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NONLINEAR IMPLICIT DIFFERENTIAL EQUATIONS OF
FRACTIONAL ORDER AT RESONANCE

MOUFFAK BENCHOHRA, SOUFYANE BOURIAH, JOHN R. GRAEF

Abstract. In this article, we obtain an existence result for periodic solutions

to nonlinear implicit fractional differential equations with Caputo fractional
derivatives. Our main tools is coincidence degree theory, which was first in-

troduced by Mawhin. Also we present two examples to show the applicability
of our results.

1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration
to arbitrary orders (non-integer). See, for example, the monographs [1, 2, 4, 5, 22]
and the references therein.

In recent years, fractional differential equations arise naturally in various fields
such as rheology, fractals, chaotic dynamics, modeling, control theory, signal pro-
cessing, bioengineering and biomedical applications, etc. Fractional derivatives
provide an excellent instrument for the description of memory and hereditary prop-
erties of various materials and processes. We refer the reader to the recent works
[6, 7, 14, 15, 16, 17, 20, 21, 23, 25] and the references therein.

In this article, we are concerned with the existence of periodic solutions to the
nonlinear implicit fractional differential equation (IFDE for short)

cDαy(t) = f(t, y(t), cDαy(t)), t ∈ J := [0, T ], T > 0, 0 < α ≤ 1, (1.1)

y(0) = y(T ), (1.2)

where cDα is the Caputo fractional derivative, and f : J×R×R→ R is a continuous
function.

Recently, by means of different tools such as the Banach contract principle,
Schauder’s fixed point, Schaefer’s fixed point, the Leray-Schauder nonlinear alter-
native, Monch’s fixed point theorem, and the measure of noncompactness, initial
and boundary value problems for implicit fractional differential equations involving
Caputo type fractional derivatives have extensively been studied in the books [1, 2]
and the papers [8, 9, 10, 11].

This article is motivated by the works [3, 13, 24] where coincidence degree theory
is used for some classes of boundary value problem for fractional differential equa-
tions of integer as well as noninteger orders. This article is organized as follows. In
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Section 2, some notations are introduced and we recall some preliminary concepts
about fractional calculus. The proof of our main result is presented in Section 3 by
applying the coincidence degree theory of Mawhin. In the last section, we give two
examples to illustrate the applicability of our main results. This paper initiates
the application of coincidence degree to the study of implicit fractional differential
equations.

2. Preliminaries

In this section, we introduce notation, definitions, and preliminary facts that are
used throughout this paper. By C(J,R), we denote the Banach space of continuous
functions from J into R with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}.
By L1(J), we denote the space of Lebesgue-integrable functions y : J → R with
the norm

‖y‖L1 =
∫ T

0

|y(t)|dt.

Definition 2.1 ([22]). The fractional integral of order α ∈ R+ of the function
h ∈ L1([0, T ], R+) is defined by

cIαh(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds,

where Γ is the Euler gamma function defined by Γ(α) =
∫ +∞

0
tα−1e−tdt, α > 0.

Definition 2.2 ([16]). For a function h given on the interval [0, T ], the Caputo
fractional derivative of order α of h is defined by

(cDαh)(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1h(n)(s)ds,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Lemma 2.3 ([16]). Let α > 0 and n = [α] + 1; then

cIα(cDαf(t)) = f(t)−
n−1∑
k=0

f (k)(0)
k!

tk.

Lemma 2.4 ([22]). If α > 0, the homogeneous differential equation of fractional
order

cDαh(t) = 0
has a solution

h(t) = c0 + c1t+ c2t
2 + . . .+ cn−1t

n−1,

where ci, i = 1, . . . , n are constants and n = [α] + 1.

The following definitions and basic lemmas from coincidence degree theory are
fundamental in the proof of our main result (see [12, 18]).

Definition 2.5. Let X and Y be normed spaces. A linear operator L : domL ⊂
X → Y is said to be a Fredholm operator of index zero provided that

(1) imgL is a closed subset of Y ;
(2) dim kerL = codim imgL < +∞.
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It follows from Definition refopdeFrdm that there exist continuous projections
P : X → X and Q : Y → Y such that

imgP = kerL, kerQ = imgL, X = kerL⊕ kerP, Y = imgL⊕ imgQ.

This implies that the restriction of L to domL ∩ kerP , which we will denote by
LP , is an isomorphism onto its image.

Definition 2.6. Let L be a Fredholm operator of index zero and let Ω ⊆ X be a
bounded set with domL ∩ Ω 6= ∅. The operator N : Ω→ Y is L-compact in Ω if

(1) the mapping QN : Ω→ Y is continuous and QN(Ω) ⊆ Y is bounded, and
(2) the mapping (LP )−1(I −Q)N : Ω→ X is completely continuous.

Lemma 2.7 ([19]). Let X and Y be Banach spaces and let Ω ⊂ X be a bounded
open symmetric set with 0 ∈ Ω. Let L : domL ⊂ X → Y be a Fredholm operator
of index zero with domL ∩Ω 6= ∅ and N : X → Y be an L-compact operator on Ω.
Assume that

Lx−Nx 6= −λ(Lx+N(−x))

for all x ∈ domL∩∂Ω and all λ ∈ (0, 1], where ∂Ω is the boundary of Ω with respect
to X. Then the equation Lx = Nx has at least one solution on domL ∩ Ω.

3. Existence of solutions

Let X = {y ∈ C(J,R) : y(t) = cIαu(t) : u ∈ C(J,R), t ∈ J} with the norm

‖y‖X = max{‖y‖∞, ‖cDαy‖∞}

and Y = C(J,R) with the norm

‖u‖Y = sup{|u(t)| : t ∈ J}.

Define the linear operator L : domL ⊆ X → Y by

Ly := cDαy, (3.1)

where
domL = {y ∈ X : cDαy ∈ Y and y(0) = y(T )}.

Define the operator N : X → Y by

Ny(t) := f(t, y(t), cDαy(t)), t ∈ J. (3.2)

Then problem (1.1)–(1.2) can be equivalently rewritten as Ly = Ny.

Lemma 3.1. Let L be defined by (3.1). Then kerL = {c : c ∈ R} and

imgL =
{
y ∈ Y :

∫ T

0

(T − s)α−1y(s)ds = 0
}
.

Proof. By Lemma 2.4, for t ∈ J , Ly(t) = cDαy(t) = 0 has the solution y(t) = c,
where c ∈ R. Then

kerL = {y(t) = c : c ∈ R}.
For u ∈ imgL, there exists y ∈ domL such that u = Ly ∈ Y. By Lemma 2.3, for
each t ∈ J we have

y(t) = y(0) +
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds.
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Since y ∈ domL, u satisfies

1
Γ(α)

∫ T

0

(T − s)α−1u(s)ds = 0.

On the other hand, suppose u ∈ Y satisfies∫ T

0

(T − s)α−1u(s)ds = 0.

Let y(t) = cIαu(t); then u(t) = cDαy(t) and so y ∈ domL. Hence, u ∈ imgL, so

imgL =
{
y ∈ Y :

∫ T

0

(T − s)α−1y(s)ds = 0
}
,

which completes the proof. �

Lemma 3.2. Let L be defined by (3.1). Then L is a Fredholm operator of index
zero, and the linear continuous projector operators P : X → X and Q : Y → Y can
be defined as

Py = y(0), Qu(t) =
α

Tα

∫ T

0

(T − s)α−1u(s)ds.

Furthermore, the operator L−1
P : imgL→ X ∩ kerP satisfies

L−1
P (u)(t) = cIαu(t).

Proof. Clearly, imgP = kerL and P 2 = P . It follows that for each y ∈ X,
y = (y − Py) + Py, that is, X = kerP + kerL. A simple calculation shows that
kerP ∩ kerL = 0. Therefore, X = kerP ⊕ kerL. A similar argument shows that
for each u ∈ Y , Q2u = Qu and u = (u−Q(u)) +Q(u), where (u−Q(u)) ∈ kerQ =
imgL.

It follows from imgL = kerQ and Q2 = Q, that imgQ ∩ imgL = 0. Then, we
have Y = imgL⊕ imgQ. Thus,

dim kerL = dim imgQ = codim imgL.

This means that L is a Fredholm operator of index zero.
To prove that L−1

P is the inverse of L|domL∩kerP , let u ∈ imgL. Then

LL−1
P (u) = cDα(cIαu) = u. (3.3)

Moreover, for y ∈ domL ∩ kerP , we obtain that

L−1
P (L(y(t))) = cIα(cDαy(t)) = y(t)− y(0).

Since y ∈ domL ∩ kerP, we know that y(0) = 0. Therefore

L−1
P (L(y(t))) = y(t). (3.4)

Combining (3.3) and (3.4) shows that L−1
P = (L|domL∩kerP )−1. This proves the

lemma. �

In the sequel we use of the following assumption.

(H1) There exist constants K, K > 0 with K +K < min
{

1, Γ(α+1)
Tα

}
such that

|f(t, u, v)− f(t, ū, v̄)| ≤ K|u− ū|+K|v − v̄| for t ∈ J and u, ū, v, v̄ ∈ R.

Lemma 3.3. Assume (H1) holds. Then the operator N is L-compact on any
bounded open set Ω ⊂ X.
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Proof. Define the bounded open set Ω = {y ∈ X : ‖y‖X < M}, where M is a
positive constant. The proof will be given in a sequence of claims.

Claim 1: QN is continuous. The continuity of QN follows from the conditions on
f and the Lebesgue dominated convergence theorem.

Claim 2: QN(Ω) is bounded. For each y ∈ Ω and t ∈ J , we have

|QN(y)(t)| ≤ α

Tα

∫ T

0

(T − s)α−1|f(s, y(s), cDαy(s))|ds

≤ α

Tα

∫ T

0

(T − s)α−1|f(s, y(s), cDαy(s))− f(s, 0, 0)|ds

+
α

Tα

∫ T

0

(T − s)α−1|f(s, 0, 0)|ds

≤ f∗ +
α

Tα

∫ T

0

(T − s)α−1(K|y(s)|+K|cDαy(s)|)ds

≤ f∗ +M(K +K),

where f∗ = supt∈J |f(t, 0, 0)|. Thus,

‖QN(y)‖Y ≤ f∗ +M(K +K) := R.

This shows that QN(Ω) ⊆ Y is bounded.

Claim 3: L−1
P (I −Q)N : Ω→ X is completely continuous.

In view of the Ascoli-Arzelà theorem, we need to prove that L−1
P (I−Q)N(Ω) ⊂ X

is equicontinuous and bounded. First, for each y ∈ Ω and t ∈ J, we have

L−1
P (I −Q)Ny(t)

= L−1
P (Ny(t)−QNy(t))

= cIα
[
f(t, y(t), cDαy(t))− α

Tα

∫ T

0

(T − s)α−1f(s, y(s), cDαy(s))
]
ds

=
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s), cDαy(s))ds

− tα

TαΓ(α)

∫ T

0

(T − s)α−1f(s, y(s), cDαy(s))ds.

On one hand, for each y ∈ Ω and t ∈ J, we have

|L−1
P (I −Q)Ny(t)|

≤ 2
Γ(α)

∫ T

0

(T − s)α−1|f(s, y(s), cDαy(s))− f(t, 0, 0)|ds

+
2

Γ(α)

∫ T

0

(T − s)α−1|f(t, 0, 0)|ds

≤ [f∗ +M(K +K)]
2Tα

Γ(α+ 1)
:= B1,

so
‖L−1

P (I −Q)Ny‖∞ ≤ B1. (3.5)
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On the other hand,
cDα(L−1

P (I −Q)Ny(t))

= f(t, y(t), cDαy(t))− α

Tα

∫ T

0

(T − s)α−1f(s, y(s), cDαy(s))ds,
(3.6)

which implies that for each y ∈ Ω and t ∈ J ,

|cDα(L−1
P (I −Q)Ny(t))| ≤ 2f∗ + 2M(K +K) := B2,

so that
‖cDα(L−1

P (I −Q)Ny)‖∞ ≤ B2. (3.7)
From inequalities (3.5) and (3.7), we have

‖L−1
P (I −Q)Ny‖X ≤ max{B1, B2},

which shows that L−1
P (I −Q)N(Ω) is uniformly bounded in X.

To prove that L−1
P (I−Q)N(Ω) is equicontinuous, notice that for 0 ≤ t1 ≤ t2 ≤ T

and y ∈ Ω, we have

|L−1
P (I −Q)Ny(t2)− L−1

P (I −Q)Ny(t1)|

≤ f∗ +M(K +K)
Γ(α)

[ ∫ t2

t1

(t2 − s)α−1ds+
∫ t1

0

|(t2 − s)α−1 − (t1 − s)α−1|ds
]

+
[M(K +K) + f∗

Γ(α+ 1)

]
(tα2 − tα1 ).

As t1 → t2, the right-hand side of the above inequality tends to zero. Now from
(3.6), we have

|cDα(L−1
P (I −Q)Ny)(t2)− cDα(L−1

P (I −Q)Ny)(t1)|
≤ |f(t2, y(t2), cDαy(t2))− f(t1, y(t1), cDαy(t1))|.

As t1 → t2 the right-hand side of the above inequality also tends to zero. Thus,
L−1
P (I − Q)N(Ω) is equicontinuous in X. By the Ascoli-Arzelà theorem, L−1

P (I −
Q)N(Ω) is relatively compact. As a consequence of Claims 1 to 3, we can conclude
that the operator N is L-compact in Ω, and this completes the proof. �

Lemma 3.4. If condition (H1) holds, then there exists a positive number A, not
depending on λ, such that, if

L(y)−N(y) = −λ[L(y) +N(−y)], λ ∈ (0, 1], (3.8)

then ‖y‖X ≤ A.

Proof. Assume (H1) holds and that y ∈ X satisfies (3.8). Then

L(y)−N(y) = −λL(y)− λN(−y),

so
L(y) =

1
1 + λ

N(y)− λ

1 + λ
N(−y). (3.9)

Using the definitions of the operators L and N (see (3.1) and (3.2)), for each t ∈ J ,
we obtain

|Ly(t)| = |cDαy(t)| ≤ 1
1 + λ

|f(t, y(t), cDαy(t))|+ λ

1 + λ
|f(t,−y(t),−cDαy(t))|

≤ 1
1 + λ

[|f(t, y(t), cDαy(t))− f(t, 0, 0)|+ f∗]
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+
λ

1 + λ
[|f(t,−y(t),−cDαy(t))− f(t, 0, 0)|+ f∗]

≤
( 1

1 + λ
+

λ

1 + λ

)
f∗ +

1
1 + λ

[K|y(t)|+K|cDαy(t)|]

+
λ

1 + λ
[K| − y(t)|+K| − cDαy(t)|]

= f∗ +
( 1

1 + λ
+

λ

1 + λ

)
[K|y(t)|+K|cDαy(t)|]

= f∗ +K|y(t)|+K|cDαy(t)|
≤ f∗ +K‖y‖∞ +K‖cDαy‖∞,

which implies
‖cDαy‖∞ ≤ f∗ +K‖y‖∞ +K‖cDαy‖∞. (3.10)

By (3.9), for each t ∈ J , we have

y(t) =
1

1 + λ
L−1
p Ny(t)− λ

1 + λ
L−1
p N(−y(t)),

and so

|y(t)| ≤ 1
(1 + λ)Γ(α)

∫ t

0

(t− s)α−1 |f(s, y(s), cDαy(s))− f(s, 0, 0)| ds

+
λ

(1 + λ)Γ(α)

∫ t

0

(t− s)α−1 |f(s,−y(s),−cDαy(s))− f(s, 0, 0)| ds

+
f∗Tα

(1 + λ)Γ(α+ 1)
+

λf∗Tα

(1 + λ)Γ(α+ 1)

≤
( 1

1 + λ
+

λ

1 + λ

) Tα

Γ(α+ 1)
(K‖y‖∞ +K‖cDαy‖∞)

+
( 1

1 + λ
+

λ

1 + λ

) f∗Tα

Γ(α+ 1)

=
Tα

Γ(α+ 1)
(K‖y‖∞ +K‖cDαy‖∞) +

f∗Tα

Γ(α+ 1)
.

Hence,

‖y‖∞ ≤ [f∗ +K‖y‖∞ +K‖cDαy‖∞]
Tα

Γ(α+ 1)
. (3.11)

Using the definition of the norm ‖ · ‖X , we see that if ‖y‖X = ‖cDαy‖∞, then, by
(3.10), we have

‖y‖X ≤ f∗ +K‖y‖∞ +K‖cDαy‖∞
≤ f∗ +K‖y‖X +K‖y‖X
= f∗ + (K +K)‖y‖X ,

and thus

‖y‖X ≤
f∗

1− (K +K)
:= A1.

On the other hand, if ‖y‖X = ‖y‖∞, then (3.11) implies

‖y‖X ≤ [f∗ +K‖y‖∞ +K‖cDαy‖∞]
Tα

Γ(α+ 1)
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≤ [f∗ +K‖y‖X +K‖y‖X ]
Tα

Γ(α+ 1)

= [f∗ + (K +K)‖y‖X ]
Tα

Γ(α+ 1)
,

and so
‖y‖X ≤

f∗

Γ(α+1)
Tα − (K +K)

:= A2.

Therefore
‖y‖X ≤ max{A1, A2} := A,

and this completes the proof. �

Lemma 3.5. If condition (H1) is satisfied, then there is a bounded open set Ω ⊂ X
such that

L(y)−N(y) 6= −λ[L(y) +N(−y)], (3.12)
for all y ∈ ∂Ω and all λ ∈ (0, 1].

Proof. By (H1) and Lemma 3.4, there exists a positive constant A that does not
depend on λ such that, if y satisfies

L(y)−N(y) = −λ[L(y) +N(−y)], λ ∈ (0, 1],

then ‖y‖X ≤ A. Thus, if

Ω = {y ∈ X : ‖y‖X < B} (3.13)

where B > A, we have

L(y)−N(y) 6= −λ[L(y)−N(−y)]

for every y ∈ ∂Ω = {y ∈ X : ‖y‖X = B} and λ ∈ (0, 1]. �

We are now ready to prove the main result in our paper.

Theorem 3.6. If (H1) holds, then problem (1.1)–(1.2) has at least one solution.

Proof. From (H1) it is clear that the set Ω defined by (3.13) is symmetric, 0 ∈ Ω,
and X ∩Ω = Ω 6= ∅. Furthermore, it follows from Lemma 3.5 that if condition (H1)
is satisfied, then

L(y)−N(y) 6= −λ[L(y)−N(−y)]
for all y ∈ X ∩ ∂Ω = ∂Ω and all λ ∈ (0, 1]. This together with Lemma 2.7 imply
that problem (1.1)–(1.2) has at least one solution, and this completes the proof. �

4. Examples

In this section we give two examples to illustrate our theorem.

Example 4.1. Consider the problem for non-linear implicit fractional differential
equations

D1/2y(t) =
e−t

(11 + et)

[ |y(t)|
1 + |y(t)|

− |D1/2y(t)|
1 + |D1/2y(t)|

]
, t ∈ [0, 1], (4.1)

y(0) = y(1). (4.2)

Here we have

f(t, u, v) =
e−t

(11 + et)

( u

1 + u
− v

1 + v

)
, t ∈ [0, 1], u, v ∈ [0,+∞),
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and clearly the function f is jointly continuous. For each u, ū, v, v̄ ∈ [0,+∞) and
t ∈ [0, 1],

|f(t, u, v)− f(t, ū, v̄)| ≤ e−t

(11 + et)
[|u− ū|+ |v − v̄|] ≤ 1

12
[|u− ū|+ |v − v̄|].

Hence, condition (H1) is satisfied with K = K = 1/12 and

K +K =
1
6
< min

{
1,

Γ(α+ 1)
Tα

}
= min

{
1,
√
π

2
}

=
√
π

2
.

It follows from Theorem 3.6 that problem (4.1)–(4.2) has at least one solution.

Example 4.2. Consider the problem

D1/2y(t) =
t

3
sin y(t) +

1
100

sinD1/2y(t) +
1
2
, t ∈ [0, 1], (4.3)

y(0) = y(1). (4.4)

Here,

f(t, u, v) =
t

3
sinu+

1
100

sin v +
1
2
, t ∈ [0, 1], u, v ∈ R.

which is jointly continuous. For any u, ū, v, v̄ ∈ R and t ∈ [0, 1],

|f(t, u, v)− f(t, ū, v̄)| ≤ |t|
3
| sinu− sin ū|+ 1

100
| sin v − sin v̄|

≤ 1
3
|u− ū|+ 1

100
|v − v̄|.

Hence, condition (H1) is satisfied with K = 1/3, K = 1/100, and

K +K =
103
300

< min
{

1,
Γ(α+ 1)
Tα

}
=
√
π

2
.

It follows from Theorem 3.6 that problem (4.3)–(4.4) has at least one solution on
J .
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[2] S. Abbas, M. Benchohra, G. M. N’Guérékata; Advanced Fractional Differential and Integral
Equations, Nova Science Publishers, New York, 2015.

[3] S. M. Afonso, A. L. Furtado; Antiperiodic solutions for nth-order functional differential equa-
tions with infinite delay, Electron. J. Differential Equations, 2016, No. 44, pp. 1–8.

[4] G. A. Anastassiou; Advances on Fractional Inequalities, Springer, New York, 2011.
[5] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo; Fractional Calculus Models and Numerical

Methods, World Scientific, New York, 2012.
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