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EXISTENCE OF SOLUTIONS TO THE
CAHN-HILLIARD/ALLEN-CAHN EQUATION WITH

DEGENERATE MOBILITY

XIAOLI ZHANG, CHANGCHUN LIU

Abstract. This article we study the Cahn-Hilliard/Allen-Cahn equation with
degenerate mobility. Under suitable assumptions on the degenerate mobility

and the double well potential, we prove existence of weak solutions, which can

be obtained by considering the limits of Cahn-Hilliard/Allen-Cahn equations
with non-degenerate mobility.

1. Introduction

In this article, we consider a scalar Cahn-Hilliard/Allen-Cahn equation with
degenerate mobility

ut = −∇[D(u)∇(∆u− f(u))] + (∆u− f(u)), in QT , (1.1)

where QT = Ω× (0, T ), Ω is a bounded domain in Rn with a C3-boundary ∂Ω and
f(u) is the derivative of a double-well potential F (u) with wells ±1. The mobility
D(u) ∈ C(R; [0,∞)) is in the form

D(u) = |u|m, if |u| < δ,

C0 ≤ D(u) ≤ C1|u|m, if |u| ≥ δ,
(1.2)

for some constants C0, C1, δ > 0, where 0 < m < ∞ if n = 1, 2 and 4
n < m < 4

n−2

if n ≥ 3.
Equation (1.1) is supplemented by the boundary conditions

u|∂Ω = ∆u|∂Ω = 0, t > 0, (1.3)

and the initial condition
u(x, 0) = u0(x). (1.4)

Equation (1.1) was introduced as a simplification of multiple microscopic mecha-
nisms model [8] in cluster interface evolution. Equation (1.1) with constant mobility
has been intensively studied. Karali and Nagase [9] investigated existence of weak
solution to (1.1) with D(u) ≡ D and a quartic bistable potential F (u) = (1− u2)2.
Karali and Nagase [9] only provided existence of the solution for the deterministic
case. Then Antonopoulou, Karali and Millet [2] studied the stochastic case. The
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main result of this paper is the existence of a global solution, under a specific sub-
linear growth condition for the diffusion coefficient. Path regularity in time and
in space is also studied. In addition, Karali and Ricciardi [7] constructed special
sequences of solutions to a fourth order nonlinear parabolic equation of the Cahn-
Hilliard/Allen-Cahn equation, converging to the second order Allen-Cahn equation.
They studied the equivalence of the fourth order equation with a system of two sec-
ond order elliptic equations. Karali and Katsoulakis [8] focus on a mean field par-
tial differential equation, which contains qualitatively microscopic information on
particle-particle interactions and multiple particle dynamics, and rigorously derive
the macroscopic cluster evolution laws and transport structure. They show that
the motion by mean curvature is given by V = µσκ, where κ is the mean curvature,
σ is the surface tension and µ is an effective mobility that depends on the presence
of the multiple mechanisms and speeds up the cluster evolution. This is in contrast
with the Allen-Cahn equation where the velocity equals the mean curvature. Tang,
Liu and Zhao [18] proved the existence of global attractor. Liu and Tang [15] ob-
tained the existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation
in two space dimensions.

During the past few years, many authors have paid much attention to the Cahn-
Hilliard equation with degenerate mobility. An existence result for the Cahn-
Hilliard equation with a degenerate mobility in a one-dimensional situation has
been established by Yin [19]. Elliott and Garcke [5] considered the Cahn-Hilliard
equation with non-constant mobility for arbitrary space dimensions. Based on
Galerkin approximation, they proved the global existence of weak solutions. Dai
and Du [4] improved the results of the paper [5]. Liu [12] proved the existence of
weak solutions for the convective Cahn-Hilliard equation with degenerate mobility.
The relevant equations or inequalities have also been studied in [10, 11, 13, 14].

Motivated by the above works, we prove the existence of weak solution to (1.1)-
(1.4) under a more general range of the double-well potential F . In particular, we
assume that for s ∈ R, F ∈ C2(R) satisfies

k0(|s|r+1 − 1) ≤ F (s) ≤ k1(|s|r+1 + 1), (1.5)

|F ′(s)| ≤ k2(|s|r + 1), (1.6)

|F ′′(s)| ≤ k3(|s|r−1 + 1), (1.7)

for some constants k0, k1, k2, k3 > 0 where 1 ≤ r <∞ if n = 1, 2 and 1 ≤ r ≤ n
n−2

if n ≥ 3. What’s more, we need the assumption on the boundary of f(u),

f(u)|∂Ω = 0, t > 0. (1.8)

We can give examples satisfying the condition (1.8), such as F (u) = (1 − u2)2

studied by Karali and Nagase [9], the logarithmic function f(u) = −θcu+ θ
2 ln 1+u

1−u ,
u ∈ (−1, 1), 0 < θ < θc [3].

Concerning the Allen-Cahn structure, we rewrite (1.1), (1.3), (1.4) and (1.8) to
the form

ut = ∇(D(u)∇v)− v, in QT ,

v = −∆u+ f(u), in QT ,

u(x, 0) = u0(x), in Ω,
u = v = 0, on ∂Ω.

(1.9)
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We consider the free energy functional E(u) defined in [9] given by

E(u) :=
∫

Ω

(1
2
|∇u|2 + F (u)

)
dx. (1.10)

For a pair of solution (u, v) of (1.9) it holds that
d

dt
E(u) =

∫
Ω

vut dx =
∫

Ω

v[∇(D(u)∇v)− v] dx = −
∫

Ω

(
D(u)|∇v|2 + v2

)
dx ≤ 0.

Notation. Define the usual Lebesgue norms and the L2-inner-product

‖u‖p = ‖u‖Lp(Ω) and (u, v) = (u, v)L2(Ω).

The duality pairing between the space H2(Ω) and its dual (H2(Ω))′ will be denoted
using the form 〈·, ·〉. For simplicity, 2∗ := 2n

n−2 . χB denotes the characteristic
function of B.

This paper is organized as follows. In Section 2, we use a Galerkin method to
give a existence of weak solution for a positive mobility. Section 3 uses a sequence
of non-degenerate solutions to approximate the degenerate case (1.9).

2. Existence for positive mobility

In this section, we study the Cahn-Hilliard/Allen-Cahn equation with a non-
degenerate mobility Dε(u) defined for an ε satisfying 0 < ε < δ by

Dε(u) :=

{
|u|m, if |u| > ε,

εm, if |u| ≤ ε.
(2.1)

So we consider the problem
ut = ∇(Dε(u)∇v)− v, in QT ,

v = −∆u+ f(u), in QT ,

u(x, 0) = u0(x), in Ω,
u = v = 0, on ∂Ω.

(2.2)

Theorem 2.1. Suppose u0 ∈ H1(Ω), under assumptions (1.2) and (1.5)–(1.7), for
any T > 0, there exists a pair of functions (uε, vε) such that

(1) uε ∈ L∞(0, T ;H1
0 (Ω)) ∩ C([0, T ];Lp(Ω)) ∩ L2(0, T ;H3(Ω)), where 1 ≤ p <

∞ if n = 1, 2 and 2 ≤ p < 2n
n−2 if n ≥ 3,

(2) ∂tuε ∈ L2(0, T ; (H2(Ω))′),
(3) uε(x, 0) = u0(x) for all x ∈ Ω,
(4) vε ∈ L2(0, T ;H1

0 (Ω)),
which satisfies equation (2.2) in the following weak sense∫ T

0

〈∂tuε, φ〉dt+
∫∫

QT

(
−∆uε + f(uε)

)
φdx dt

= −
∫∫

QT

Dε(uε)
(
−∇∆uε + F ′′(uε)∇uε

)
· ∇φdx dt

(2.3)

for all test functions φ ∈ L2(0, T ;H2(Ω) ∩ H1
0 (Ω)). In addition, uε satisfies the

energy inequality

E(uε) +
∫ t

0

∫
Ω

(
Dε(uε(x, τ))|∇vε(x, τ)|2 + |vε(x, τ)|2

)
dx dτ ≤ E(u0), (2.4)
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for all t > 0.

To prove the above theorem, we apply a Galerkin approximation. Let {φJ}j∈N
be the eigenfunctions of the Laplace operator on L2(Ω) with Dirichlet boundary
condition, i.e.,

−∆φJ = λJφJ , in Ω,
φJ = 0, on ∂Ω.

(2.5)

The eigenfunctions {φJ}∞j=1 form an orthogonal basis for L2(Ω), H1(Ω) and H2(Ω).
Hence, for initial data u0 ∈ H1(Ω), we can find sequences of scalars (u0

N,j ; j =
1, 2, . . . , N)∞N=1 such that

lim
N→∞

N∑
j=1

u0
N,jφJ = u0, in H1(Ω). (2.6)

Let VN denote the linear span of (φ1, . . . , φN ) and PN be the orthogonal projection
from L2(Ω) to VN , that is

PNφ :=
N∑
j=1

(∫
Ω

φφJ dx
)
φJ .

Let uN (x, t) =
∑N
j=1 c

N
J (t)φJ(x), vN (x, t) =

∑N
j=1 d

N
J (t)φJ(x) be the approximate

solution of (2.2) in VN ; that is, uN , vN satisfy the g system of equations∫
Ω

∂tu
NφJ dx = −

∫
Ω

Dε(uN )∇vN · ∇φJ dx−
∫

Ω

vNφJ dx, (2.7)∫
Ω

vNφJ dx =
∫

Ω

∇uN · ∇φJ + f(uN )φJ dx, (2.8)

uN (x, 0) =
N∑
j=1

u0
N,jφJ(x), (2.9)

for j = 1, . . . , N and u0
N,j =

∫
Ω
u0φJ dx.

This gives an initial value problem for a system of ordinary differential equations
for (c1, . . . , cN )

∂tc
N
J (t) = −

N∑
k=1

dNk (t)
∫

Ω

Dε

( N∑
i=1

cNi (t)φi(x)
)
∇φk∇φJ dx− dNJ (t), (2.10)

dNJ (t) = λJc
N
J (t) +

∫
Ω

f
( N∑
i=1

cNi (t)φi(x)
)
φJ dx, (2.11)

cNJ (0) = u0
N,j = (u0, φJ), (2.12)

which has to hold for j = 1, . . . , N .
Define X(t) =

(
cN1 (t), . . . , cNN (t)

)
, F(t,X(t)) =

(
f1(t,X(t)), . . . , fN (t,X(t))

)
,

where

fJ(t,X(t)) = −
N∑
k=1

∫
Ω

Dε

( N∑
i=1

cNi (t)φi(x)
)
∇φk∇φJ dx

×
(
λkc

N
k (t) +

∫
Ω

f
( N∑
i=1

cNi (t)φi(x)
)
φk dx

)
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− λJcNJ (t)−
∫

Ω

f
( N∑
k=1

cNk (t)φk(x)
)
φJ dx

for j = 1, . . . , N . Then problem (2.10)-(2.12) is equivalent to the problem

X′(t) = F(t,X(t)), X(0) = (u0
N,1, . . . , u

0
N,N ).

Since the right hand side of the above equation is continuous, it follows from the
Cauchy-Peano Theorem [16] that the problem (2.10)-(2.12) has a solution X(t) ∈
C1[0, TN ], for some TN > 0, i. e., the system (2.7)-(2.9) has a local solution.

To prove the existence of solutions, we need some a priori estimates on uN .

Lemma 2.2. For any T > 0, we have

‖uN‖L∞(0,T ;H1
0 (Ω)) ≤ C, for all N,

‖∂tuN‖L2(0,T ;(H2(Ω))′) ≤ C, for all N,

where C independent of N .

Proof. For any fixedN ∈ N+, we multiply (2.7) by dNJ (t) and sum over j = 1, . . . , N
to obtain ∫

Ω

∂tu
NvN dx = −

∫
Ω

Dε(uN )|∇vN |2 dx−
∫

Ω

|vN |2dx. (2.13)

Multiply (2.8) by ∂tcNJ (t) and sum over j = 1, . . . , N to obtain∫
Ω

vN∂tu
N dx =

∫
Ω

(
∇uN∂t∇uN + f(uN )∂tuN

)
dx,

=
d

dt

∫
Ω

(1
2
|∇uN |2 + F (uN )

)
dx.

By (2.13) and the above identity, we have
d

dt

∫
Ω

(1
2
|∇uN |2 + F (uN )

)
dx = −

∫
Ω

Dε(uN )|∇vN |2dx−
∫

Ω

|vN |2 dx. (2.14)

Replacing t by τ in (2.14) and integrating over τ ∈ [0, t], by (1.5) and the Sobolev
embedding theorem we obtain∫

Ω

(
1
2
|∇uN (x, t)|2 + F (uN (x, t))

)
dx

+
∫ t

0

∫
Ω

(
Dε(uN (x, τ))|∇vN (x, τ)|2 + |vN (x, τ)|2

)
dx dτ

=
∫

Ω

(
1
2
|∇uN (x, 0)|2 + F (uN (x, 0))

)
dx

≤ 1
2
‖∇uN (x, 0)‖22 + k1‖uN (x, 0)‖r+1

r+1 + k1|Ω|.

≤ 1
2
‖∇u0‖22 + k1C‖u0‖r+1

H1(Ω) + k1|Ω| ≤ C.

The last inequality follows from u0 ∈ H1(Ω). This implies∫
Ω

(1
2
|∇uN (x, t)|2 + k0|uN |r+1

)
dx

+
∫ t

0

∫
Ω

(
Dε(uN (x, τ))|∇vN (x, τ)|2 + |vN (x, τ)|2

)
dx dτ ≤ C.

(2.15)
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By (2.15) and Poincaré’s inequality we have

‖uN‖H1(Ω) ≤ C, for t > 0.

This estimate implies that the coefficients {cNJ : j = 1, . . . , N} are bounded in time
and therefore a global solution to the system (2.7)-(2.9) exists. In addition, for any
T > 0, we have

uN ∈ L∞(0, T ;H1
0 (Ω)), ‖uN‖L∞(0,T ;H1

0 (Ω)) ≤ C, for all N. (2.16)

Inequality (2.15) implies

‖
√
Dε(uN )∇vN‖L2(QT ) ≤ C, for all N, (2.17)

‖vN‖L2(QT ) ≤ C, for all N. (2.18)

By the Sobolev embedding theorem, the growth condition (1.2) and (2.1), for |u| >
ε, we obtain∫

Ω

|Dε(uN )|n/2 dx ≤ (C1 + 1)
∫

Ω

|uN |m·n2 dx,≤ C‖uN‖mn/2H1(Ω) ≤ C.

If |u| ≤ ε, obviously we obtain the above estimate. This implies

‖Dε(uN )‖L∞(0,T ;Ln/2(Ω)) ≤ C, for all N. (2.19)

For any φ ∈ L2(0, T ;H2(Ω)), we obtain PNφ =
∑N
j=1 aJ(t)φJ , where aJ(t) =∫

Ω
φφJdx. Multiplying (2.7) by aJ(t), summing over j = 1, 2, . . . , N , by Hölder’s

inequality, (2.17)-(2.19) and the Sobolev embedding theorem, we have∣∣ ∫ T

0

∫
Ω

∂tu
Nφdx dt

∣∣
=
∣∣ ∫ T

0

∫
Ω

∂tu
NPNφdx dt

∣∣
=
∣∣ ∫ T

0

∫
Ω

(
Dε(uN )∇vN∇PNφ+ vNPNφ

)
dx dt

∣∣
≤
∫ T

0

‖
√
Dε(uN )‖n‖

√
Dε(uN )∇vN‖2‖∇PNφ‖2∗ dt+

∫ T

0

‖vN‖2‖PNφ‖2 dt

≤ C
∫ T

0

‖
√
Dε(uN )∇vN‖2‖φ‖H2 + ‖vN‖2‖φ‖H2 dt

≤ C
(
‖
√
Dε(uN )∇vN‖L2(QT ) + ‖vN‖L2(QT )

)
‖φ‖L2(0,T ;H2(Ω))

≤ C‖φ‖L2(0,T ;H2(Ω)).

Hence,
‖∂tuN‖L2(0,T ;(H2(Ω))′) ≤ C for all N. (2.20)

The proof is complete. �

Lemma 2.3. Suppose u0 ∈ H1(Ω), under assumptions (1.2) and (1.5)-(1.7), for
any T > 0, there exists a pair of functions (uε, vε) such that

(1) uε ∈ L∞(0, T ;H1
0 (Ω)) ∩ C([0, T ];Lp(Ω)), where 1 ≤ p <∞ if n = 1, 2 and

2 ≤ p < 2n
n−2 if n ≥ 3,

(2) ∂tuε ∈ L2(0, T ; (H2(Ω))′),
(3) uε(x, 0) = u0(x) for all x ∈ Ω,
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(4) vε ∈ L2(0, T ;H1
0 (Ω)),

which satisfies∫ T

0

〈∂tuε, φ〉 dt = −
∫ T

0

∫
Ω

Dε(uε)∇vε · ∇φdx dt−
∫ T

0

∫
Ω

vεφdx dt.

Proof. Since the embedding H1
0 (Ω) ↪→ Lp(Ω) is compact for 1 ≤ p <∞ if n = 1, 2

and 1 ≤ p < 2n
n−2 if n ≥ 3, Lp(Ω) ↪→ (H2(Ω))′ is continuous for p ≥ 1 if n ≤ 3,

p > 1 if n = 4 and p ≥ 2n
n+4 if n ≥ 5. Using the Aubin-Lions lemma (Lions [17]),

we can find a subsequence which we still denote by uN and uε ∈ L∞(0, T ;H1
0 (Ω)),

such that as N →∞

uN ⇀ uε, weak-* in L∞(0, T ;H1
0 (Ω)), (2.21)

uN → uε, strongly in C([0, T ];Lp(Ω)), (2.22)

uN → uε, strongly in L2(0, T ;Lp(Ω)) and almost everywehre in QT , (2.23)

∂tu
N ⇀ ∂tuε, weakly in L2(0, T ; (H2(Ω))′), (2.24)

where 2 ≤ p < 2∗ if n ≥ 3 and 1 ≤ p <∞ if n = 1, 2.
By multiplying (2.7) by aJ(t) and integrating (2.7) over t ∈ [0, T ], we obtain∫ T

0

∫
Ω

∂tu
NaJ(t)φJ dx dt

= −
∫ T

0

∫
Ω

Dε(uN )∇vN · aJ(t)∇φJ dx dt−
∫ T

0

∫
Ω

vNaJ(t)φJ dx dt.

(2.25)

To pass to the limit in (2.25), we need the convergence of vN and Dε(uN )∇vN . By
(2.17) and Dε(uN ) ≥ εm, then

‖∇vN‖L2(QT ) ≤ Cε−
m
2 <∞, for any ε > 0. (2.26)

This implies that {∇vN} is a bounded sequence in L2(QT ), thus there exists a
subsequence, not relabeled, and ζε ∈ L2(QT ) such that

∇vN ⇀ ζε, weakly in L2(QT ). (2.27)

By (2.26) and Poincaré’s inequality, we have

‖vN‖L2(0,T ;H1
0 (Ω)) ≤ Cε−

m
2 <∞, for any ε > 0.

Hence we can find a subsequence of vN , not relabeled, and vε ∈ L2(0, T ;H1
0 (Ω))

such that
vN ⇀ vε, weakly in L2(0, T ;H1

0 (Ω)). (2.28)

For any g ∈ L2(0, T ;H1
0 (Ω)), by (2.26) and (2.27) we have

lim
N→∞

∫ T

0

∫
Ω

∇vNg dx dt =
∫ T

0

∫
Ω

ζεg dx dt

= lim
N→∞

∫ T

0

∫
Ω

vN∇g dx dt =
∫ T

0

∫
Ω

∇vεg dx dt.

Hence ζε = ∇vε almost all in QT and

∇vN ⇀ ∇vε, weakly in L2(QT ). (2.29)
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By (2.18), we can extract a further sequence of vN , not relabeled, and ηε ∈ L2(QT )
such that

vN ⇀ ηε, weakly in L2(QT ). (2.30)
By (2.28) and (2.30) for any g ∈ L2(QT ) ⊂ L2(0, T ;H−1(Ω)), we have

lim
N→∞

∫ T

0

∫
Ω

vNg dx dt =
∫ T

0

∫
Ω

vεg dx dt =
∫ T

0

∫
Ω

ηεg dx dt.

This implies ηε = vε almost all QT and

vN ⇀ vε, weakly in L2(QT ). (2.31)

Consequently we have the bound∫
QT

|vε|2 dx dt ≤ C. (2.32)

For any t ∈ [0, T ], by Dε(uN ) ≤ C(1 + |uN |m), we have(
Dε(uN )

)n/2 ≤ C(1 + |uN |m)n/2 ≤ (C(1 + |uN |))mn/2,

where 2 ≤ mn
2 < 2∗. By (2.22), C(1 + |uN |)→ C(1 + |uθ|) in Lmn/2(Ω). Since Dε

is continuous and (2.23), we obtain

Dε(uN )→ Dε(uε), a.e. in Ω.

The generalized Lebesgue convergence theorem [1] gives

Dε(uN )→ Dε(uε), in Ln/2(Ω).

This implies
‖Dε(uN )−Dε(uε)‖n/2 → 0, as N →∞.

The above estimate holds for any t ∈ [0, T ], and we can take supremum on both
sides of the above estimate to obtain

sup
t∈[0,T ]

‖Dε(uN )−Dε(uε)‖n/2 → 0, as N →∞.

This implies

Dε(uN )→ Dε(uε), strongly in C(0, T ;Ln/2(Ω)). (2.33)

By
√
Dε(uN ) ≤ C(1 + |uN |m2 ), (2.22), (2.23) and the generalized Lebesgue conver-

gence theorem, similarly, we have√
Dε(uN )→

√
Dε(uε), strongly in C(0, T ;Ln(Ω)). (2.34)

For any ϕ ∈ L2(0, T ;L2∗(Ω)), by Hölder’s inequality we have∣∣∣ ∫∫
QT

(√
Dε(uN )∇vNϕ−

√
Dε(uε)∇vεϕ

)
dx dt

∣∣∣
=
∣∣∣ ∫∫

QT

(
[
√
Dε(uN )−

√
Dε(uε)]∇vNϕ+

√
Dε(uε)[∇vNϕ−∇vεϕ]

)
dx dt

∣∣∣
≤
∫ T

0

‖
√
Dε(uN )−

√
Dε(uε)‖n‖∇vN‖2‖ϕ‖2∗ dt

+
∣∣∣ ∫∫

QT

√
Dε(uε)ϕ[∇vN −∇vε] dx dt

∣∣∣
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≤ sup
t∈[0,T ]

‖
√
Dε(uN )−

√
Dε(uε)‖n‖∇vN‖L2(QT )‖ϕ‖L2(0,T ;L2∗ (Ω))

+
∣∣∣ ∫∫

QT

√
Dε(uε)ϕ[∇vN −∇vε] dx dt

∣∣∣
≡ I + II.

By (2.29) and (2.34), I → 0 as N →∞. By Hölder’s inequality and (2.34) we have∫∫
QT

|
√
Dε(uε)ϕ|2 dx dt ≤

∫ T

0

(∫
Ω

(
Dε(uε)

)n/2
dx
)n/2(∫

Ω

|ϕ|
2n

n−2 dx
)n−2

n

dt

≤ sup
t∈[0,T ]

‖
√
Dε(uε)‖2n

∫ T

0

‖ϕ‖2L2∗ (Ω) dt

≤ C‖ϕ‖2L2(0,T ;L2∗ (Ω)).

This implies √
Dε(uε)ϕ ∈ L2(QT ). (2.35)

Thus II → 0 as N →∞ by (2.29). Hence√
Dε(uN )∇vN ⇀

√
Dε(uε)∇vε, weakly in L2(0, T ;L

2n
n+2 (Ω)). (2.36)

Next we consider the convergence of Dε(uN )∇vN . By (2.17), (2.36) and L2(QT ) ⊂
L2(0, T ;L

2n
n+2 (Ω)), we can extract a further sequence, not relabeled, such that√

Dε(uN )∇vN ⇀
√
Dε(uε)∇vε, weakly in L2(QT ). (2.37)

By Hölder’s inequality and (2.17), we have∫∫
QT

√
Dε(uN )∇vN ·

√
Dε(uε)∇vε dx dt

≤ ‖
√
Dε(uN )∇vN‖L2(QT )‖

√
Dε(uε)∇vε‖L2(QT )

≤ C‖
√
Dε(uε)∇vε‖L2(QT ),

(2.38)

where C is independent of ε. Taking the limit of (2.38) on both sides, by (2.37) we
have

‖
√
Dε(uε)∇vε‖L2(QT ) ≤ C. (2.39)

For any ϕ ∈ L2(0, T ;L2∗(Ω)), by Hölder’s inequality we obtain∣∣∣ ∫∫
QT

(
Dε(uN )∇vNϕ−Dε(uε)∇vεϕ

)
dx dt

∣∣∣
≤
∣∣∣ ∫∫

QT

[
√
Dε(uN )−

√
Dε(uε)]

√
Dε(uN )∇vNϕdx dt

∣∣∣
+
∣∣∣ ∫∫

QT

√
Dε(uε)[

√
Dε(uN )∇vNϕ−

√
Dε(uε)∇vεϕ] dx dt

∣∣∣
≤
∫ T

0

‖
√
Dε(uN )−

√
Dε(uε)‖n‖

√
Dε(uN )∇vN‖2‖ϕ‖2∗ dt

+
∣∣∣ ∫∫

QT

√
Dε(uε)ϕ[

√
Dε(uN )∇vN −

√
Dε(uε)∇vε] dx dt

∣∣∣
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≤ sup
t∈[0,T ]

‖
√
Dε(uN )−

√
Dε(uε)‖n‖

√
Dε(uN )∇vN‖L2(QT )‖ϕ‖L2(0,T ;L2∗ (Ω))

+
∣∣∣ ∫∫

QT

√
Dε(uε)ϕ[

√
Dε(uN )∇vN −

√
Dε(uε)∇vε] dx dt

∣∣∣
= I + II.

By (2.34) and (2.37), I → 0 as N → ∞. By (2.35) and (2.37), we have II → 0 as
N →∞. Thus

Dε(uN )∇vN ⇀ Dε(uε)∇vε, weakly in L2(0, T ;L
2n

n+2 (Ω)). (2.40)

For any φ ∈ L2(0, T ;H2(Ω) ∩ H1
0 (Ω)), we obtain Pnφ =

∑n
j=1 aJ(t)φJ , where

aJ(t) =
∫

Ω
φφJdx, then Pnφ converges strongly to φ in L2(0, T ;H2 ∩H1

0 (Ω)) and
aJ(t) ∈ L2(0, T ). For φJ ∈ H2(Ω), by Sobolev embedding theorem, we obtain

‖∇φJ‖2∗ ≤ C‖∇φJ‖H1(Ω) ≤ C.

Thus aJ(t)∇φJ ∈ L2(0, T ;L2∗) and

aJ(t)φJ ∈ L2(0, T ;H2 ∩H1
0 (Ω)) ⊂ L2(0, T ;H−1(Ω)).

Taking the limit as N → ∞ on both sides of (2.25), by (2.24), (2.40) and (2.28),
we have∫ T

0

〈∂tuε, aJ(t)φJ〉 dt

= −
∫ T

0

∫
Ω

Dε(uε)∇vε · aJ(t)∇φJ dx dt−
∫ T

0

∫
Ω

vεaJ(t)φJ dx dt,

(2.41)

for all j ∈ N .
Then we sum over j = 1, 2, . . . , n on both sides (2.41) to get∫ T

0

〈∂tuε,Pnφ〉 dt

= −
∫ T

0

∫
Ω

Dε(uε)∇vε · ∇Pnφdx dt−
∫ T

0

∫
Ω

vεPnφdx dt.

(2.42)

Since Pnφ converges strongly to φ in L2(0, T ;H2(Ω)), thus as n→∞,∫ T

0

‖∇Pnφ−∇φ‖22∗ dt ≤
∫ T

0

‖∇Pnφ−∇φ‖2H1 dt

≤
∫ T

0

‖Pnφ− φ‖2H2 dt→ 0.

This implies that ∇Pnφ converges strongly to ∇φ in L2(0, T ;L2∗(Ω)). Thus we
obtain

Pnφ ⇀ φ, weakly in L2(0, T ;H2(Ω) ∩H1
0 (Ω)), (2.43)

∇Pnφ ⇀ ∇φ, weakly in L2(0, T ;L2∗(Ω)). (2.44)

By L2(0, T ;H1
0 (Ω)) ⊂ L2(0, T ;H−1(Ω)), we take the limit as n→∞ on both sides

(2.42), then obtain∫ T

0

〈∂tuε, φ〉 dt = −
∫ T

0

∫
Ω

Dε(uε)∇vε · ∇φ dx dt−
∫ T

0

∫
Ω

vεφ dx dt. (2.45)
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As for the initial value, by (2.9) as N →∞,

uN (x, 0)→ u0(x) in L2(Ω).

By (2.22), uε(x, 0) = u0(x) in L2(Ω). The proof is complete. �

Proof of Theorem 2.1. We need only to check that uε ∈ L2(0, T ;H3(Ω)), vε =
−∆uε+f(uε) and ∇vε = −∇∆uε+F ′′(uε)∇uε. First we consider the convergence
of ∇uN and f(uN ). By (2.21), we have∫ T

0

‖∇uN‖22dt ≤ C.

Hence we can find a subsequence of uN , not relabeled, and υ ∈ L2(QT ), such that

∇uN ⇀ υ weakly in L2(QT ). (2.46)

For any φ ∈ L2(0, T ;H1
0 (Ω)), by integration by parts we have

lim
N→∞

∫ T

0

∫
Ω

∇uNφdx dt = lim
N→∞

∫ T

0

∫
Ω

uN∇φdx dt.

By (2.21), (2.46) and ∇φ ∈ L2(QT ) ⊂ L1(0, T ;H−1(Ω)) we have∫ T

0

∫
Ω

υφ dx dt =
∫ T

0

∫
Ω

uε∇φdx dt =
∫ T

0

∫
Ω

∇uεφdx dt.

Hence υ = ∇uε almost all in Ω× [0, T ] and

∇uN ⇀ ∇uε weakly in L2(QT ). (2.47)

By |F ′(uN )| ≤ C(1 + |uN |r), (2.22), (2.23) and the general dominated convergence
theorem, similarly, we have

F ′(uN )→ F ′(uε) strongly in C(0, T ;Lq(Ω)), (2.48)

for 1 ≤ q <∞ if n = 1, 2 and 2 ≤ q < 2n
r(n−2) if n ≥ 3.

By the growth condition (1.6) and the Sobolev embedding theorem, we obtain

‖f(uN )‖2L2(Ω) =
∫

Ω

(F ′(uN ))2 dx

≤ C
∫

Ω

(|uN |r + 1)2 dx

≤ 2C
∫

Ω

|uN |2r dx+ 2C|Ω|

≤ C‖uN‖2rH1(Ω) + C.

Thus there exists a w ∈ L∞(0, T ;L2(Ω)) such that

F ′(uN ) ⇀ w weakly-* in L∞(0, T ;L2(Ω)).

This implies

lim
N→∞

∫ T

0

∫
Ω

F ′(uN )g dx dt =
∫ T

0

∫
Ω

wg dx dt, (2.49)

for any g ∈ L1(0, T ;L2(Ω)).
By Hölder’s inequality, (2.48) and (2.49), we have as N →∞∣∣∣ ∫∫

QT

(
F ′(uε)− w

)
g dx dt

∣∣∣
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≤
∫∫

QT

|F ′(uε)− F ′(uN )||g| dx dt+
∣∣∣ ∫∫

QT

[F ′(uN )− w]g dx dt
∣∣∣

≤
∫ T

0

‖F ′(uε)− F ′(uN )‖2‖g‖2dt+
∣∣∣ ∫∫

QT

[F ′(uN )− w]g dx dt
∣∣∣ ≤ 0,

for any g ∈ L1(0, T ;L2(Ω)). Hence F ′(uε) = w a.e. in QT and

F ′(uN ) ⇀ F ′(uε) weak-* in L∞(0, T ;L2(Ω)). (2.50)

Multiplying (2.8) by aJ(t) and integrating (2.8) over t ∈ [0, T ], we obtain∫ T

0

∫
Ω

vNaJ(t)φJ dx dt

=
∫ T

0

∫
Ω

(
∇uN · aJ(t)∇φJ + F ′(uN )aJ(t)φJ

)
dx dt.

(2.51)

For any φ ∈ L2(0, T ;H1
0 (Ω)), we obtain Pnφ =

∑n
j=1 aJ(t)φJ , where aJ(t) ∈

L2(0, T ). Thus aJ(t)φJ ∈ L2(0, T ;H1
0 (Ω)) and aJ(t)∇φJ ∈ L2(QT ). By (2.28),

(2.47) and (2.50), we take the limit as N →∞ on both sides of (2.51) to get∫ T

0

∫
Ω

vεaJ(t)φJ dx dt =
∫ T

0

∫
Ω

(∇uεaJ(t)∇φJ + F ′(uε)aJ(t)φJ) dx dt, (2.52)

for all j ∈ N .
Then we sum over j = 1, . . . , n on both sides (2.52), and obtain∫ T

0

∫
Ω

vεPnφdx dt =
∫ T

0

∫
Ω

(∇uε · ∇Pnφ+ F ′(uε)Pnφ) dx dt. (2.53)

Since Pnφ converges strongly to φ in L2(0, T ;H1
0 (Ω)), we have as n→∞∫ T

0

‖∇Pnφ−∇φ‖22 dt ≤
∫ T

0

‖Pnφ− φ‖2H1
0
dt→ 0.

This implies that ∇Pnφ converges strongly to ∇φ in L2(QT ). Thus we obtain

Pnφ ⇀ φ weakly in L2(0, T ;H1
0 (Ω)) (2.54)

∇Pnφ ⇀ ∇φ weakly in L2(QT ). (2.55)

By L2(0, T ;H1
0 (Ω)) ⊂ L2(0, T ;H−1(Ω)) and L∞(0, T ;L2(Ω)) ⊂ L2(0, T ;H−1(Ω)),

we take the limit as n→∞ on both sides (2.53), and we obtain∫∫
QT

vεφdx dt =
∫∫

QT

(∇uε · ∇φ+ F ′(uε)φ) dx dt.

Since F ′(uε) ∈ L∞(0, T ;L2(Ω)) and vε ∈ L2(0, T ;H1
0 (Ω)), it follows from regularity

theory [6] that uε ∈ L2(0, T ;H2(Ω)). Hence

vε = −∆uε + F ′(uε) almost everywhere in QT . (2.56)

Next we show F ′(uε) ∈ L2(0, T ;H1(Ω)). By Hölder’s inequality, the Sobolev em-
bedding theorem and (1.7), we have∫ T

0

∫
Ω

|∇F ′(uε)|2 dx dt =
∫ T

0

∫
Ω

|F ′′(uε)|2|∇uε|2 dx dt

≤
∫ T

0

( ∫
Ω

|F ′′(uε)|2×
n
2 dx

)2/n( ∫
Ω

|∇uε|2×
n

n−2 dx
)n−2

n dt
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≤ C
∫ T

0

( ∫
Ω

(1 + |uε|r−1)n dx
)2/n‖∇uε‖22n

n−2
dt

≤ C
∫ T

0

(
1 +

∫
Ω

|uε|(r−1)n dx
)2/n‖∇uε‖2H1(Ω) dt

≤ C
∫ T

0

(
1 + ‖uε‖

4
n−2
2n

n−2

)
‖uε‖2H2(Ω) dt

≤ C
(
1 + ‖uε‖

4
n−2

L∞(0,T ;H1(Ω))

) ∫ T

0

‖uε‖2H2(Ω) dt

≤ C
(
1 + ‖uε‖

4
n−2

L∞(0,T ;H1(Ω))

)
‖uε‖2L2(0,T ;H2(Ω)) ≤ C.

Thus ∇F ′(uε) ∈ L2(QT ) and F ′(uε) ∈ L2(0, T ;H1(Ω)). Combined with vε ∈
L2(0, T ;H1

0 (Ω)), by (2.56) and regularity theory we have uε ∈ L2(0, T ;H3(Ω)) and

∇vε = −∇∆uε + F ′′(uε)∇uε, almost everywhere in QT . (2.57)

By (2.45), (2.56) and (2.57), we obtain∫ T

0

〈∂tuε, φ〉 dt+
∫ T

0

∫
Ω

(−∆uε + F ′(uε))φdx dt

= −
∫ T

0

∫
Ω

Dε(uε)(−∇∆uε + F ′′(uε)∇uε) · ∇φdx dt,
(2.58)

for all φ ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)).

Last we show that a weak solution uε to (2.2) satisfies energy inequality (2.4).
Replacing t by τ in (2.14) and integrating over τ ∈ [0, T ], we have

E(uN (x, t)) +
∫ t

0

∫
Ω

Dε(uN (x, τ))|∇vN (x, τ)|2 dx dτ

+
∫ t

0

∫
Ω

|vN (x, τ)|2 dx dτ = E(uN (x, 0)).
(2.59)

Next, we pass to the limit in (2.59). First, by mean value theorem and (1.6) we
have ∣∣ ∫

Ω

(
F (uN (t))− F (uε(t))

)
dx
∣∣

≤
∫

Ω

|F ′(ξ)||uN (t)− uε(t)| dx

≤
∫

Ω

C(|uN (t)|r + |uε(t)|r + 1)|uN (t)− uε(t)| dx,

(2.60)

for 1 ≤ r <∞ if n = 1, 2 and 1 ≤ r ≤ n
n−2 if n ≥ 3, ξ = λuN (t) + (1− λ)uε(t) for

some λ ∈ (0, 1). By Hölder’s inequality, we have∫
Ω

|uN (t)|r|uN (t)− uε(t)| dx ≤ ‖uN (t)− uε(t)‖2‖uN (t)‖r2r. (2.61)

Since the Sobolev embedding theorem says that H1
0 (Ω) ↪→ Lp(Ω) for 1 ≤ p ≤ 2∗

and the embedding is compact if 1 ≤ p < 2∗, by (2.21), then for a subsequence,
not relabeled, we have uN → uε strongly in L∞(0, T ;L2(Ω)) and uN is bounded in
L∞(0, T ;L2r(Ω)). Hence, it follows from (2.61) that∫

Ω

|uN (t)|r|uN (t)− uε(t)| dx→ 0, (2.62)
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as N →∞, for almost all t ∈ [0, T ].
Similarly, we can prove that∫

Ω

(|uε(t)|r + 1)|uN (t)− uε(t)| dx→ 0, (2.63)

as N →∞, for almost all t ∈ [0, T ], by (2.60), (2.62) and (2.63), we have

lim
N→∞

∫
Ω

F (uN (t)) dx =
∫

Ω

F (uε(t)) dx. (2.64)

Since uN (x, 0)→ u0(x) strongly in L2(Ω), we obtain

lim
N→∞

∫
Ω

F (uN (0)) dx =
∫

Ω

F (u0(x)) dx. (2.65)

By (2.47), (2.64), (2.37), (2.29), (2.59) and the weak lower semicontinuity of the
Lp norms [3]. Then∫

Ω

(1
2
|∇uε(x, t)|2 + F (uε(x, t))

)
dx

+
∫ t

0

∫
Ω

(
Dε(uε(x, τ))|∇vε(x, τ)|2 + |vε(x, τ)|2

)
dx dτ

≤ lim
N↑∞

inf
∫

Ω

(
1
2
|∇uN (x, t)|2 + F (uN (x, t))

)
dx

+ lim
N↑∞

inf
∫∫

Qt

(
Dε(uN (x, τ))|∇vN (x, τ)|2 + |vN (x, τ)|2

)
dx dτ

= lim
N↑∞

inf E(uN (x, 0)).

(2.66)

Since uN (x, 0)→ u0(x) strongly in H1(Ω), by (2.65) we have

lim
N→∞

E(uN (x, 0)) =
∫

Ω

(1
2
|∇u0(x)|2 + F (u0(x))

)
dx. (2.67)

Combining (2.66) with (2.67) gives the energy inequality (2.4). The proof is com-
plete. �

3. Degenerate mobility

This section is devoted to the existence of weak solutions to the equations (1.9).
Here we consider the limit of approximate solutions uεi defined in section 2. The
limiting value u does exist and solves the degenerate Allen-Cahn/Cahn-Hilliard
equation in the weak sense.

Theorem 3.1. Suppose u0 ∈ H1(Ω), under assumptions (1.2) and (1.5)-(1.7), for
any T > 0, problem (1.9) has a weak solution u : QT → R satisfying

(1) u ∈ L∞(0, T ;H1
0 (Ω)) ∩ C([0, T ];Lp(Ω)) ∩ L2(0, T ;H2(Ω)), where 1 ≤ p <

∞ if n = 1, 2 and 2 ≤ p < 2n
n−2 if n ≥ 3,

(2) ∂tu ∈ L2(0, T ; (H2(Ω))′),
(3) u(x, 0) = u0(x) for all x ∈ Ω,

which satisfies (1.9) in the following weak sense:
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(1) Define P as the set where D(u) is non-degenerate, that is

P := {(x, t) ∈ QT : |u| 6= 0}.

There exists a set A ⊂ QT with |QT \ A| = 0 and a function ζ : QT → Rn

satisfying χA∩PD(u)ζ ∈ L2(0, T ;L
2n

n+2 (Ω)), such that∫ T

0

〈∂tu, φ〉 dt

= −
∫ T

0

∫
A∩P

D(u)ζ · ∇φdx dt−
∫ T

0

∫
Ω

(−∆u+ f(u))φdx dt

(3.1)

for all test functions φ ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)).

(2) For each j ∈ N , there exists EJ := {(x, t) ∈ QT ;ui → u uniformly, |u| >
δJ for δJ > 0} = TJ × SJ such that

u ∈ L2(TJ ;H3(SJ)),

ζ = −∇∆u+ F ′′(u)∇u, in EJ .

In addition, u satisfies the energy inequality

E(u) +
∫∫

Qt∩A∩P
D(u(x, τ))|ζ(x, τ)|2 dx dτ

+
∫∫

Qt

| −∆u+ f(u)|2 dx dτ ≤ E(u0),
(3.2)

for all t > 0.

Proof. We consider a sequence of positive numbers εi monotonically decreasing to
0 as i → ∞. Fix u0 ∈ H1(Ω), for any fixed εi, here, for the sake of simplicity, we
write ui := uεi and Di(ui) := Dεi(uεi). By Theorem 2.1, there exists a function ui
such that

(1) ui ∈ L∞(0, T ;H1
0 (Ω)) ∩ C([0, T ];Lp(Ω)) ∩ L2(0, T ;H3(Ω)), where 1 ≤ p <

∞ if n = 1, 2 and 2 ≤ p < 2n
n−2 if n ≥ 3,

(2) ∂tui ∈ L2(0, T ; (H2(Ω))′),∫ T

0

〈∂tui, φ〉 dt = −
∫ T

0

∫
Ω

Di(ui)∇vi · ∇φdx dt−
∫ T

0

∫
Ω

viφdx dt (3.3)

for all test functions φ ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)), where

vi = −∆ui + f(ui), almost everywhere in QT . (3.4)

By the arguments in the proof of Theorem 2.1, the bounds on the right hand side
of (2.16), (2.20), (2.39) and (2.32) depend only on the growth conditions of the
mobility and potential, so there exists a constant C > 0 independent of εi such
that

‖ui‖L∞(0,T ;H1
0 (Ω)) ≤ C, (3.5)

‖∂tui‖L2(0,T ;(H2(Ω))′) ≤ C, (3.6)

‖
√
Di(ui)∇vi‖L2(QT ) ≤ C, (3.7)

‖vi‖L2(QT ) ≤ C. (3.8)
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Similar to the proof of Theorem 2.1, the above boundedness of {ui} and {∂tui}
enable us to find a subsequence, not relabeled, and u ∈ L∞(0, T ;H1

0 (Ω)) such that
as i→∞,

ui ⇀ u, weak-* in L∞(0, T ;H1
0 (Ω)), (3.9)

ui → u, strongly in C(0, T ;Lp(Ω)), (3.10)

ui → u, strongly inL2(0, T ;Lp(Ω)) and almost all in QT , (3.11)

∂tui ⇀ ∂tu, weakly in L2(0, T ; (H2(Ω))′), (3.12)

where 1 ≤ p <∞ if n = 1, 2 and 2 ≤ p < 2n
n−2 if n ≥ 3.

By (3.7) and (3.8), there exists ξ, η ∈ L2(QT ) such that√
Di(ui)∇vi ⇀ ξ, weakly in L2(QT ), (3.13)

vi ⇀ η, weakly in L2(QT ). (3.14)

Next we show the convergence of Di(ui)∇vi and η = −∆u+ f(u) a.e. QT . Similar
to having (2.33) and (2.34), by the uniform convergence of Di → D, we obtain

Di(ui)→ D(u), strongly in C(0, T ;Ln/2(Ω)), (3.15)√
Di(ui)→

√
D(u), strongly in C(0, T ;Ln(Ω)). (3.16)

For any ϕ ∈ L2(0, T ;L2∗(Ω)), by Hölder’s inequality, we have∣∣∣ ∫∫
QT

(
Di(ui)∇viϕ−

√
D(u)ξϕ

)
dx dt

∣∣∣
≤
∣∣∣ ∫∫

QT

[
√
Di(ui)−

√
D(u)]

√
Di(ui)∇viϕdx dt

∣∣∣
+
∣∣∣ ∫∫

QT

√
D(u)[

√
Di(ui)∇viϕ− ξϕ] dx dt

∣∣∣
≤
∫ T

0

‖
√
Di(ui)−

√
D(u)‖n‖

√
Di(ui)∇vi‖2‖ϕ‖2∗ dt

+
∣∣∣ ∫∫

QT

√
D(u)ϕ[

√
Di(ui)∇vi − ξ] dx dt

∣∣∣
≤ sup
t∈[0,T ]

‖
√
Di(ui)−

√
D(u)‖n‖

√
Di(ui)∇vi‖L2(QT )‖ϕ‖L2(0,T ;L2∗ (Ω))

+
∣∣∣ ∫∫

QT

√
D(u)ϕ[

√
Di(ui)∇vi − ξ] dx dt

∣∣∣
=: I + II.

By (3.16) and (3.7), I → 0 as N →∞. By Hölder’s inequality and the boundedness
of D(u) in C(0, T ;Ln/2(Ω)) we have∫∫

QT

|
√
D(u)ϕ|2 dx dt ≤

∫ T

0

(∫
Ω

(
D(u)

)n/2
dx
)n/2(∫

Ω

|ϕ|2
∗
dx
)n−2

n

dt

≤ sup
t∈[0,T ]

‖D(u)‖n/2
∫ T

0

‖ϕ‖2L2∗ (Ω) dt

≤ C‖ϕ‖2L2(0,T ;L2∗ (Ω)) .
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This implies √
D(u)ϕ ∈ L2(QT ). (3.17)

By (3.13), thus II → 0 as N →∞, this implies

Di(ui)∇vi ⇀
√
D(u)ξ weakly in L2(0, T ;L

2n
n+2 (Ω)). (3.18)

By (3.4), for any φ ∈ L2(0, T ;H1
0 (Ω)) ⊂ L2(QT ) we have∫∫

QT

viφdx dt = −
∫∫

QT

∆uiφdx dt+
∫∫

QT

f(ui)φdx dt

=
∫∫

QT

∇ui∇φdx dt+
∫∫

QT

f(ui)φdx dt.
(3.19)

Recalling that the convergence of ∇ui and f(ui) are similar to get (2.47) and (2.50),
we have

∇ui ⇀ ∇u, weak-* in L∞(0, T ;L2(Ω)), (3.20)

f(ui) ⇀ f(u), weak-* in L∞(0, T ;L2(Ω)). (3.21)

By (3.20), (3.21) and L2(0, T ;H1
0 (Ω)) ⊂ L1(0, T ;L2(Ω)), taking the limits of (3.19)

on both sides, we have∫∫
QT

ηφ dx dt =
∫∫

QT

∇u∇φdx dt+
∫∫

QT

f(u)φdx dt.

Since f(u) ∈ L∞(0, T ;L2(Ω)) and η ∈ L2(QT ), by regularity theory we see that
u ∈ L2(0, T ;H2(Ω)) and

η = −∆u+ f(u), almost everywhere in QT . (3.22)

By (3.12), (3.18) and (3.22), taking the limits of (3.3), we have∫ T

0

〈∂tu, φ〉 dt = −
∫ T

0

∫
Ω

√
D(u)ξ∇φdx dt−

∫ T

0

∫
Ω

[−∆u+ f(u)]φdx dt. (3.23)

As for the initial value, since ui(x, 0) = u0(x) in L2(Ω), by (3.10) we have u(x, 0) =
u0(x).

Now we consider the weak convergence of ∇vi. Choose a sequence of positive
numbers δJ that monotonically decreases to 0 as j → ∞. By (3.11) and Egorov’s
theorem, for every δJ > 0, there exists a subset BJ ⊂ QT with |QT \BJ | < δJ such
that

ui → u, uniformly in BJ .

Define A1 = B1, A2 = B1 ∪B2, . . . , AJ = B1 ∪B2 ∪ · · · ∪BJ . Then

A1 ⊂ A2 ⊂ · · · ⊂ AJ ⊂ Aj+1 ⊂ · · · ⊂ QT . (3.24)

Thus the limit of {AJ} exists, then we have limj→∞AJ = ∪∞j=1AJ := A and
|QT \A| = 0.

Define PJ := {(x, t) ∈ QT ; |u| > δJ}. Then

P1 ⊂ P2 ⊂ · · · ⊂ PJ ⊂ Pj+1 ⊂ · · · ⊂ QT . (3.25)

Thus the limit of {PJ} exists, then we have limj→∞ PJ = ∪∞j=1PJ := P . For each
j, we define

EJ := AJ ∩ PJ , where |u| > δJ and ui → u uniformly,

GJ := AJ\PJ , where |u| ≤ δj and ui → u uniformly.
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Thus we obtain AJ = EJ ∪GJ . By (3.24) and (3.25), we have

E1 ⊂ E2 ⊂ · · · ⊂ EJ ⊂ Ej+1 ⊂ · · · ⊂ QT .

Thus the limit of {EJ} exists, then we have limj→∞EJ = ∪∞j=1EJ = A ∩ P := E.
For any ψ ∈ L2(0, T ;L2∗(Ω)),∫∫

QT

Di(ui)∇viψ dx dt

=
∫∫

QT \AJ

Di(ui)∇viψ dx dt+
∫∫

GJ

Di(ui)∇viψ dx dt

+
∫∫

EJ

Di(ui)∇viψ dx dt.

(3.26)

As i→∞, by (3.18) we obtain

lim
i→∞

∫∫
QT

Di(ui)∇viψ dx dt =
∫∫

QT

√
D(u)ξψ dx dt, (3.27)

lim
i→∞

∫∫
QT \AJ

Di(ui)∇viψ dx dt =
∫∫

QT \AJ

√
D(u)ξψ dx dt. (3.28)

By |QT \A| = 0, taking the limit of (3.28) as j →∞, we have

lim
j→∞

lim
i→∞

∫∫
QT \AJ

Di(ui)∇viψ dx dt = 0. (3.29)

To analyze the second and third terms of (3.26), we write uj−1,i := ui and vj−1,i :=
vi in AJ , then we have

uj−1,i → u, uniformly in AJ for all j ∈ N.

This implies that there exists an index NJ ∈ N+ such that for all i ≥ NJ ,

|uj−1,i − u| <
δJ
2
.

We can easily get the following result:

|uj−1,i| ≥
δJ
2
, if (x, t) ∈ EJ ,

|uj−1,i| ≤ 2δJ , if (x, t) ∈ GJ .
(3.30)

Considering the limit of the second term of (3.26), by Hölder’s inequality and (3.7)
we have∣∣∣ ∫∫

GJ

Dj−1,i(uj−1,i)∇vj−1,iψ dx dt
∣∣∣

≤ sup
(x,t)∈GJ

√
Dj−1,i(uj−1,i)

∫∫
QT

|
√
Dj−1,i(uj−1,i)∇vj−1,i||ψ| dx dt

≤ sup
(x,t)∈GJ

√
Dj−1,i(uj−1,i)‖

√
Dj−1,i(uj−1,i)∇vj−1,i‖L2(QT )‖ψ‖L2(QT )

≤ C sup
(x,t)∈GJ

√
Dj−1,i(uj−1,i)|Ω|1/n‖ψ‖L2(0,T ;L2∗ (Ω))

≤ C max{(2δJ)m/2, εm/2j−1,i}.

(3.31)
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Taking the limits of (3.31) as i→∞ and j →∞, we have

lim
j→∞

lim
i→∞

∣∣ ∫∫
GJ

Dj−1,i(uj−1,i)∇vj−1,iψ dx dt
∣∣

≤ C lim
j→∞

lim
i→∞

max{(2δJ)m/2, εm/2j−1,i} = 0.
(3.32)

By (3.7) and (3.30), we obtain

(
δJ
2

)m
∫∫

DJ

|∇vj−1,i|2 dx dt ≤
∫∫

DJ

Dj−1,i(uj−1,i)|∇vj−1,i|2 dx dt

≤
∫∫

QT

Dj−1,i(uj−1,i)|∇vj−1,i|2 dx dt ≤ C.

This implies ∫∫
DJ

|∇vj−1,i|2 dx dt ≤ C(δJ)−m.

So ∇vj−1,i is bounded in L2(EJ), thus there exists a subsequence, labeled as
{∇vj,i}, and ζJ ∈ L2(EJ) such that

∇vj,i ⇀ ζJ , weakly in L2(EJ). (3.33)

By Ej−1 ⊂ EJ , for any g ∈ L2(EJ), we have g ∈ L2(Ej−1) and ∇vj−1,i =
∇vj,i in Ej−1. By (3.33) we have

lim
i→∞

∫∫
Ej−1

∇vj,ig dx dt = lim
i→∞

∫∫
Ej−1

∇vj−1,ig dx dt

=
∫∫

Ej−1

ζJg dx dt =
∫∫

Ej−1

ζj−1g dx dt.

Thus ζJ = ζj−1 almost everywhere in Ej−1. we define

ωJ :=

{
ζJ , if (x, t) ∈ EJ ,
0, if (x, t) ∈ E\EJ .

So for almost every (x, t) ∈ E, there exists a limit of ωJ(x, t) as j →∞. We write

ζ(x, t) = lim
j→∞

ωJ(x, t), almost everywhere in E.

Clearly ζ(x, t) = ζJ(x, t) for almost all (x, t) ∈ EJ for all j. Using a standard
diagonal argument, we can extract a subsequence such that

∇vk,Nk
⇀ ζ, weakly in L2(EJ) for all j. (3.34)

For any ϕ ∈ L2(0, T ;L2∗(Ω)), by Hölder’s inequality we have∣∣∣ ∫∫
QT

(
χEJ

√
Dk,Nk

(uk,Nk
)∇vk,Nk

ϕ− χEJ

√
D(u)ζϕ

)
dx dt

∣∣∣
≤
∣∣∣ ∫∫

QT

χEJ
[
√
Dk,Nk

(uk,Nk
)−

√
D(u)]∇vk,Nk

ϕdx dt
∣∣∣

+
∣∣∣ ∫∫

QT

χEJ

√
D(u)[∇vk,Nk

ϕ− ζϕ] dx dt
∣∣∣

≤ sup
t∈[0,T ]

‖
√
Dk,Nk

(uk,Nk
)−

√
D(u)‖n

∫ T

0

‖χEJ
∇vk,Nk

‖2‖ϕ‖ 2n
n−2

dt
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+
∣∣∣ ∫∫

EJ

√
D(u)ϕ[∇vk,Nk

− ζ] dx dt
∣∣∣

≤ sup
t∈[0,T ]

‖
√
Dk,Nk

(uk,Nk
)−

√
D(u)‖n‖∇vk,Nk

‖L2(EJ )‖ϕ‖L2(0,T ;L2∗ (Ω))

+
∣∣∣ ∫∫

EJ

√
D(u)ϕ[∇vk,Nk

− ζ] dx dt
∣∣∣

=: I + II.

By (3.16) and (3.34), I → 0 as N → ∞. By (3.17) and (3.34), we have II → 0 as
N →∞. Thus

χEJ

√
Dk,Nk

(uk,Nk
)∇vk,Nk

⇀ χEJ

√
D(u)ζ, weakly in L2(0, T ;L

2n
n+2 (Ω)),

for all j.
From L2 ⊂ L

2n
n+2 and (3.13), we see that ξ =

√
D(u)ζ in every EJ and

ξ =
√
D(u)ζ in E. (3.35)

Consequently, by (3.18),

χEDk,Nk
(uk,Nk

)∇vk,Nk
⇀ χED(u)ζ, weakly in L2(0, T ;L

2n
n+2 (Ω)).

Thus by Taking the limits of third term of (3.26), we have

lim
j→∞

lim
k→∞

∫∫
EJ

Dk,Nk
(uk,Nk

)∇vk,Nk
ψ dx dt

= lim
j→∞

∫∫
EJ

D(u)ζψ dx dt =
∫∫

E

D(u)ζψ dx dt.
(3.36)

By (3.27), (3.29), (3.32) and (3.36), we have∫∫
QT

√
D(u)ξψ dx dt =

∫∫
E

D(u)ζψ dx dt. (3.37)

By (3.23) and (3.37), we find that u and ζ solve equation (1.9) in the following
weak sense∫ T

0

〈∂tu, φ〉 dt = −
∫∫

E

D(u)ζ∇φdx dt−
∫ T

0

∫
Ω

[−∆u+ f(u)]φdx dt, (3.38)

for all φ ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)).

From (3.14) and (3.34), we notice that vi is bounded in L2(TJ ;H1(SJ)), where
EJ = TJ × SJ . So we can extract a further sequence, not relabeled, and

v ∈ L2(TJ ;H1(SJ)),

vi ⇀ v weakly in L2(TJ ;H1(SJ)).
(3.39)

Similar to show F ′(uε) ∈ L2(0, T ;H1(Ω)) and (3.22). Hence, we have F ′(u) ∈
L2(0, T ;H1(Ω)) and v = −∆u+ f(u), a.e. in EJ , By v ∈ L2(TJ ;H1(SJ)) we have
u ∈ L2(TJ ;H3(SJ)) and

∇v = −∇∆u+ F ′′(u)∇u, almost everywhere in EJ . (3.40)

Obviously we have η = v, ζ = ∇v, a. e. inEJ . So we obtain the desired relation
between ζ and u:

ζ = −∇∆u+ F ′′(u)∇u, in EJ .
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Finally, we show that a weak solution u to (1.9) satisfies energy inequality (3.2).
By (2.4) we have∫

Ω

(1
2
|∇uk,Nk

(x, t)|2 + F (uk,Nk
(x, t))

)
dx

+
∫∫

Qt∩E
Dk,Nk

(uk,Nk
(x, τ))|∇vk,Nk

(x, τ)|2 dx dτ

+
∫∫

Qt

|vk,Nk
(x, τ)|2 dx dτ

≤
∫

Ω

(1
2
|∇u0|2 + F (u0)

)
dx.

(3.41)

By having (2.47) and (2.66), similarly we have

∇uk,Nk
⇀ ∇u, weakly in L2(QT ), (3.42)

lim
N→∞

∫
Ω

F (uk,Nk
(t)) dx =

∫
Ω

F (u(t)) dx. (3.43)

By (3.42), (3.43), (3.13), (3.35), (3.14), (3.22), (3.41) and the weak lower semicon-
tinuity of the Lp norms. Then∫

Ω

(
1
2
|∇u(x, t)|2 + F (u(x, t))

)
dx+

∫∫
Qt∩E

D(u(x, τ))|ζ(x, τ)|2dxdτ

+
∫∫

Qt

| −∆u+ f(u)|2 dx dτ

≤ lim
N↑∞

inf
∫

Ω

(1
2
|∇uk,Nk

(x, t)|2 + F (uk,Nk
(x, t))

)
dx

+ lim
N↑∞

inf
∫∫

Qt∩E
Dk,Nk

(uk,Nk
(x, τ))|∇vk,Nk

(x, τ)|2 dx dτ

+ lim
N↑∞

inf
∫∫

Qt

|vk,Nk
(x, τ)|2dxdτ

≤
∫

Ω

(1
2
|∇u0|2 + F (u0)

)
dx.

This gives the energy inequality (3.2). The proof is complete. �
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