng666@126.com

Zhihua Hu
Department of Mathematics, Huanggang Normal University, Hubei 438000, China

E-mail address: huzhihua123@126.com


	1. Introduction and statement of main results
	2. Proofs of main results
	3. Examples
	Acknowledgements

	References

