Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 327, pp. 1–12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

NONLINEAR PARABOLIC EQUATIONS WITH BLOWING-UP COEFFICIENTS WITH RESPECT TO THE UNKNOWN AND WITH SOFT MEASURE DATA

KHALED ZAKI, HICHAM REDWANE

ABSTRACT. We establish the existence of solutions for the nonlinear parabolic problem with Dirichlet homogeneous boundary conditions,

$$\frac{\partial u}{\partial t} - \sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left(d_i(u) \frac{\partial u}{\partial x_i} \right) = \mu, \quad u(t=0) = u_0,$$

in a bounded domain. The coefficients $d_i(s)$ are continuous on an interval $]-\infty, m[$, there exists an index p such that $d_p(u)$ blows up at a finite value m of the unknown u, and μ is a diffuse measure.

1. INTRODUCTION

In this paper we study the existence of solutions of the problem

$$\frac{\partial u}{\partial t} - \sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left(d_i(u) \frac{\partial u}{\partial x_i} \right) = \mu \quad \text{in } Q, \tag{1.1}$$

$$u(t=0) = u_0 \quad \text{in } \Omega, \tag{1.2}$$

$$u = 0 \quad \text{on } \partial\Omega \times (0, T),$$
 (1.3)

where Ω is an open bounded subset of \mathbb{R}^N $(N \ge 1)$, T is a positive real number, and we have set Q the cylinder $\Omega \times (0,T)$ and $\partial\Omega \times (0,T)$ its lateral surface. The coefficients $d_i(s)$ are continuous on an interval $] - \infty, m[$ of \mathbb{R} (with m > 0) with value in $\mathbb{R}^+ \cup \{+\infty\}$, $d_i(s) \ge \alpha > 0$, and such that there exists an index p such that $\lim_{s\to m^-} d_p(s) = +\infty$, and where $u_0 \in L^1(\Omega)$, $u_0 \le m$ a.e. in Ω and μ is a measure on Q with bounded total variation.

When problem (1.1)-(1.3) is studied, the *a priori* estimates on the above problem do not lead in general to the existence of a weak solution (i.e. in the distributional sense), there are mainly two type of difficulties in studying problem (1.1)-(1.3). One consists to define in a proper way the term $d_p(u)\frac{\partial u}{\partial x_p}$ on the subset $\{(x,t) \in Q : u(x,t) = m\}$ of Q on which $d_p(u) = +\infty$. As an example, one can not set in general $d_p(u)\frac{\partial u}{\partial x_p} = 0$ on $\{(x,t) \in Q : u(x,t) = m\}$ to obtain the equation in the sense of distributions.

²⁰¹⁰ Mathematics Subject Classification. 47A15, 46A32, 47D20.

 $Key\ words\ and\ phrases.$ Nonlinear parabolic equations; blowing-up coefficients;

renormalized solutions; soft measure.

^{©2016} Texas State University.

Submitted September 9, 2016. Published December 22, 2016.

The second difficulty is represented here by the presence of an L^1 initial datum and a measure as right-hand side term in (1.1). The measure μ is just assumed to be bounded total variation over Q that do not charge the sets of zero *p*-capacity (see Section 2 for the definition), the so called *diffuse measures* or *soft measures*, and we will use the symbol $\mathcal{M}_0(Q)$ to denote them.

To overcome this difficulty we use the framework of renormalized solutions. This notion was introduced by Lions and DiPerna [14] for the study of Boltzmann equation. This notion was then adapted to elliptic version of (1.1)-(1.3) in Boccardo, Diaz, Giachetti, Murat [12], Lions and F. Murat [22], and Murat [22, 23]. At the same the equivalent notion of entropy solutions was developed independently by Bénilan and al. [1] for the study of nonlinear elliptic problems.

The existence of a renormalized solution of (1.1)-(1.3) was proved in [2] in the stationary case where $\mu \in L^2(\Omega)$. In the stationary and evolution cases of $u_t - div(A(x,t,u)\nabla u) = f$ in Q, where the matrix A(x,t,s) blows up (uniformly with respect to (x,t)) as $s \to m^-$ and where $f \in L^1(Q)$, the existence of renormalized solution was proved by Blanchard, Guibé and Redwane in [3].

The existence and uniqueness of renormalized solution of (1.1)-(1.3) was proved in [4] in the case where $\sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left(d_i(u) \frac{\partial u}{\partial x_i} \right)$ is replaced by the *p*-Laplacian operator $\Delta_p u, u_0 \in L^1(\Omega)$ and u_t is replaced by $b(u)_t$ and for every measure μ which does not charge the sets of null parabolic *p*-capacity.

Note that, the existence result in [4] is strongly based on a decomposition theorem given in [15] for diffuse measure (i.e. $\mu \in \mathcal{M}_0(Q)$), this decomposition of μ can not be easily used for problem (1.1)-(1.3). Indeed (for p = 2), for every $\mu \in \mathcal{M}_0(Q)$ there exist $f \in L^1(Q)$, $g \in L^2(0, T; H_0^1(\Omega))$ and $F \in L^2(0, T; H^{-1}(\Omega))$ such that

$$\mu = f + F + g_t \quad \text{in } D'(Q), \tag{1.4}$$

note that the decomposition of μ is not uniquely determined. Therefore, equation (1.1) is equivalent to

$$\frac{\partial v}{\partial t} - \sum_{i=1}^{N} \frac{\partial}{\partial x_i} \Big(d_i (v+g) \frac{\partial v}{\partial x_i} \Big) = f + F \quad \text{in } Q,$$

where v = u - g. Since $g \notin L^{\infty}(Q)$ in general and $\lim_{s \to m^-} d_p(s) = +\infty$, then the term $d_p(v+g)$ can not be easily handled. To overcome this difficulty, we use in this paper the following approximation property for the measure μ (see Theorem 2.2). Indeed, every $\mu \in \mathcal{M}_0(Q)$ can be strongly approximated by measures which admit decomposition (1.4) with $g \in L^{\infty}(Q)$ (see [17, Theorem 1.1]).

A large number of papers was then devoted to the study the existence of renormalized solution of parabolic problems with rough data under various assumptions and in different contexts: for a review on classical results, see [5, 6, 8, 9, 18, 19, 20, 24, 25, 26, 30, 32].

We organize this article as follows. In Section 2 we give some preliminaries and, in particular, we provide the definition of parabolic capacity and some basic properties of diffuse measures. Section 3 is devoted to specifying the assumptions on d_i , u_0 and μ . We also give the definition of a renormalized solution of (1.1)-(1.3). In Section 4 we establish (Theorem 4.1) the existence of such a solution. In Section 5 (Appendix) we prove Theorem 2.3 that will be a key point in the existence result.

2. PRELIMINARIES ON PARABOLIC CAPACITY AND DIFFUSE MEASURES

We recall the notion of parabolic *p*-capacity (with p = 2) associated to our problem (for further details see [29, 15]). Let $Q = \Omega \times (0, T)$ for any fixed T > 0, and let us recall that

$$W = \left\{ u \in L^2(0,T; H^1_0(\Omega)) : u_t \in L^2(0,T; H^{-1}(\Omega)) \right\},\$$

endowed with its natural norm $\|\cdot\|_{L^2(0,T;H_0^1(\Omega))} + \|\cdot\|_{L^2(0,T;H^{-1}(\Omega))}$, remark that W is continuously embedded in $C([0,T];L^2(\Omega))$ and $C_c^{\infty}([0,T] \times \Omega)$ is dense in W. Let $U \subseteq Q$ is an open set, we define the parabolic 2-capacity of U as

$$\operatorname{cap}_{2}(U) = \inf\{\|u\|_{W} : u \in W, u \ge \chi_{U} \text{ a.e. in } Q\},\$$

where as usual we set $\inf\{\emptyset\} = +\infty$. Then for any Borel set $B \subseteq Q$ we define

 $\operatorname{cap}_2(B) = \inf\{\operatorname{cap}_2(U) : U \text{ is open subset of } Q, B \subseteq U\}.$

We denote by $\mathcal{M}_b(Q)$ the set of all Radon measures with bounded variation on Q, while, as we already mentioned, $\mathcal{M}_0(Q)$ denotes the set of all measures with bounded variation over Q that do not charge the sets of zero 2-capacity, that is if $\mu \in \mathcal{M}_0(Q)$, then $\mu(E) = 0$, for all $E \subseteq Q$ such that $\operatorname{cap}_2(E) = 0$.

In [15] the authors proved the following decomposition theorem.

Theorem 2.1. Let μ be a bounded measure on Q. If $\mu \in \mathcal{M}_0(Q)$ then there exists (f, F, g) such that $f \in L^1(Q), F \in L^2(0, T; H^{-1}(\Omega)), g \in L^2(0, T; H^1_0(\Omega))$ and

$$\int_{Q} \phi \, d\mu = \int_{Q} f \phi \, dx \, dt + \int_{0}^{T} \langle F, \phi \rangle \, dt - \int_{0}^{T} \langle \phi_{t}, g \rangle \, dt \quad \phi \in C_{c}^{\infty}([0, T] \times \Omega).$$

Such a triplet (f, F, g) will be called a decomposition of μ .

Note that the decomposition of μ is not uniquely determined. In [17] the authors proved the following approximation of diffuse measures theorem.

Theorem 2.2. Let $\mu \in \mathcal{M}_0(Q)$, then, for every $\varepsilon > 0$ there exists $\nu \in \mathcal{M}_0(Q)$ such that

$$\|\mu - \nu\|_{\mathcal{M}(Q)} \le \varepsilon \quad and \quad \nu = w_t - \Delta w \text{ in } \mathcal{D}'(Q),$$

where $w \in L^2(0,T; H^1_0(\Omega)) \cap L^\infty(Q)$.

The following Theorem will be a key point in the existence result given in the next section. The proof follows the arguments in [27, Theorem 1.2].

Theorem 2.3. Let $d_i \in C^0(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ for every $i \in \{1, \ldots, N\}$, $\mu \in \mathcal{M}_0(Q) \cap L^2(0,T; H^{-1}(\Omega))$ and $u_0 \in L^2(\Omega)$, let $u \in W$ be the (unique) weak solution of

$$\frac{\partial ua}{\partial t} - \sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} (d_{i}(u) \frac{\partial u}{\partial x_{i}}) = \mu \quad in \ Q,$$

$$u = 0 \quad on \ (0, T) \times \partial\Omega,$$

$$u(t = 0) = u_{0} \quad in \ \Omega.$$
(2.1)

Then

$$\operatorname{cap}_2\{|u| > K\} \le \frac{C}{\sqrt{K}} \quad \forall K \ge 1,$$

where C > 0 is a constant depending on $\|\mu\|_{\mathcal{M}(Q)}$, $\|u_0\|_{L^2(\Omega)}$.

The proof of the above theorem is postponed to the Appendix in Section 5.

Definition 2.4. A sequence of measures (μ_n) in Q is equidiffuse if for every $\eta > 0$ there exists $\delta > 0$ such that

$$\operatorname{cap}_2(E) < \delta \Longrightarrow |\mu_n|(E) < \eta \quad \forall \ n \ge 1.$$

The following result is proved in [27]:

Lemma 2.5. Let ρ_n be a sequence of mollifiers on Q. If $\mu \in \mathcal{M}_0(Q)$, then the sequence $(\rho_n * \mu_n)$ is equidiffuse.

Here is some notation we will use throughout the paper. For any nonnegative real number K we denote by $T_K(r) = \min(K, \max(r, -K))$ the truncation function at level K. For every $r \in \mathbb{R}$, let

$$\overline{T_K}(z) = \int_0^z T_K(s) \, ds$$

We consider the following smooth approximation of $T_K(s)$: for $m > 0, \eta \in]0, 1[$ and $\sigma \in]0, 1[$, we define $S^m_{K,\sigma} : \mathbb{R} \to \mathbb{R}$ by

$$S_{K,\sigma}^{m,\eta}(s) = \begin{cases} 1 & \text{if } -K + \eta \le s \le m - 2\sigma, \\ 0 & \text{if } s \le -K \text{ and } s \ge m - \sigma, \\ \text{affine otherwise,} \end{cases}$$
(2.2)

and let us denote $T_{K,\sigma}^{m,\eta}(z) = \int_0^z S_{K,\sigma}^{m,\eta}(s) \, ds$ and

$$T_K^m(s) = \begin{cases} s & \text{if } -K \le s \le m, \\ -K & \text{if } s \le -K, \\ m & \text{if } s \ge m. \end{cases}$$

By $\langle \cdot, \cdot \rangle$ we mean the duality between suitable spaces in which function are involved. In particular we will consider both the duality between $H_0^1(\Omega)$ and $H^{-1}(\Omega)$ and the duality between $H_0^1(\Omega) \cap L^{\infty}(\Omega)$ and $H^{-1}(\Omega) + L^1(\Omega)$.

3. MAIN ASSUMPTIONS AND DEFINITION OF RENORMALIZED SOLUTION

Throughout the paper, we assume that the following assumptions hold: Ω is a bounded open set on \mathbb{R}^N $(N \ge 2)$, T > 0 is given and we set $Q = \Omega \times (0, T)$.

$$d_i \in C^0(] - \infty, m[\mathbb{R}^+ \cup \{+\infty\}) \quad \text{with } d_i(s) < +\infty \ \forall s < m, \ \forall i \in \{1, \dots, N\};$$
(3.1)

$$\exists \alpha > 0 \text{ such that } d_i(s) \ge \alpha \ \forall i \in \{1, \dots, N\}, \ \forall s \in] - \infty, m[; \tag{3.2}$$

$$\exists p \in \{1, \dots, N\} \text{ such that } \lim_{s \to m^-} d_p(s) = +\infty \text{ and } \int_0^m d_p(s) \, ds < +\infty; \quad (3.3)$$

$$\mu \in \mathcal{M}_0(Q); \tag{3.4}$$

$$u_0 \in L^1(\Omega)$$
 such that $u_0 \le m$ a.e. in Ω . (3.5)

The definition of a renormalized solution for Problem (1.1)-(1.3) is as follows.

Definition 3.1. Let $\mu \in \mathcal{M}_0(Q)$. A function $u \in L^1(Q)$ is a renormalized solution of Problem (1.1)-(1.3) if

$$u \le m \ a.e. \ in \ Q, \quad T_K(u) \in L^2(0,T; H^1_0(\Omega)) \quad \forall K > 0;$$
 (3.6)

$$d_i(u)\frac{\partial I_K^m(u)}{\partial x_i}\chi_{\{u < m\}} \in L^2(Q) \quad \forall K > 0, \ \forall i \in \{1, \dots, N\},$$
(3.7)

if there exists a sequence of nonnegative measures $(\Lambda_K) \in \mathcal{M}(Q)$ and a nonnegative measure $\Gamma \in \mathcal{M}(Q)$ such that

$$\lim_{K \to +\infty} \|\Lambda_K\|_{\mathcal{M}(Q)} = 0, \tag{3.8}$$

$$\int_{Q} \varphi \, d\Gamma = 0 \quad \forall \varphi \in \mathcal{C}_{0}^{1}([0, T[), \tag{3.9})$$

and if, for every K > 0,

$$\frac{\partial T_K^m(u)}{\partial t} - \sum_{i=1}^N \frac{\partial}{\partial x_i} \left(d_i(u) \frac{\partial T_K^m(u)}{\partial x_i} \chi_{\{u < m\}} \right) = \mu + \Lambda_K + \Gamma \quad in \ \mathcal{D}'(Q).$$
(3.10)

Remark 3.2. (1) Note that, in view of (3.6), (3.7) and (3.8) all terms in (3.10) are well defined.

(2) The study of (1.1)-(1.3) under the assumption $\int_0^m d_p(s) ds = +\infty$ is easier (see [28] for the elliptic case), because one can then show there exists at least a renormalized solution such that u < m a.e. in Q.

(3) Let us point out that, in (3.9) the function $\varphi \in C_0^1([0,T[)$ which does not depend on the variable x, we are not able to prove (3.9) with any function $\varphi \in L^2(0,T; H^1(\Omega)) \cap L^{\infty}(Q)$ such that $\nabla \varphi = 0$ a.e. in $\{(x,t) ; u(x,t) = m\}$ because of a lack of regularity on u with respect to t in the parabolic case.

4. EXISTENCE OF SOLUTIONS

This section is devoted to establish the following existence theorem.

Theorem 4.1. Under assumptions (3.1)-(3.7) there exists at least a renormalized solution u of Problem (1.1)-(1.3).

Proof. The proof is divided into 4 steps. In Step 1, we introduce an approximate problem. Step 2 is devoted to establish a few *a priori* estimates. At last, Step 3 and Step 4 are devoted to prove that u satisfies (3.7), (3.8), (3.9) and (3.10) of Definition 3.1.

Step 1. Let us introduce the following regularization of the data: for $n \ge 1$ fixed

$$d_i^n(s) = d_i(T_{m-\frac{1}{n}}(s^+) - T_n(s^-)) \quad \forall s \in \mathbb{R}, \ \forall i \in \{1, \dots, N\},$$
(4.1)

$$u_{0n} \in C_c^{\infty}(\Omega) : u_{0n} \to u_0 \text{ strongly in } L^1(\Omega) \text{ as } n \text{ tends to } +\infty,$$
 (4.2)

we consider a sequence of mollifiers (ρ_n) , and we define the convolution $\rho_n * \mu$ for every $(t, x) \in Q$ by

$$\mu^{n}(t,x) = \rho_{n} * \mu(t,x) = \int_{Q} \rho_{n}(t-s,x-y)d\mu(s,y).$$
(4.3)

Let us now consider the regularized problem

$$\frac{\partial u_n}{\partial t} - \sum_{i=1}^N \frac{\partial}{\partial x_i} \left(d_i^n(u_n) \frac{\partial u_n}{\partial x_i} \right) = \mu^n \quad \text{in } Q, \tag{4.4}$$

$$u_n(t=0) = u_{0n} \quad \text{in } \Omega,$$
 (4.5)

$$u_n = 0 \quad \text{on } \partial\Omega \times (0, T).$$
 (4.6)

As a consequence, proving existence of a weak solution $u_n \in L^2(0,T; H_0^1(\Omega))$ of (4.4)-(4.6) is an easy task (see e.g. [21]).

Step 2. Using $T_K(u_n)$ as a test function in (4.4) leads to

$$\int_{\Omega} \overline{T_K}(u^n) \, dx + \sum_{i=1}^N \int_Q d_i^n(u^n) \Big| \frac{\partial T_K(u^n)}{\partial x_i} \Big|^2 \, dx \, dt \le K(\|\mu_n\|_{L^1(Q)} + \|u_0\|_{L^1(\Omega)}) \quad (4.7)$$

for almost every t in (0,T), and where $\overline{T_K}(r) = \int_0^r T_K(s) ds$. The properties $\overline{T_K}(\overline{T_K} \ge 0, \overline{T_K}(s) \ge |s| - 1 \quad \forall s \in \mathbb{R})$, and since $\|\mu^n\|_{L^1(Q)}$ and $\|u_{0n}\|_{L^1(\Omega)}$ are bounded, we deduce from (4.7) that

$$u^n$$
 is bounded in $L^{\infty}(0,T;L^1(\Omega)),$ (4.8)

$$T_K(u^n)$$
 is bounded in $L^2(0,T; H^1_0(\Omega)),$ (4.9)

$$d_i^n (u^n)^{1/2} \frac{\partial T_K(u^n)}{\partial x_i} \text{ is bounded in } L^2(Q)$$
(4.10)

independently of n for any $K \ge 0$ and any $i \in \{1, 2, \dots, N\}$.

In view of (3.1)-(3.3), we have that for any $K \ge 0$,

$$\left| \int_{0}^{u^{n}} d_{i}^{m}(s) \chi_{\{-K \leq s \leq m\}} dx \right| \leq \int_{-K}^{m} d_{i}(s) ds \equiv C_{K} < +\infty,$$

then we can use $\int_0^{u^n} d_i^n(s)\chi_{\{-K\leq s\leq m\}}\,ds$ in $L^2(0,T;H^1_0(\Omega))\cap L^\infty(Q_T)$ as a test function in (4.4) obtaining

$$\int_{\Omega} \int_{0}^{u^{n}} \int_{0}^{z} d_{i}^{n}(s) \chi_{\{-K \leq s \leq m\}} \, ds \, dz \, dx + \int_{Q} (d_{i}^{n}(u^{n}))^{2} \Big| \frac{\partial T_{K}^{m}(u^{n})}{\partial x_{i}} \Big|^{2} \, dx \, dt \\
\leq (\|\mu_{n}\|_{L^{1}(Q_{T})} + \|u_{0}\|_{L^{1}(\Omega)}) \max_{i} \int_{-K}^{m} d_{i}(s) \, ds$$
(4.11)

for all $i \in \{1, 2, ..., N\}$. Since $\int_{\Omega} \int_{0}^{u^{n}} \int_{0}^{z} d_{i}^{n}(s) ds dz dx$ is positive and $\|\mu^{n}\|_{L^{1}(Q)}$ and $\|u_{0n}\|_{L^{1}(\Omega)}$ are bounded, from (4.11) we deduce that

$$d^n(u^n)\nabla T_K^m(u^n)$$
 is bounded in $(L^2(Q))^N$. (4.12)

For any $S \in W^{2,\infty}(\mathbb{R})$ such that S' has a compact support $(\text{supp}(S') \subset [-K, m])$, we have

$$S(u^n)$$
 is bounded in $L^2(0,T;H_0^1(\Omega)),$ (4.13)

$$\frac{\partial S(u^n)}{\partial t} \text{ is bounded in } L^1(Q) + L^2(0,T;H^{-1}(\Omega)), \qquad (4.14)$$

independently of n. In fact, as a consequence of (4.9), by Stampacchia's Theorem, we obtain (4.13). To show that (4.14) holds true, we multiply the equation (4.4) by $S'(u^n)$ to obtain

$$\frac{\partial S(u^n)}{\partial t} = \sum_{i=1}^N \frac{\partial}{\partial x_i} \left(d_i^n(u_n) \frac{\partial S(u_n)}{\partial x_i} \right) - \sum_{i=1}^N d_i^n(u_n) \left| \frac{\partial u_n}{\partial x_i} \right|^2 S''(u^n) + \mu^n S'(u^n) \quad \text{in } \mathcal{D}'(Q),$$
(4.15)

as a consequence of (4.3), (4.10), (4.12), we obtain (4.14).

Arguing again as in [5, 6, 7, 9] estimates (4.13) and (4.14) imply that, for a subsequence still indexed by n,

$$u^n \to u$$
 almost every where in Q , (4.16)

$$T_K(u^n) \rightarrow T_K(u)$$
 weakly in $L^2(0,T; H^1_0(\Omega)),$ (4.17)

$$(d^n(u^n))^{1/2} \nabla T_K(u^n) \rightharpoonup X_K \quad \text{weakly in } (L^2(Q))^N, \tag{4.18}$$

$$d^n(u^n)\nabla T_K^m(u^n) \rightharpoonup Y_K$$
 weakly in $(L^2(Q))^N$, (4.19)

as n tends to $+\infty$, for any K > 0.

Using the admissible test function $T^+_{2m}(u^n) - T^+_m(u^n)$ in (4.4) and the Poincaré inequality, leads to

$$d_p(m-\frac{1}{n})\int_Q \left|T_{2m}^+(u^n) - T_m^+(u^n)\right|^2 dx \, dt \le m(\|\mu_n\|_{L^1(Q)} + \|u_{0n}\|_{L^1(\Omega)}).$$
(4.20)

In view of (3.3), (4.2) and (4.16) (since $d_p(m-\frac{1}{n}) \to +\infty$ as n tends $+\infty$) passing to the limit in (4.20) as n tends to $+\infty$, we deduce that $T^+_{2m}(u) - T^+_m(u) = 0$ a.e. in Q, hence

$$u \le m$$
 a.e. in Q . (4.21)

Now, in view of (4.18), (4.19) and (4.21) we deduce

$$X_K = d(u)^{1/2} \nabla T_K(u) \text{ and } Y_K = d(u) \nabla T_K^m(u) \quad \text{a.e. in } \{(x,t) \in Q : u(x,t) < m\},$$
(4.22)

for any $K \geq 0$.

For fixed $K \ge 1, \eta \in]0, 1[$ and $\sigma \in]0, 1[$, we define the functions, $h_{K,\eta}$ and Z_{σ} by

$$h_{K,\eta}(s) = \begin{cases} 0 & \text{if } -K \le s \\ -1 & \text{if } s \le -K - \eta \quad Z_{\sigma}(s) = \begin{cases} 0 & \text{if } s \le m - 2\sigma \\ 1 & \text{if } s \ge m - \sigma \\ \text{affine} & \text{otherwise,} \end{cases}$$
(4.23)

We remark that $\max(\|h_{K,\eta}\|_{L^{\infty}(\mathbb{R})}, \|Z_{\sigma}\|_{L^{\infty}(\mathbb{R})}) = 1$ for any $K \ge 1$ and $0 < \eta < 1$ and any $0 < \sigma < 1$. Using the admissible test functions $h_{K,\eta}(u^n)$ and $Z_{\sigma}(u^n)$ in (4.4) leads to

$$\int_{\Omega} \overline{h_{K,\eta}}(u^n(T)) \, dx + \sum_{i=1}^N \int_{Q} d_i^n(u_n) \frac{\partial u_n}{\partial x_i} \frac{\partial h_{K,\eta}(u_n)}{\partial x_i} \, dx \, dt$$

$$= \int_{Q} h_{K,\eta}(u_n) \mu_n \, dx \, dt + \int_{\Omega} \overline{h_{K,\eta}}(u_{0n}) \, dx,$$
(4.24)

and

$$\int_{\Omega} \overline{Z_{\sigma}}(u^{n}(T)) dx + \sum_{i=1}^{N} \int_{Q} d_{i}^{n}(u_{n}) \frac{\partial u_{n}}{\partial x_{i}} \frac{\partial Z_{K,\sigma}(u_{n})}{\partial x_{i}} dx dt$$

$$= \int_{Q} Z_{K,\sigma}(u_{n}) \mu_{n} dx dt + \int_{\Omega} \overline{Z_{K,\sigma}}(u_{0n}) dx,$$
(4.25)

where

$$\overline{h_{K,\eta}}(r) = \int_0^r h_{K,\eta}(s) \, ds \ge 0, \quad \overline{Z_\sigma}(r) = \int_0^r Z_\sigma(s) \, ds \ge 0.$$

Hence, using (4.2), (4.3) and dropping a nonnegative term,

$$\sum_{i=1}^{N} \frac{1}{\eta} \int_{\{-K-\eta \le u^n \le -K\}} d_i^n(u^n) \Big| \frac{\partial u^n}{\partial x_i} \Big|^2 dx dt$$

$$\leq \int_{\{u^n \le -K\}} |\mu^n| dx dt + \int_{\{u_{n0} \le -K\}} |u_{0n}| dx \le C_1,$$
(4.26)

and

$$\sum_{i=1}^{N} \frac{1}{\sigma} \int_{\{m-2\sigma \le u^n \le m-\sigma\}} d_i^n(u^n) \left| \frac{\partial u^n}{\partial x_i} \right|^2 dx \, dt$$

$$\leq \int_{\{u^n \ge m-2\sigma\}} Z_\sigma(u_n) \mu^n \, dx \, dt + \int_{\{u_{n0} \ge m-2\sigma\}} |u_{0n}| \, dx \le C_2.$$

$$(4.27)$$

Thus, there exists a bounded Radon measures λ_K^n and ν_σ such that, as η tends to zero and n tends to infinity

$$\lambda_K^{n,\eta} \equiv \sum_{i=1}^N \frac{1}{\eta} d_i^n(u^n) \Big| \frac{\partial u^n}{\partial x_i} \Big|^2 \chi_{\{-K-\eta \le u^n \le -K\}} \rightharpoonup \lambda_K^n \quad \text{*-weakly in } \mathcal{M}(Q), \quad (4.28)$$

and

$$\nu_{\sigma}^{n} \equiv \sum_{i=1}^{N} \frac{1}{\sigma} d_{i}^{n}(u^{n}) \Big| \frac{\partial u^{n}}{\partial x_{i}} \Big|^{2} \chi_{\{m-2\sigma \leq u^{n} \leq m-\sigma\}} \rightharpoonup \nu_{\sigma} \quad \text{*-weakly in } \mathcal{M}(Q). \tag{4.29}$$

Step 3. In this step, u is shown to satisfy (3.10). For all real numbers $\eta > 0$, $\sigma > 0$ and K > 0, let $S_{K,\sigma}^{m,\eta}$ be the function defined by (2.2), and let us denote $T_{K,\sigma}^{m,\eta}(z) = \int_0^z S_{K,\sigma}^{m,\eta}(s) \, ds$. Since $\operatorname{supp}(S_{K,\sigma}^{m,\eta})' \subset [-K - \eta, -K] \cup [m - 2\sigma, m - \sigma]$, the equation (4.15) with $S = T_{K,\sigma}^{m,\eta}$ gives

$$\frac{\partial T_{K,\sigma}^{m,\eta}(u^n)}{\partial t} - \sum_{i=1}^N \frac{\partial}{\partial x_i} \left(d_i^n(u_n) \frac{\partial T_{K,\sigma}^{m,\eta}(u_n)}{\partial x_i} \right)$$

$$= \mu^n + \left(S_{K,\sigma}^{m,\eta}(u^n) - 1 \right) \mu^n + \frac{1}{\eta} \sum_{i=1}^N d_i^n(u_n) \left| \frac{\partial u_n}{\partial x_i} \right|^2 \chi_{\{-K-\eta < u_n < -K\}} \qquad (4.30)$$

$$+ \frac{1}{\sigma} \sum_{i=1}^N d_i^n(u_n) \left| \frac{\partial u_n}{\partial x_i} \right|^2 \chi_{\{m-2\sigma < u_n < m-\sigma\}}$$

in $\mathcal{D}'(Q)$. Passing to the limit in (4.30) as η tends to zero, and using (4.17), (4.19), (4.21), (4.22), (4.28) and (4.29), we deduce

$$\frac{\partial T^m_{K,\sigma}(u^n)}{\partial t} - \sum_{i=1}^N \frac{\partial}{\partial x_i} \left(d^n_i(u_n) \frac{\partial T^m_{K,\sigma}(u_n)}{\partial x_i} \right)$$

$$= \mu^n - \mu^n \chi_{\{u^n < -K\}} - \mu^n Z_\sigma(u^n) + \lambda^n_K + \nu^n_\sigma$$
(4.31)

in $\mathcal{D}'(Q)$. Now, using the properties of convolution $\mu_n = \rho_n * \mu$ and in view of (4.26), (4.27), (4.28) and (4.29), we deduce that $\Lambda_K^n \equiv -\mu^n \chi_{\{u^n < -K\}} + \lambda_K^n$ and $\Gamma_{\sigma}^n \equiv -\mu^n Z_{\sigma}(u^n) + \nu_{\sigma}^n$ are bounded in $L^1(Q)$. Then there exists a bounded measures Λ_K and Γ_{σ} such that $(-\mu^n \chi_{\{u^n < -K\}} + \lambda_K^n)_n$ converges to Λ_K and $(-\mu^n Z_{\sigma}(u^n) + \nu^n)_n$

converges to Γ_{σ} in *-weakly in $\mathcal{M}(Q)$. From (4.16), (4.17), (4.19), (4.21), (4.22) and (4.31) We deduce that u satisfies

$$\frac{\partial T_{K,\sigma}^m(u)}{\partial t} - \sum_{i=1}^N \frac{\partial}{\partial x_i} \left(d_i^n(u) \frac{\partial T_{K,\sigma}^m(u)}{\partial x_i} \chi_{\{u < m\}} \right) = \mu + \Lambda_K + \Gamma_\sigma \text{ in } \mathcal{D}'(Q).$$
(4.32)

To complete this step, we use

$$\int_{Q} |\Gamma_{\sigma}| \, dx \, dt \leq \liminf_{n \to +\infty} \int_{Q} |\Gamma_{\sigma}^{n}| \, dx \, dt$$
$$= \liminf_{n \to +\infty} \int_{Q} |-\mu^{n} Z_{\sigma}(u^{n}) + \nu_{\sigma}^{n}| \, dx \, dt$$
$$\leq 2 \|\mu\|_{\mathcal{M}(Q)} + \|u_{0}\|_{L^{1}(\Omega)}$$

then there exists a bounded measure Γ such that Γ_{σ} converges to Γ in *-weakly in $\mathcal{M}(Q)$. Therefore, as σ tends to zero in (4.32), it is easy to see that u satisfies (3.10).

Step 4. In this step, Λ_K and Γ are shown to satisfy (3.8) and (3.9). From (4.26) and (4.28) we deduce

$$\|\Lambda_K^n\|_{L^1(Q)} = \| -\mu^n \chi_{\{u^n < -K\}} + \lambda_K^n\|_{L^1(Q)}$$

$$\leq 2 \int_{\{u^n < -K\}} |\mu^n| \, dx \, dt + \int_{\{u_{0n} < -K\}} |u_{0n}| \, dx.$$
(4.33)

Since

$$\|\lambda_K\|_{\mathcal{M}(Q)} \le \liminf_{n \to +\infty} \|\mu^n \chi_{\{u^n < -K\}} + \lambda_K^n\|_{\mathcal{M}(Q)},$$

the sequence (μ_n) is equidiffuse, and the function u_{0n} converges to u_0 strongly in $L^1(\Omega)$, we deduce from Theorem 2.3 and (4.33) that $\|\Lambda_K\|_{\mathcal{M}(Q)}$ tends to zero as K tends to infinity, then we obtain (3.8).

On the other hand, for all $\varphi \in \mathcal{C}_0^1([0,T[))$, we can write

$$\int_{Q} \varphi \, d\Gamma = \lim_{\sigma \to 0} \int_{Q} \varphi \, d\Gamma_{\sigma} = \lim_{\sigma \to 0} \lim_{n \to +\infty} \int_{Q} \varphi \Gamma_{\sigma}^{n} \, dx \, dt \tag{4.34}$$

where

$$\Gamma_{\sigma}^{n} \equiv \frac{1}{\sigma} \sum_{i=1}^{N} d_{i}^{n}(u_{n}) \Big| \frac{\partial u_{n}}{\partial x_{i}} \Big|^{2} \chi_{\{m-2\sigma < u_{n} < m-\sigma\}} - Z_{\sigma}(u^{n}) \mu^{n}.$$

Using the admissible function $Z_{\sigma}(u^n)\varphi$ in (4.4), since $\varphi \in \mathcal{C}_0^1([0,T[))$, it is easy to see that

$$\int_{\Omega} \overline{Z_{\sigma}}(u_0^n)\varphi(0) \, dx + \int_Q \overline{Z_{\sigma}}(u^n)\varphi_t \, dx \, dt$$

$$= \frac{1}{\sigma} \sum_{i=1}^N \int_{\{m-2\sigma < u_n < m-\sigma\}} d_i^n(u_n) \Big| \frac{\partial u_n}{\partial x_i} \Big|^2 \varphi \, dx \, dt - \int_Q Z_{\sigma}(u^n)\mu^n \varphi \, dx \, dt \quad (4.35)$$

$$\equiv \int_Q \varphi \Gamma_{\sigma}^n \, dx \, dt,$$

where $\overline{Z_{\sigma}}(r) = \int_0^r Z_{\sigma}(s) \, ds$. Next we pass to the limit in (4.35) as *n* tends to infinity, and then σ tends to zero. Since $\overline{Z_{\sigma}}(u^n)$ converges to $\overline{Z_{\sigma}}(u)$ strongly in $L^1(Q)$ and

 $\overline{Z_{\sigma}}(u_0^n)$ converges to $\overline{Z_{\sigma}}(u_0)$ strongly in $L^1(\Omega)$ as n tends to infinity, we deduce

$$\lim_{n \to +\infty} \int_{Q} \overline{Z_{\sigma}}(u^{n})\varphi_{t} dx = \int_{Q} \overline{Z_{\sigma}}(u)\varphi_{t} dx$$

$$\lim_{n \to +\infty} \int_{\Omega} \overline{Z_{\sigma}}(u^{n}_{0})\varphi dx = \int_{\Omega} \overline{Z_{\sigma}}(u_{0})\varphi dx$$
(4.36)

Moreover, since $\overline{Z_{\sigma}}(r)$ converges to $(r-m)^+$ for all $r \in \mathbb{R}$ and $u \leq m, u_0 \leq m$ almost everywhere, then it is easy to see that

$$\lim_{\sigma \to 0} \lim_{n \to +\infty} \int_Q \overline{Z_\sigma}(u^n) \varphi_t \, dx = \int_Q (u-m)^+ \varphi_t \, dx = 0, \tag{4.37}$$

$$\lim_{\sigma \to 0} \lim_{n \to +\infty} \int_{\Omega} \overline{Z_{\sigma}}(u_0^n) \varphi \, dx = \int_{\Omega} (u_0 - m)^+ \varphi \, dx = 0.$$
(4.38)

Then, from (4.34), (4.35), (4.37) and (4.38) we deduce (3.9).

As a conclusion from Step 1, Step 2, Step 3 and Step 4, the proof is complete. \Box

5. Appendix: Proof of Theorem 2.3

Sketch of the Proof. For simplicity we assume that $\mu \ge 0$ and $u_0 \ge 0$. Using the admissible test function $T_K(u)$ in (2.1) leads to

$$\int_{\Omega} \overline{T_K}(u) \, dx + \sum_{i=1}^n \int_{Q} \left| d_i(u)^{1/2} \frac{\partial T_K(u)}{\partial x_i} \right|^2 dx \, dt$$

$$\leq K \left[\|\mu\|_{\mathcal{M}(Q)} + \|u_0\|_{L^1(\Omega)} \right] \equiv KM,$$
(5.1)

for almost any t in]0, T[and where $\overline{T_K}(r) = \int_0^r T_K(s) \, ds$. Since $\frac{1}{2}T_K^2(r) \leq \overline{T_K}(r) \leq Kr$, from (5.1) we deduce that

$$\max\left\{\|T_{K}(u)\|_{L^{\infty}(L^{2}(\Omega))}^{2}:\|\nabla T_{K}(u)\|_{L^{2}(Q)}^{2}\right\} \leq KM, \quad \|T_{K}(u)\|_{L^{2}(H_{0}^{1}(\Omega))}^{2} \leq K\frac{M}{\alpha}.$$
(5.2)

Moreover, for $i \in \{1, \ldots, N\}$ let us choose $\int_0^{T_K(u)} d_i(r) dr \in L^2(0, T; H_0^1(\Omega)) \cap L^\infty(Q)$ as test function in 2.1. Then

$$\sum_{i=1}^{n} \int_{Q} \left| d_{i}(u) \frac{\partial T_{K}(u)}{\partial x_{i}} \right|^{2} dx \, dt \leq K \Big[\|\mu\|_{\mathcal{M}(Q)} + \|u_{0}\|_{L^{1}(\Omega)} \Big] \|d_{i}\|_{L^{\infty}(\mathbb{R})}.$$
(5.3)

Let $v \in W$ be the solution of

$$-\frac{\partial v}{\partial t} - \sum_{i=1}^{N} \frac{\partial}{\partial x_i} (d_i(u) \frac{\partial v}{\partial x_i}) = -2 \sum_{i=1}^{N} \frac{\partial}{\partial x_i} (d_i(u) \frac{\partial T_K(u)}{\partial x_i}) \quad \text{in } Q,$$

$$v = 0 \quad \text{on } (0, T) \times \partial \Omega,$$

$$v(t = T) = T_K(u(t = T)) \quad \text{in } \Omega.$$
(5.4)

Using the admissible test function v in (5.4) and integrate between τ and T, and by Young's inequality we obtain

$$\int_{\Omega} \frac{|v(\tau)|^2}{2} dx + \frac{\alpha}{2} \int_{Q} |\nabla v|^2 dx dt$$

$$\leq C \sum_{i=1}^n \int_{Q} \left| d_i(u) \frac{\partial T_K(u)}{\partial x_i} \right|^2 dx dt + \int_{\Omega} \overline{T_K}(u(t=T)) dx$$
(5.5)

In view of (5.2), (5.3) and (5.5), we deduce that

$$\max\left\{\|v\|_{L^{\infty}(0,T;L^{2}(\Omega))}^{2}:\|\nabla v\|_{L^{2}(Q)}^{2}\right\} \leq CKM.$$
(5.6)

Moreover, by (5.4) we obtain

$$\|v_t\|_{L^2(0,T;H^{-1}(\Omega))} \le C\Big(\|v\|_{L^2(0,T;H^1_0(\Omega))} + \|T_K(u)\|_{L^2(0,T;H^1_0(\Omega))}\Big).$$
(5.7)

Hence, by (5.6) and (5.7) we conclude that

$$\|v\|_W \le C\sqrt{K}.\tag{5.8}$$

Since $\mu \ge 0$ and $u_0 \ge 0$, it follows that

$$\frac{\partial ua}{\partial t} - \sum_{i=1}^{N} \frac{\partial}{\partial x_i} (d_i(u) \frac{\partial u}{\partial x_i}) \ge 0$$

and $u \ge 0$ in Q, and by a nonlinear version of Kato's inequality for parabolic equations (see [27]), we deduce that

$$\frac{\partial T_K(u)}{\partial t} - \sum_{i=1}^N \frac{\partial}{\partial x_i} (d_i(u) \frac{\partial T_K(u)}{\partial x_i}) \ge 0,$$

hence by (5.4), we obtain

$$-\frac{\partial v}{\partial t} - \sum_{i=1}^{N} \frac{\partial}{\partial x_i} (d_i(u) \frac{\partial v}{\partial x_i}) \ge -\frac{\partial T_K(u)}{\partial t} - \sum_{i=1}^{N} \frac{\partial}{\partial x_i} (d_i(u) \frac{\partial T_K(u)}{\partial x_i}) \quad \text{in } \mathcal{D}'(Q).$$

Now using the standard comparison argument, we easily see that $v \ge T_K(u)$ a.e. in Q, hence $v \ge K$ a.e. on $\{u > K\}$, and by (5.8) we conclude that

$$cap_2\{u > K\} \le \left\|\frac{v}{K}\right\|_W \le \frac{C}{\sqrt{K}},$$

the proof is complete.

References

- P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J.-L. Vazquez; An L¹-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, 22 (1995), 241–273.
- [2] D. Blanchard, H. Redwane; Quasilinear diffusion problems with singular coefficients with respect to the unknown, Proc. Roy. Soc. Edinburgh Sect. A, 132(5) (2002), 1105–1132.
- [3] D. Blanchard, O. Guibé, H. Redwane; Nonlinear equations with unbounded heat conduction and integrable data, Ann. Mat. Pura Appl., (4) 187, no. 3 (2008), 405–433.
- [4] D. Blanchard, F. Petitta, H. Redwane; Renormalized solutions of nonlinear parabolic equations with diffuse measure data, Manuscripta Math., 141, no. 3-4 (2013), 601–635.
- [5] D. Blanchard, F. Murat; Renormalised solutions of nonlinear parabolic problems with L¹ data, Existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1137–1152.
- [6] D. Blanchard, F. Murat, H. Redwane; Existence et unicité de la solution reormalisée d'un problème parabolique assez général, C. R. Acad. Sci. Paris Sér. I, 329 (1999), 575–580.
- [7] D. Blanchard, F. Murat, H. Redwane; Existence and Uniqueness of a Renormalized Solution for a Fairly General Class of Nonlinear Parabolic Problems, J. Differential Equations, 177 (2001), 331–374.
- [8] D. Blanchard, A. Porretta; Stefan problems with nonlinear diffusion and convection, J. Diff. Equations, 210 (2005), 383–428.
- D. Blanchard, H. Redwane; Renormalized solutions of nonlinear parabolic evolution problems, J. Math. Pure Appl., 77 (1998), 117–151.
- [10] L. Boccardo, A. Dall'Aglio, T. Gallouët, L. Orsina; Nonlinear parabolic equations with measure data, J. Funct. Anal., 87 (1989), 49–169.

11

- [11] L. Boccardo, T. Gallouët; On some nonlinear elliptic equations with right-hand side measures, Commun. Partial Differential Equations, 17 (1992), 641–655.
- [12] L. Boccardo, D. Giachetti, J.-I. Diaz, F. Murat; Existence and regularity of renormalized solutions for some elliptic problems involving derivation of nonlinear terms, J. Differential Equations, 106 (1993), 215–237.
- [13] L. Boccardo, F. Murat, J.-P. Puel; Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., 152 (1988), 183–196.
- [14] R.-J. Di Perna, P.-L. Lions; On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math., 130 (1989), 321–366.
- [15] J. Droniou, A. Porretta, A. Prignet; Parabolic capacity and soft measures for nonlinear equations, Potential Anal., 19, no. 2 (2003), pp. 99–161.
- [16] J. Droniou, A. Prignet; Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data, NoDEA vol. 14, no. 1-2 (2007), pp. 181–205.
- [17] F. Petitta, A. Ponce, A. Porretta; Approximation of diffuse measures for parabolic capacities, C. R. Math. Acad. Sci. Paris, 346, no. 3-4 (2008), 161–166.
- [18] L. Orsina; Existence results for some elliptic equations with unbounded coefficients, Asymptot. Anal., 34, no. 3-4, (2003), 187–198.
- [19] G.-C. Vázquez, O.-F. Gallego; An elliptic equation with blowing-up diffusion and data in L¹: existence and uniqueness, Math. Models Methods Appl. Sci. 13, no. 9 (2003), 1351–1377.
- [20] F. Della Pietra, G. Di Blasio; Existence results for nonlinear elliptic problems with unbounded coefficient, Nonlinear Anal., 71, no. 1-2 (2009), 72–87.
- [21] J.-L. Lions; Quelques méthodes de résolution des problèmes aux limites non linéaire, Dunod et Gauthier-Villars, Paris (1969).
- [22] F. Murat; Soluciones renormalizadas de EDP elipticas non lineales, Cours à l'Université de Séville, Publication R93023, Laboratoire d'Analyse Numérique, Paris VI (1993).
- [23] F. Murat; Equations elliptiques non linéaires avec second membre L¹ ou mesure, Comptes Rendus du 26ème Congrès National d'Analyse Numérique Les Karellis (1994), A12-A24,
- [24] F. Petitta; Asymptotic behavior of solutions for linear parabolic equations with general measure data, C. R. Math. Acad. Sci. Paris 344, no. 9 (2007), 571–576.
- [25] F. Petitta; Renormalized solutions of nonlinear parabolic equations with general measure data, Ann. Mat. Pura Appl. (4) 187, no. 4 (2008), 563–604.
- [26] F. Petitta; A generalized porous medium equation related to some singular quasilinear problems, Nonlinear Anal., 72, no. 11 (2010), 4115–4123.
- [27] F. Petitta, A.-C. Ponce, A. Porretta; Diffuse measures and nonlinear parabolic equations, J. Evol. Equations, 11 4 (2011), 861–905.
- [28] L. Orsina; Existence results for some elliptic equations with unbounded coefficients, Asymptot. Anal., 34 (3-4) (2003), 187–198.
- [29] M. Pierre; Parabolic capacity and Sobolev spaces, SIAM J. Math. Anal. 14 (1983), 522–533.
- [30] A. Porretta; Existence results for nonlinear parabolic equations via strong convergence of trauncations, Ann. Mat. Pura ed Applicata, 177 (1999), 143–172.
- [31] A. Prignet; Remarks on existence and uniqueness of entropy solutions of parabolic problems with L¹ data, Nonlin. Anal. TMA 28 (1997), 1943–1954.
- [32] H. Redwane; Existence of a solution for a class of parabolic equations with three unbounded nonlinearities, Adv. Dyn. Syst. Appl., 2 (2007), 241–264.
- [33] J. Simon; Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65–96.

Khaled Zaki

FACULTÉ DES SCIENCES ET TECHNIQUES, UNIVERSITÉ HASSAN 1, B.P. 764, SETTAT, MOROCCO *E-mail address*: zakikhaled74@hotmail.com

HICHAM REDWANE

FACULTÉ DES SCIENCES JURIDIQUES, ÉCONOMIQUES ET SOCIALES, UNIVERSITÉ HASSAN 1, B.P. 764, SETTAT, MOROCCO

E-mail address: redwane_hicham@yahoo.fr