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EXISTENCE OF HOMOCLINIC ORBITS FOR A CLASS OF
NONLINEAR FUNCTIONAL DIFFERENCE EQUATIONS

XIA LIU, TAO ZHOU, HAIPING SHI

Abstract. By using critical point theory, we prove the existence of a non-

trivial homoclinic orbit for a class of nonlinear functional difference equations.
Our conditions on the nonlinear term do not need to satisfy the well-known

global Ambrosetti-Rabinowitz superquadratic condition.

1. Introduction

The article concerns the nonlinear functional difference equation

∆(pn(∆un−1)δ)− qnuδn + f(n, un+1, un, un−1) = 0, n ∈ Z, (1.1)

where ∆ is the forward difference operator ∆un = un+1 − un, ∆2un = ∆(∆un),
δ is the ratio of odd positive integers, {pn}n∈Z and {qn}n∈Z are real sequences,
f ∈ C(Z × R3,R), T is a positive integer, pn+T = pn, qn+T = qn, and f(n +
T, v1, v2, v3) = f(n, v1, v2, v3).

We denote by N, Z and R the natural numbers, integers and real numbers re-
spectively. For a, b ∈ Z, we define Z(a) = {a, a+ 1, . . . },Z(a, b) = {a, a+ 1, . . . , b}
when a ≤ b. In this article we use the following assumptions:

(A1) pn > 0 for n ∈ Z;
(A2) qn > 0 for n ∈ Z;
(A3) there exists a functional F (n, v1, v2) ∈ C1(Z×R2,R) with F (n+T, v1, v2) =

F (n, v1, v2) and satisfies

∂F (n− 1, v2, v3)
∂v2

+
∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3);

(A4) lim%→0 f(n, v1, v2, v3)/vδ2 = 0 for n ∈ Z, % = (vδ+1
1 + vδ+1

2 + vδ+1
3 )

1
δ+1 ;

(A5) limσ→0 F (n, v1, v2)/σδ+1 = 0 for n ∈ Z, σ = (vδ+1
1 + vδ+1

2 )
1
δ+1 .

In general, (1.1) can be considered as a discrete analogue of the second order non-
linear functional differential equation

(p(t)ϕ(u′))′ + q(t)u(t) + f(t, u(t+ 1), u(t), u(t− 1)) = 0, t ∈ R. (1.2)

This equation includes the equation

(p(t)ϕ(u′))′ + f(t, u(t)) = 0, t ∈ R,
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which has arose in the study of fluid dynamics, combustion theory, gas diffusion
through porous media, thermal self-ignition of a chemically active mixture of gases
in a vessel, catalysis theory, chemically reacting systems, and adiabatic reactor
[5, 12]. Equations similar in structure to (1.2) arise in the study of periodic solutions
and homoclinic orbits of functional differential equations [13, 14].

The theory of nonlinear difference equations has been widely used to study dis-
crete models appearing in many fields such as computer science, economics, neural
networks, queuing theory, ecology, cybernetics, biological systems, optimal con-
trol, population dynamics, etc. Since the past twenty years, there has been much
progress on the qualitative properties of difference equations, which included re-
sults on homoclinic orbits, periodic solutions, boundary value problems, stability,
attractivity, oscillation and other topics, see for example [1, 2, 3, 4, 6, 7, 8, 9, 10, 11,
15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 31] and the references therein.

In 2004, Zhang, Wang and Yu [31] obtained necessary and sufficient conditions
for the existence of strictly monotone increasing positive solutions of the following
equation

∆(pn(∆un−1)δ) + qnu
δ
n = 0. (1.3)

If f(n, un+1, un, un−1) = f(n, un), Cai and Yu [4] considered the nonlinear dif-
ference equation of the type

∆(pn(∆un−1)δ) + qnu
δ
n = f(n, un), n ∈ Z, (1.4)

using the critical point theory, and they obtained some new results on the existence
of periodic solutions.

If qn ≡ 1, Liu, Zhang and Shi in 2015 [18] and 2016 [27] respectively studied a
class of nonlinear difference equation

∆(pn(∆un−1)δ) + f(n, un+1, un, un−1) = 0, n ∈ Z, (1.5)

has at least three T -periodic solutions.
By using the Symmetric Mountain Pass Theorem, Chen and Wang [7] established

some existence criteria to guarantee a class of nonlinear difference equation

∆(pn(∆un−1)δ)− qnuδn + f(n, un) = 0, n ∈ Z, (1.6)

has infinitely many homoclinic orbits. Shi, Liu and Zhang [25] obtained the exis-
tence of a nontrivial homoclinic orbit for (1.1) based on the Mountain Pass Lemma
in combination with periodic approximations.

In the superquadratic case, almost all the results in the literature (see e.g.
[4, 9, 19, 22]) need the well-known global Ambrosetti-Rabinowitz superquadratic
condition:

• There exists a constant β > 2 such that 0 < βF (n, u) ≤ uf(n, u) for all
n ∈ Z and u ∈ R \ {0}.

In this article, we introduce the following conditions that are weaker than the
superquadratic condition

(A6) limσ→0 F (n, v1, v2)/σδ+1 =∞ for n ∈ Z, σ = (vδ+1
1 + vδ+1

2 )
1
δ+1 ;

(A7) for any n ∈ Z, F (n, 0, 0) = 0, F (n, v1, v2) ≥ F (n, v2) ≥ 0;
(A8) for any % > 0, there exist a = a% > 0, b = b% > 0 and ν < δ + 1 such that

for all n ∈ Z, (vδ+1
1 + vδ+1

2 )
1
δ+1 > %,[

δ + 1 +
1

a+ b(vδ+1
1 + vδ+1

2 )
ν
δ+1

]
F (n, v1, v2) ≤ ∂F (n, v1, v2)

∂v1
v1 +

∂F (n, v1, v2)
∂v2

v2.
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Our main results read as follows.

Theorem 1.1. Suppose that (A1)–(A8) are satisfied. Then (1.1) possesses a non-
trivial homoclinic orbit.

Theorem 1.2. Suppose that (A1)–(A5) and the following assumption are satisfied:
(A9) F (n, v1, v2) ≥ 0 and there exists a constant β > 2 such that

0 < βF (n, v1, v2) ≤ ∂F (n, v1, v2)
∂v1

v1 +
∂F (n, v1, v2)

∂v2
v2,

for all (n, v1, v2) ∈ Z× R2 \ {(0, 0)}.
Then (1.1) possesses a nontrivial homoclinic orbit.

For basic knowledge of variational methods, the reader is referred to [23, 24].

2. Variational structure and some lemmas

To apply critical point theory, we shall establish the corresponding variational
framework for (1.1) and give some lemmas which will be of fundamental importance
in proving our main results. We start by some basic notation.

Let S be the set of sequences u = (. . . , u−n, . . . , u−1, u0, u1, . . . , un, . . . ) =
{un}+∞n=−∞; that is,

S = {{un} : un ∈ R, n ∈ Z}.
For u, v ∈ S, a, b ∈ R, we define

au+ bv = {aun + bvn}+∞n=−∞.

Then S is a vector space. Define

E =
{
u ∈ S :

+∞∑
n=−∞

[pn(∆un−1)δ+1 + qnu
δ+1
n ] < +∞

}
,

and for u ∈ E,

‖u‖ =
{ +∞∑
n=−∞

[pn(∆un−1)δ+1 + qnu
δ+1
n ]

} 1
δ+1

, ∀u ∈ E. (2.1)

Then E is a uniform convex Banach space with this norm.
As usual, for 1 < s < +∞, we set

ls =
{
u ∈ S :

+∞∑
n=−∞

|un|s < +∞
}
, l∞ = {u ∈ S : sup

n∈Z
|un| < +∞},

with their respective norms

‖u‖s =
( +∞∑
n=−∞

|un|s
)1/s

, ∀u ∈ ls,

‖u‖∞ = sup
n∈Z
|un|, ∀u ∈ l∞ .

For u ∈ E, we define the functional

J(u) :=
1

δ + 1

+∞∑
n=−∞

[pn(∆un−1)δ+1 + qnu
δ+1
n ]−

+∞∑
n=−∞

F (n, un+1, un). (2.2)
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If (A1)–(A3) hold, then J ∈ C1(E,R) and one can easily check that

〈J ′(u), v〉 =
+∞∑

n=−∞
[pn(∆un−1)δ∆vn−1 + qnu

δ
nvn]

−
+∞∑

n=−∞
f(n, un+1, un, un−1)vn, ∀u, v ∈ E.

(2.3)

Thus, we can compute the partial derivative as
∂J(u)
∂un

= −∆(pn(∆un−1)δ) + qnu
δ
n − f(n, un+1, un, un−1), ∀n ∈ Z. (2.4)

So, the critical points of J in E are the solutions of (1.1) with un → 0 as |n| → ∞.

Lemma 2.1 ([23]). Let E be a real Banach space with its dual space E∗ and assume
that J ∈ C1(E,R) satisfies

max{J(0), J(e)} ≤ η0 < η ≤ inf
‖u‖=ρ

J(u),

for some η0 < η, ρ > 0 and e ∈ E with ‖e‖ > ρ. Let c ≥ η be characterized by

c = inf
γ∈Γ

max
0≤t≤1

J(γ(t)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous paths
joining 0 to e; then there exists {u(k)}k∈N ⊂ E such that
J(u(k))→ c and (1 + ‖u(k)‖)‖J ′(u(k))‖E∗ → 0 as k →∞.

Lemma 2.2. For u ∈ E and s > 1,

q‖u‖δ+1
∞ ≤ q‖u‖δ+1

s ≤ ‖u‖δ+1, (2.5)

where q = infn∈Z qn.

The proof of above lemma is routine; so we omit it.

Lemma 2.3. Suppose that (A1)–(A8) are satisfied. Then there exists a constant
c > 0 and a sequence {u(k)}k∈N satisfying

J(u(k))→ c, ‖J ′(u(k))‖(1 + ‖u(k)‖)→ 0, k →∞. (2.6)

Proof. It follows from (A5) that there exists a constant ρ > 0 such that

F (n, v1, v2) ≤
q

4(δ + 1)
(vδ+1

1 + vδ+1
2 ), ∀n ∈ Z, (vδ+1

1 + vδ+1
2 )

1
δ+1 ≤ ρ. (2.7)

Let ‖u‖ = q
1
δ+1 ρ := η, combining this and (2.5), we have |un| ≤ ρ for all n ∈ Z.

Therefore, by (2.2) and (2.7), we have

J(u) =
1

δ + 1
‖u‖δ+1 −

+∞∑
n=−∞

F (n, un+1, un)

≥ 1
δ + 1

‖u‖δ+1 −
q

4(δ + 1)

+∞∑
n=−∞

(uδ+1
n+1 + uδ+1

n )

≥ 1
δ + 1

‖u‖δ+1 −
q

2(δ + 1)
‖u‖δ+1

δ+1,

≥ 1
δ + 1

‖u‖δ+1 − 1
2(δ + 1)

ηδ+1
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=
1

2(δ + 1)
ηδ+1, ∀u ∈ E, ‖u‖ = ρ.

Choose u(0) ∈ E such that

u
(0)
0 = 1, u(0)

n = 0, ∀n 6= 0.

Then, for λ > 0 large enough, it follows from (A3)–(A6) and (2.3) that

J(λu(0)) =
λδ+1

δ + 1
‖u(0)‖δ+1 −

+∞∑
n=−∞

F (n, λu(0)
n+1, λu

(0)
n )

≤ λδ+1

δ+1
‖u(0)‖δ+1 − F (0, λu(0)

n+1, λu
(0)
n )

≤ λδ+1
[ 1
δ + 1

‖u(0)‖δ+1 −
F (0, λu(0)

n+1, λu
(0)
n )

|λu(0)
0 |δ+1

]
≤ 0.

Consequently, we can choose λ1 > 1 such that λ1‖u(0)‖ > η and J(λ1u
(0)) ≤ 0.

Define e = λ1u
(0), then e ∈ E, ‖e‖ > η and J(e) ≤ 0. From Lemma 2.1, one has

that there exists a constant c ≥ 1
2(δ+1)η

δ+1 and a sequence {u(k)}k∈N ⊂ E such
that (2.6) holds. �

Lemma 2.4. Suppose that (A1)–(A8) are satisfied. Then any sequence {u(k)}k∈N
satisfying

J(u(k))→ c > 0, ‖J ′(u(k))‖(1 + ‖u(k)‖)→ 0, k →∞ (2.8)

is bounded in E.

Proof. By (A5), we know that there exists a constant 0 < ρ < 1 such that

F (n, v1, v2) ≤
q

4(δ + 1)
(vδ+1

1 + vδ+1
2 ), ∀n ∈ Z, (vδ+1

1 + vδ+1
2 )

1
δ+1 ≤ ρ. (2.9)

It follows from (A3) and (A8) that

f(n, v1, v2, v3)v2 > (δ + 1)F (n, v1, v2) ≥ 0, ∀n ∈ Z (2.10)

and

F (n, v1, v2) ≤ [a+ b(vδ+1
1 + vδ+1

2 )
ν
δ+1 ][f(v1, v2, v3)v2 − (δ + 1)F (n, v1, v2)], (2.11)

for all n ∈ Z, (vδ+1
1 + vδ+1

2 )
1
δ+1 > ρ.

From (2.2), (2.3) and (2.8), there exist two constants M1 and M2 such that

M1 ≥ (δ + 1)J(u(k))− 〈J ′(u(k)), u(k)〉

=
+∞∑

n=−∞
[f(n, u(k)

n+1, u
(k)
n , u

(k)
n−1)u(k)

n − (δ + 1)F (n, u(k)
n+1, u

(k)
n )]

(2.12)

and
J(u(k)) ≤M2. (2.13)
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By (2.3), (2.8), (2.9), (2.10), (2.11), (2.12) and (2.13), we have

1
δ + 1

‖u(k)‖δ+1

= J(u(k)) +
+∞∑

n=−∞
F (n, u(k)

n+1, u
(k)
n )

= J(u(k)) +
∑

n∈Z([(u
(k)
n+1)δ+1+(u

(k)
n )δ+1]

1
δ+1≤ρ)

F (n, u(k)
n+1, u

(k)
n )

+
∑

n∈Z([(u
(k)
n+1)δ+1+(u

(k)
n )δ+1]

1
δ+1>ρ)

F (n, u(k)
n+1, u

(k)
n )

≤ J(u(k)) +
q

4(δ + 1)

∑
n∈Z([(u

(k)
n+1)δ+1+(u

(k)
n )δ+1]

1
δ+1>ρ)

[
(u(k)
n+1)δ+1 + (u(k)

n )δ+1
]

+
∑

n∈Z([(u
(k)
n+1)δ+1+(u

(k)
n )δ+1]

1
δ+1>ρ)

{
a+ b[(u(k)

n+1)δ+1 + (u(k)
n )δ+1]

ν
δ+1
}

× [f(n, u(k)
n+1, u

(k)
n , u

(k)
n−1)u(k)

n − (δ + 1)F (n, u(k)
n+1, u

(k)
n )]

≤M2 +
1
4
‖u(k)‖δ+1 +

∑
n∈Z

{
a+ b[(u(k)

n+1)δ+1 + (u(k)
n )δ+1]

ν
δ+1
}

×
[
f(n, u(k)

n+1, u
(k)
n , u

(k)
n−1)u(k)

n − (δ + 1)F (n, u(k)
n+1, u

(k)
n )
]

≤M2 +
1
4
‖u(k)‖δ+1 + [a+ 2b‖u(k)‖ν∞]

×
[
f(n, u(k)

n+1, u
(k)
n , u

(k)
n−1)u(k)

n − (δ + 1)F (n, u(k)
n+1, u

(k)
n )
]

≤M2 +
1
4
‖u(k)‖δ+1 +M1[a+ 2b‖u(k)‖ν∞]

≤M2 +
1
4
‖u(k)‖δ+1 +M1[a+ 2q−

ν
δ+1 b‖u(k)‖ν ], k ∈ N.

(2.14)
Since ν < δ + 1, by (2.14), we have that {u(k)}k∈N is bounded. Hence, the proof is
complete. �

3. Proof of main results

Proof of Theorem 1.1. From Lemma 2.3 there exists a sequence {u(k)}k∈N ⊂ E
satisfying (2.6), and so (2.8). Hence, from Lemma 2.4, we have that {u(k)}k∈N is
bounded in E. It follows from (2.5) that there exists a constant M3 > 0 such that

q
1
δ+1 ‖u(k)‖∞ ≤ ‖u(k)‖ ≤M3,∀n ∈ N. (3.1)

From (A3)–(A5) we have∣∣ 1
δ + 1

f(n, v1, v2, v3)v2 − F (n, v1, v2)
∣∣ ≤ cq

4Mδ+1
3

vδ+1
2 +

cq

8M δ+1
3

(vδ+1
1 + vδ+1

2 ),

for all n ∈ Z, (vδ+1
1 + vδ+1

2 )
1
δ+1 ≤ 1

q
1
δ+1

M3.

(3.2)
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If ξ := lim supk→∞ ‖u(k)‖∞ = 0. Then from (A4), (2.2), (2.3) and (3.2), one has

c = J(u(k))− 1
δ + 1

〈
J ′(u(k)), u(k)

〉
+ o(1)

=
1

δ + 1

+∞∑
n=−∞

f(n, u(k)
n+1, u

(k)
n , u

(k)
n−1)u(k)

n −
+∞∑

n=−∞
F
(
n, u

(k)
n+1, u

(k)
n

)
+ o(1)

≤
cq

4Mδ+1
3

+∞∑
n=−∞

(
u(k)
n

)δ+1 +
cq

8M δ+1
3

+∞∑
n=−∞

[(u(k)
n+1)δ+1 + (u(k)

n )δ+1]

≤
cq

4Mδ+1
3

‖u(k)‖δ+1
δ+1 +

cq

4Mδ+1
3

‖u(k)‖δ+1
δ+1 + o(1)

≤ c

2
+ o(1), k →∞.

This contradiction shows that ξ > 0.
First, going to a subsequence if necessary, we can assume that the existence of

n(k) ∈ Z independent of k such that

|u(k)

n(k) | = ‖u(k)‖∞ >
ξ

2
. (3.3)

Hence, making such shifts, we can assume that n(k) ∈ Z(0, T − 1) in (3.3).
Moreover, passing to a subsequence of ks, we can even assume that n(k) = n(0) is
independent of k.

Next, we extract a subsequence, still denoted by u(k), such that

u(k)
n → un, k →∞, ∀n ∈ Z.

Inequality (3.3) implies that |un(0) | ≥ ξ and, hence, u = {un} is a nonzero sequence.
Moreover,

∆(pn(∆un−1)δ)− qnuδn + f(n, un+1, un, un−1)

= lim
k→∞

[
∆
(
pn
(
∆(u(k)

n−1)
)δ)− qn(u(k)

n )δ + f(n, u(k)
n+1, u

(k)
n , u

(k)
n−1)

]
= lim
k→∞

0 = 0.

So u = {un} is a solution of (1.1).
Finally, for any fixed D ∈ Z and k large enough, we have

D∑
n=−D

|u(k)
n |δ+1 ≤ 1

q
‖u(k)‖δ+1 ≤Mδ+1

3 .

Since Mδ+1
3 is a constant independent of k, passing to the limit, we have

D∑
n=−D

|un|δ+1 ≤Mδ+1
3 .

Since D is arbitrary and u ∈ lδ+1, the function u satisfies un → 0 as |n| → ∞. The
proof is complete. �

Theorem 1.2 can be proved similarly as in the proof of Theorem 1.1 and using
the process in [19]. For simplicity, we omit the proof. As an application of the main
theorems, we give two examples to illustrate our results.
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Example 3.1. In (1.1), let pn > 0, qn > 0, and

f(n, un+1, un, un−1)

= (δ + 1)uδn ln[1 + (uδ+1
n+1 + uδ+1

n )
1
δ+1 ] +

(uδ+1
n+1 + uδ+1

n )
1
δ+1uδn

1 + (uδ+1
n+1 + uδ+1

n )
1
δ+1

+ (δ + 1)uδn ln
[
1 + (uδ+1

n + uδ+1
n−1)

1
δ+1
]

+
(uδ+1
n + uδ+1

n−1)
1
δ+1uδn

1 + (uδ+1
n + uδ+1

n−1)
1
δ+1

.

Since
F (n, v1, v2) = (vδ+1

1 + vδ+1
2 ) ln[1 + (vδ+1

1 + vδ+1
2 )

1
δ+1 ],

we have
∂F (n− 1, v2, v3)

∂v2
+
∂F (n, v1, v2)

∂v2

= (δ + 1)vδ2 ln[1 + (vδ+1
1 + vδ+1

2 )
1
δ+1 ] +

(vδ+1
1 + vδ+1

2 )
1
δ+1 vδ2

1 + (vδ+1
1 + vδ+1

2 )
1
δ+1

+ (δ + 1)vδ2 ln[1 + (vδ+1
2 + vδ+1

3 )
1
δ+1 ] +

(vδ+1
2 + vδ+1

3 )
1
δ+1 vδ2

1 + (vδ+1
2 + vδ+1

3 )
1
δ+1

∂F (n, v1, v2)
∂v1

v1 +
∂F (n, v1, v2)

∂v2
v2

= (δ + 1)(vδ+1
1 + vδ+1

2 ) ln
[
1 + (vδ+1

1 + vδ+1
2 )

1
δ+1
]

+
(vδ+1

1 + vδ+1
2 )

δ+2
δ+1

1 + (vδ+1
1 + vδ+1

2 )
1
δ+1

≥
(
δ + 1 +

1

(vδ+1
1 + vδ+1

2 )
1
δ+1

)
F (n, v1, v2)

≥ 0, ∀n ∈ Z.

This shows that (A8) holds with a = b = ν = 1. It is easy to verify all the
conditions of Theorem 1.1 are satisfied. By Theorem 1.1, (1.1) possesses a nontrivial
homoclinic orbit.

Example 3.2. In (1.1), let pn > 0, qn > 0, β > 2 and

f(n, un+1, un, un−1) = β
[
(uδ+1
n+1 + uδ+1

n )
β−δ−1
δ+1 + (uδ+1

n + uδ+1
n−1)

β−δ−1
δ+1

]
uδn.

Then we have
F (n, v1, v2) = (vδ+1

1 + vδ+1
2 )

β
δ+1 .

By computations similar to those in [25], it is easy to verify all the assumptions
of Theorem 1.2 are satisfied. Therefore (1.1) possesses a nontrivial homoclinic
solution.
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