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NONEXISTENCE OF STABLE SOLUTIONS TO p-LAPLACE
EQUATIONS WITH EXPONENTIAL NONLINEARITIES

PHUONG LE

Abstract. In this note we prove the nonexistence of stable solutions to the

p-Laplace equation −∆pu = eu on the entire Euclidean space RN , where p > 2

and N <
p(p+3)

p−1
.

1. Introduction and statement of main results

We consider the p-Laplace equation

−∆pu = eu in RN , (1.1)

where p > 2 and ∆pu = div(|∇u|p−2∇u) is the usual p-Laplace operator. We recall
that u ∈ C1(RN ) is said to be a weak solution of (1.1) if∫

RN
|∇u|p−2(∇u,∇ϕ)dx =

∫
RN

euϕdx (1.2)

for every ϕ ∈ C1
c (RN ). This article concern the stable solutions of (1.1) in the

following sense.

Definition 1.1. A weak solution u of (1.1) is stable if∫
RN
|∇u|p−2|∇ϕ|2dx+ (p− 2)

∫
RN
|∇u|p−4(∇u,∇ϕ)2dx−

∫
RN

euϕ2dx ≥ 0

for every ϕ ∈ C1
c (RN ).

Note that the above expression is nothing but the second that the variation of
the energy functional associated with (1.1) is non-negative. Thus, if u ∈ C1(RN )
is a local minimizer of the energy functional, then u is a stable solution of (1.1).

Remark 1.2. Let u be a stable solution of (1.1). Then∫
RN

euϕ2dx ≤ (p− 1)
∫

RN
|∇u|p−2|∇ϕ|2dx (1.3)

for every ϕ ∈ C1
c (RN ).
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The nonexistence and stability of solutions to nonlinear elliptic partial differential
equations have drawn much attention in the last decades. Readers can find recent
developments on stable solutions in the monograph [6] by Dupaigne, and on related
problems in [1, 3, 7, 13].

We should mention here the results in [8, 9] for Lane-Emden-Fowler equation
−∆u = |u|m−1u where it is proved that there is no nontrivial stable solution if
1 < m < mc(N), where mc(N) is explicitly given and is always greater than
the Sobolev critical exponent. Later, these results were extended to quasilinear
case −∆pu = |u|m−1u in [4]. For more general nonlinearities, we mention paper
[7] for semilinear equation −∆u = f(u) and paper [2] for quasilinear equation
−∆pu = f(u). In spite of dealing with general nonlinearity f , the nonexistence
results in [2] can be applied only to (one-side) bounded solutions.

For the case of exponential nonlinearity, we refer to [5, 10] for a proof of nonex-
istence of stable solutions of the semilinear equation −∆u = eu in low dimensional
Euclidean space. More precisely, the following theorem was proved in [10].

Theorem 1.3. For p = 2 and N ≤ 9, there is no stable C2-solution of (1.1).

Recently, similar results were proved for the biharmonic equation ∆2u = eu

and, more generally, for the polyharmonic equation (−∆)mu = eu in [11, 12]. The
purpose of our paper is to come back to the second order elliptic equations and
extend the results in [5, 10] to the p-Laplace equation −∆pu = eu. First of all, we
prove the following a priori estimate for stable solutions.

Theorem 1.4. Suppose that u is a stable solution of equation (1.1). Then for any
α ∈ (0, 4

p(p−1) ), there exists m = m(p, α) > 0 and a constant C = C(p, α) > 0 such
that for any function η ∈ C1

c (RN ) with 0 ≤ η ≤ 1 we have∫
RN

e(pα+1)uηpm dx ≤ C
∫

RN
|∇η|p(pα+1) dx. (1.4)

The method of proof is inspired by the techniques developed in [4, 5, 10]. Our
main result is the following theorem, which is a generalization of the Theorem 1.3.

Theorem 1.5. For N < p(p+3)
p−1 , there is no stable C1 solution of (1.1).

Theorem 1.5 is sharp when p = 2 as already pointed out in [10]. However, the
optimality of the dimension N in terms of p is still an interesting open question for
p > 2.

Open problem. For N ≥ p(p+3)
p−1 , does equation (1.1) admit a stable C1 solution?

As far as we know, there is no result on nonexistence of stable solutions for (1.1)
on the case p < 2. Hence, this case should be also an interesting topic for future
research.

2. Proofs

In the sequel, we denote by C a generic constant whose concrete values may
change from line to line or even in the same line. If this constant depends on
an arbitrary small number ε, then we will denote it by Cε. We also use Young
inequality in the form ab ≤ εap + Cεb

q for p, q > 0 satisfying 1
p + 1

q = 1.
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Proof of Theorem 1.4. We split the proof into two steps.
Step 1. For any ε ∈ (0, pα) and for any nonnegative function ψ ∈ C1

c (RN ), there
exists a constant Cε = C(p, ε) > 0 such that

(pα− ε)
∫

RN
|∇u|pepαuψp dx ≤ Cε

∫
RN

epαu|∇ψ|p dx+
∫

RN
e(pα+1)uψp dx. (2.1)

To prove this, using ϕ = epαuψp as a test function in 1.2, since

∇ϕ = pαepαuψp∇u+ pepαuψp−1∇ψ,

we obtain

pα

∫
RN
|∇u|pepαuψp dx+p

∫
RN
|∇u|p−2epαuψp−1(∇u,∇ψ) dx =

∫
RN

e(pα+1)uψp dx.

Therefore,

pα

∫
RN
|∇u|pepαuψp dx

≤ p
∫

RN
|∇u|p−1epαuψp−1|∇ψ| dx+

∫
RN

e(pα+1)uψp dx

≤
∫

RN
ε
(
|∇u|p−1e(p−1)αuψp−1

) p
p−1

+ Cε
(
eαu|∇ψ|

)p
dx+

∫
RN

e(pα+1)uψp dx

= ε

∫
RN
|∇u|pepαuψp dx+ Cε

∫
RN

epαu|∇ψ|p dx+
∫

RN
e(pα+1)uψp dx,

which implies (2.1).
Step 2. For any ε ∈ (0, pα), we set

βε = 1−
( (p− 1)p2α2

4
+ ε
) 1
pα− ε

and we claim that there exists a constant Cε = C(p, ε) > 0 such that

βε

∫
RN

e(pα+1)uψp dx ≤ Cε
∫

RN
epαu|∇ψ|p dx. (2.2)

To prove this, we use the stability assumption with ϕ = e
pαu
2 ψ

p
2 . Since

∇ϕ =
pα

2
e
pαu
2 ψ

p
2∇u+

p

2
e
pαu
2 ψ

p−2
2 ∇ψ,

using (1.3) we obtain∫
RN

e(pα+1)uψp dx ≤ (p− 1)
∫

RN
|∇u|p

(pα
2

)2

epαuψp dx

+ (p− 1)
∫

RN
|∇u|p−1 p

2α

2
epαuψp−1|∇ψ| dx

+ (p− 1)
∫

RN
|∇u|p−2

(p
2

)2

epαuψp−2|∇ψ|2 dx.

Now we use Young inequality to estimate the last two terms

(p− 1)
∫

RN
|∇u|p−1 p

2α

2
epαuψp−1|∇ψ| dx

≤
∫

RN

ε

2

(
|∇u|p−1e(p−1)αuψp−1

) p
p−1

+ Cε (eαu|∇ψ|)p dx
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=
ε

2

∫
RN
|∇u|pepαuψp dx+ Cε

∫
RN

epαu|∇ψ|p dx,

and

(p− 1)
∫

RN
|∇u|p−2

(p
2

)2

epαuψp−2|∇ψ|2 dx

≤
∫

RN

ε

2

(
|∇u|p−2e(p−2)αuψp−2

) p
p−2

+ Cε
(
e2αu|∇ψ|2

) p
2 dx

=
ε

2

∫
RN
|∇u|pepαuψp dx+ Cε

∫
RN

epαu|∇ψ|p dx.

Plugging these two estimates into the previous one, we obtain∫
RN

e(pα+1)uψp dx

≤
( (p− 1)p2α2

4
+ ε
)∫

RN
|∇u|pepαuψp dx+ Cε

∫
RN

epαu|∇ψ|p dx

≤
( (p− 1)p2α2

4
+ ε
) 1
pα− ε

∫
RN

e(pα+1)uψp dx+ Cε

∫
RN

epαu|∇ψ|p dx.

We have used (2.1) in the last inequality. The claim (2.2) is now proved.
We are now in a position to prove the Theorem 1.4. Since limε→0 βε = 1 −

αp(p−1)
4 > 0, we can find some ε ∈ (0, 1) depending on p and α such that βε > 0.

Next we choose some m large enough satisfying (m− 1)pα+1
α ≥ pm and apply (2.2)

for ψ = ηm to obtain∫
RN

e(pα+1)uηpm dx ≤ C
∫

RN
epαuηp(m−1)|∇η|p dx

≤
∫

RN
ε
(
epαuηp(m−1)

) pα+1
pα

+ Cε(|∇η|p)pα+1 dx

≤ ε
∫

RN
e(pα+1)uηpm dx+ Cε

∫
RN
|∇η|p(pα+1) dx.

Hence, (1.4) follows. �

Proof of Theorem 1.5. By contradiction, we suppose that (1.1) admits a stable so-
lution for N < p(p+3)

p−1 . Since

lim
α→ 4

p(p−1)

N − p(pα+ 1) = N − p(p+ 3)
p− 1

< 0,

we may find some α ∈
(

0, 4
p(p−1)

)
such that N − p(pα + 1) < 0. We then apply

Theorem 1.4 for a test function ηR ∈ C1
c (RN ) satisfying 0 ≤ ηR ≤ 1 in RN , ηR = 1

in B(0, R) and ηR = 0 in RN \B(0, 2R) to obtain∫
B(0,R)

e(pα+1)u dx ≤ CRN−p(pα+1).

Letting R → ∞ in the last inequality we obtain
∫

RN e
(pα+1)u dx = 0, a contradic-

tion. This completes the proof. �
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