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MORREY ESTIMATES FOR SUBELLIPTIC p-LAPLACE TYPE
SYSTEMS WITH VMO COEFFICIENTS IN CARNOT GROUPS

HAIYAN YU, SHENZHOU ZHENG

Abstract. In this article, we study estimates in Morrey spaces to the hori-

zontal gradient of weak solutions for a class of quasilinear sub-elliptic systems
of p-Laplace type with VMO coefficients under the controllable growth over

Carnot group if p is not too far from 2. We also show a local Hölder continuity

with an optimal exponent to the solutions.

1. Introduction

Let G be a Carnot group of step r ≥ 2, that is, a simply connected Lie group
with Lie algebra g admits a decomposition g = ⊕ri=1Vj such that [V1, Vj ] = Vj+1

for 1 ≤ j ≤ r − 1 and [V1, Vr] = 0. The homogeneous dimension of G is defined
as Q =

∑r
i=1 imi, where mi = dimVi is the topological dimension with m1 = m.

For a family of vector fields X = (X1, X2, . . . , Xm) satisfying the Hörmander’s
finite rank condition rank Lie[X1, X2, . . . , Xm] = r, we assume that each compo-
nent bij(x) (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) of vector-field Xi =

∑n
j=1 bij(x)∂j

is a smooth function defined in Carnot group G for i = 1, 2, . . . ,m. Therefore,
Xu = (X1u,X2u, . . . ,Xmu) may be called the horizontal gradient of u, which is
understood as Xiu = 〈Xi,∇u〉 = Σnj=1bij(x)∂ju for i = 1, 2, . . . ,m if u ∈ C1(G),
see [11, 15, 21, 7, 29]. To describe our assumptions and main results better, we first
recall some relevant notations and basic facts.

Definition 1.1. An absolutely continuous path γ : [0, T ]→ G is said X-subunit if

γ̇(t) =
m∑
i=1

ci(t)Xi(γ(t))

with
∑m
i=1 ci(t) ≤ 1, for almost every t ∈ [0, T ].

With X-subunit in hand, we can define the Carnot-Caratheodory’s metric (the
C-C distance) dX(x, y) as follows, see [19, 27].

dX(x, y) = inf{T > 0 : ∃γ : [0, T ]→ G X-subunit with γ(0) = x, γ(T ) = y}.
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Note that these vector-fields (X1, . . . , Xm) are free up to the order r, then there
exists a positive constant C > 0 satisfying the following relation between the C-C
distance and the Euclidean metric, see [27, 10];

C−1|x− y| ≤ dX(x, y) ≤ C|x− y|1/r.

In this context, all balls centered at x of radius R with respect to dX(x, y)
are called metric balls and denoted still by BR(x). The distance function dX(·, ·)
satisfies the local doubling property, that is, for B2R(x) b G there exists a positive
constant R0 depending on vector fields X and G such that for all 0 < R ≤ R0 there
holds

|B2R(x)| ≤ Cd|BR(x)|, (1.1)
where the number Q = log2 Cd is called the local homogeneous dimension of G
with respect to the vector fields X1, X2, . . . , Xm. In fact, Q will play a role of the
dimension in the local analysis involving what we are considering problems.

Let Ω be a bounded open subset in Carnot group G. Let us recall the fol-
lowing horizontal Sobolev space with respect to given a family of vector fields
X = (X1, X2, . . . , Xm). For any 1 < p <∞ and k ∈ N, we define

HW k,p(Ω) := {u ∈ Lp(Ω) : Xi1 . . . Xiku ∈ Lp(Ω) for all {i1, . . . , ik} ⊂ {1, . . . ,m}}

with the norm ‖u‖HWk,p(Ω) = ‖u‖Lp(Ω) + ‖Xku‖Lp(Ω). Furthermore, the closure of
C∞0 (Ω) in HW k,p(Ω) is denoted by HW k,p

0 (Ω).
In this article, we consider the estimates in Morrey spaces to the horizontal

gradient of weak solutions in HW 1,p
0 (Ω) for the following degenerate subelliptic

systems of p-Laplace type.

−
m∑
i=1

Xi

(
〈A(x)Xiu,Xiu〉

p−2
2 A(x)Xiu

)
= B(x, u,Xu), a. e. x ∈ Ω, (1.2)

where A(x) ∈ VMO
⋂
L∞(Ω) and B(x, u,Xu) satisfies a controllable growth. In

order to more precisely impose structural assumptions on A(x), B(x, u,Xu) and
state our main results, we need recall two useful notations (see[2, 17, 28]).

Definition 1.2 (BMO functions). Let Ω(x, r) = Ω∩Br(x). For any 0 < s < +∞,
we say u ∈ L1

loc(Ω) belongs to BMO(Ω) if

Mu(s) := sup
x∈Ω,0<r<s

1
|Ω(x, r)|

∫
Ω(x,r)

|u(y)− ūΩ(x,r)|dy < +∞,

where

ūΩ(x,r) = –
∫

Ω(x,r)

u(y)dy =
1

|Ω(x, r)|

∫
Ω(x,r)

u(y)dy.

Definition 1.3 (VMO functions). Let Mu(s) be defined as above. We say u ∈
BMO(Ω) belongs to VMO(Ω) if

lim
s→0

Mu(s) = 0,

where Mu(s) is called the VMO modulus of u.

Definition 1.4 (Morrey space). Let p ≥ 1, λ > 0. For u ∈ Lploc(Ω), if

‖u‖Lp,λX (Ω) := sup
x0∈Ω, 0<r≤d0

( rλ

|Ω(x0, r)|

∫
Ω(x0,r)

|u|p dx
)1/p

< +∞, (1.3)
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then u ∈ Lp,λX (Ω), where d0 = min{diam(Ω), RD}, and the norm of u is ‖u‖Lp,λX (Ω).

Definition 1.5 (Campanato space). Let p ≥ 1, λ > −p. If u ∈ Lploc(Ω) satisfies

|u|Lp,λX (Ω) := sup
x0∈Ω, 0<r≤d0

( rλ

|Ω(x0, r)|

∫
Ω(x0,r)

|u− ux0,r|p dx
)1/p

< +∞, (1.4)

then u ∈ Lp,λX (Ω), and has norm ‖u‖Lp,λX (Ω) := ‖u‖Lp(Ω) + |u|Lp,λX (Ω).

On the basis of the above notation, we are now in a position to impose some
structure assumptions on A(x) and B(x, u,Xu) as follows.

(H1) (Uniform ellipticity) For A(x) = (aαβij (x)), there exist L and ν, L ≥ ν > 0,
such that for a.e. x ∈ Ω and for any ξ ∈ RnN we have

ν|ξ|2 ≤ aαβij (x)ξαi ξ
β
j ≤ L|ξ|

2;

(H2) aαβij (x) ∈ L∞(Ω)
⋂
VMOX ;

(H3) (Controllable growth) The inhomogeneity B(x, u,Xu) satisfies

|B(x, u,Xu)| ≤ µ(|Xu|p(1−
1
γ ) + g(x)),

where

γ =

{
pQ
Q−p , 1 < p < Q

any γ ≥ p, p ≥ Q,
g(x) ∈ Lq,µ(Ω,RnN ) with q > γ

γ−1 , and Q is the homogenous dimension.

We say that u ∈ HW 1,p(Ω,RnN ) is a weak solution of (1.2), if∫
Ω

〈
〈A(x)Xu,Xu〉

p−2
2 A(x)Xu,Xϕ

〉
dx =

∫
Ω

B(x, u,Xu)ϕdx, (1.5)

for all ϕ ∈ HW 1,p
0 (Ω).

Recently several studies on subelliptic PDEs arising from non-commuting vector
fields have been well developed based on the Hörmander’s fundamental work [18];
see [4, 3, 10, 11, 15, 23, 24, 27, 22, 26, 29, 30]. Many important results about the
fundamental solution to subelliptic operators and the Harmonic analysis theory on
stratified nilpotent Lie groups have been obtained by Folland [15], Rothschild-Stein
[24] and Nagel-Stein-Wainger [23]. These results laid a solid foundation for further
investigation of subelliptic Partial Differiential Equations theory. Up to the 90s,
the function theory and harmonic analysis tools on Carnot groups, such as the
Sobolev embedding inequality of X-gradient and the isoperimetric inequality, be-
come increasingly mature, cf. [3, 15, 16, 23, 24]. In fact, such subelliptic problems
have received continuous attention due to their significant applications in geome-
try and physics [1, 24]. In the case of Euclidean spaces (i.e. m = n, Xi = ∂

∂xi
),

it was an important observation by Uhlenbeck [25] that there exists the interior
C1,α-regularity by using the classical De Giorgi-Moser-Nash iteration to the homo-
geneous p-harmonic systems as a prototype. However, it is not true for subelliptic
systems of p-Laplacian with p > 1. Actually, Domokos-Manfredi in [11, 12] and
Domokos in [13, 14] have derived Γ1,α regularity for p-harmonic systems only while
p is in a neighborhood of 2 in Heisenberg group and in Carnot group, respectively.
Very recently, Zheng-Feng [29, 30] also got the estimates and an application of the
Green functions for subelliptic A-harmonic operators, and Γ1,α regularity for weak
solutions to subelliptic p-harmonic systems under the subcritical growth with p
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close to 2, respectively. Notice that Fazio-Fanciullo [8] and Dong-Niu [9] recently
established the estimates of the gradient in Morrey spaces to nonlinear subellip-
tic systems for p = 2. Therefore, this is a natural thought what happens if one
consider a regularity of the gradient in Morrey spaces to subelliptic A-harmonic
systems. In this article, we are devoted to local Morrey regularity of the horizontal
gradient to a class of subelliptic A-harmonic systems with VMO coefficients under
the controllable growth. More precisely, we have the following result.

Theorem 1.6. Let u ∈ HW 1,p(Ω,RN ) is a weak solution of (1.2) with p close to
2. Suppose A(x) and B(x, u,Xu) satisfy (H1)–(H3). Then Xu ∈ Lp,λX (Ω,RnN );
moreover, there exists a constant C > 0 such that for any Ω′ b Ω we have

‖Xu‖Lp,λX (Ω′,RnN ) ≤ C(‖Xu‖Lp(Ω,RnN ) + ‖g‖
1
p−1

Lq,µX (Ω,RnN )
), (1.6)

where

λ =

{
p
p−1

µ−q
q , γ

γ−1 < q < µ,

any λ ∈ (0, Q), q ≥ µ.

Here, we employ a classical disturbance argument which is compared with subel-
liptic Laplacian due to the lack of regularity to subelliptic systems of p-Laplace.
Indeed, our approach on the singularity (1 < p < 2) and degeneracy (p > 2) for
A-harmonic systems (1.2) was essentially influenced by way of a comparison with
sub-Laplacian while p is close to 2 because of the Cordes conditions. This is an
important technique to consider PDEs with wild coefficients, also see [6].

With Theorem 1.6 in hand, as a direct consequence we can obtain an interior
Hölder continuity of weak solutions of subelliptic systems (1.2) while Q−n < λ < p.
Let us first recall the concept of Hölder space under the Carnot-Caratheodory
metric.

Definition 1.7 (Hölder space). Let Ω b G and 0 < α < 1. We say that u ∈ Γ0,α
X (Ω)

has norm ‖u‖Γ0,α
X (Ω), if

‖u‖Γ0,α
X (Ω) := sup

Ω
|u|+ sup

Ω

|u(x)− u(y)|
[dX(x, y)]α

<∞. (1.7)

Now we state the interior Hölder continuity of weak solutions with a sharp index
to subelliptic systems (1.2) as follows.

Theorem 1.8. Let u ∈ HW 1,p(Ω,RN ) is a weak solution of (1.2) with p close to
2. Suppose A(x) and B(x, u,Xu) satisfy H1-H3. If Q− n < λ < p, we have

u ∈ Γ0,α
X,loc(Ω,RN )

with α = 1− λ
p .

The remainder of this paper is organized as follows. In Section 2, we present
some preliminaries concerning the sub-elliptic setting and some several technical
lemmas. In Section 3, we are devoted to proving our main results.

2. Preliminaries

We adopt the usual convention of denoting by C a general constant, which may
vary from line to line in the same chain of inequalities. Now let us first recall
the Sobolev embedding inequality with respect to the horizontal vector fields, see
[3, 5, 16].
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Lemma 2.1. Let 1 ≤ p < Q and 1 ≤ q ≤ Qp
Q−p , where Q is the homogeneous

dimension of X in G. Then we have:
(1) If u(x) ∈ HW 1,p(BR0 , X), then there exists a positive constant

C = C(p, q,Q,X) such that for any 0 < R < R0,

‖u− ūR‖Lq(BR) ≤ CR1+Q( 1
q−

1
p )‖Xu‖Lp(BR), (2.1)

where ūR = 1
|BR|

∫
BR

udx.

(2) If u ∈ HW 1,q
0 (BR0 , X), then there exists a positive constant

C = C(p, q,Q,X) such that for any 0 < R < R0,(
–
∫
BR

|u|q
)1/q

≤ CR
(

–
∫
BR

|Xu|p
)1/p

. (2.2)

To obtain the higher integrability of the horizontal gradients of solutions for
(1.2) we recall the following reverse Hölder inequality originated from Gehring’s
celebrating work on quasiconformal mappings, see [17, Theorem 2.3 of Chapter 5].

Lemma 2.2. Suppose that h(x) and f(x) are nonnegative measurable functions
satisfying h(x) ∈ Lt(Ω) and f(x) ∈ Ls(Ω) with t > s > 1. If for all x0 ∈ Ω and all
R : 0 < R < R0 ≤ dist(x0, ∂Ω) there holds

–
∫
BR

2
(x0)

fs dx ≤ b
({

–
∫
BR(x0)

f dx
}s

+ –
∫
BR(x0)

hs dx
)

+ θ–
∫
BR(x0)

fs dx, (2.3)

with constants b > 1 and 0 ≤ θ < 1, then there exist positive constants δ =
δ(b,Q, q, s) and C = C(b,Q, q, r) such that f ∈ Ltloc(Ω) for any t ∈ [s, s+ δ) and{

–
∫
BR

2
(x0)

f t dx
}1/t

≤ C
{

–
∫
BR(x0)

fs dx
}1/s

+ C
{

–
∫
BR(x0)

ht dx
}1/t

. (2.4)

With the reverse Hölder inequality above in hand, We can obtain the following
higher integrability of the horizontal gradients to systems (1.2).

Lemma 2.3 (Higher integrability). Let u ∈ HW 1,p(Ω) be any weak solution of
quasilinear subelliptic systems (1.2) with A(x), B(x, u,Xu) satisfying assumptions
(H1) and (H3). Then, there exists a higher exponent r : p < r < p + δ such that
for Ω′ b Ω, we have Xu ∈ HW 1,r(Ω′). Moreover, there exists a positive constant
C = C(Q,L, ν, p) such that for any BR(x0) b Ω with the estimate(

–
∫
BR

2
(x0)

|Xu|r)dx
)1/r

≤ C
(

–
∫
BR(x0)

|Xu|pdx
)1/p

+ C
(
R
(

–
∫
BR(x0)

|g(x)|qdx
)1/q) 1

p−1
.

(2.5)

Proof. Given any x0 ∈ Ω, we take R > 0 such that BR := BR(x0) b Ω. Let η be a
cutting-off function with η ∈ C∞0 (BR) such that 0 ≤ η(x) ≤ 1, η = 1 for x ∈ BR/2,
η = 0 for x ∈ Rn \ BR and |Xη| ≤ C

R . Let us take a test function ϕ = ηp(u− ūR)
in (1.2), it follows from (1.5) that∫

Ω

〈
〈A(x)Xu,Xu〉

p−2
2 A(x)Xu, ηpXu+ pηp−1(u− ūR)Xη

〉
dx

=
∫

Ω

B(x, u,Xu)ηp(u− ūR)dx,
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By considering the uniformly ellipticity (H1) and the controllable growth, it yields

νp/2
∫

Ω

ηp|Xu|pdx

≤
∫

Ω

ηp〈A(x)Xu,Xu〉p/2dx

= −
∫

Ω

〈〈A(x)Xu,Xu〉
p−2
2 A(x)Xu, pηp−1(u− ūR)Xη〉dx

+
∫

Ω

B(x, u,Xu)ηp(u− ūR)dx

≤ pLp/2
∫

Ω

|ηXu|p−1|(u− ūR)Xη|dx+ µ

∫
Ω

ηp|u− ūR||Xu|p(1−
1
γ )dx

+ µ

∫
Ω

ηp|u− ūR||g(x)|dx

:= pLp/2I1 + µI2 + µI3.

(2.6)

Next, we estimate I1, I2 and I3. For I1, using Young inequality with ε1 > 0 and
Sobolev inequality we have

I1 =
∫

Ω

|ηXu|p−1|(u− ūR)Xη|dx

≤ ε1

∫
Ω

|ηXu|pdx+ C(ε1)
∫

Ω

|(u− ūR)Xη|pdx

≤ ε1

∫
BR

|Xu|pdx+
C(ε1)
Rp

∫
BR

|u− ūR|pdx

≤ ε1

∫
BR

|Xu|pdx+
C(ε1)
Rp

(∫
BR

|Xu|
Qp
Q+p dx

)Q+p
Q

.

(2.7)

For estimating I2, by Sobolev inequality and Hölder inequality, it follows that

I2 =
∫

Ω

ηp|u− ūR||Xu|p(1−
1
γ )dx

≤
(∫

BR

|u− uR|γdx
)1/γ(∫

BR

|Xu|pdx
)1− 1

γ

≤ CR1+Q( 1
γ−

1
p )
(∫

BR

|Xu|pdx
) 1
p−

1
γ
(∫

BR

|Xu|pdx
)
,

(2.8)

where γ ≥ p is defined as the assumption H3 with 1 +Q( 1
p −

1
γ ) ≥ 0.

Similarly, to estimate I3 we use Hölder inequality, Young inequality with ε2 > 0
and Sobolev inequality; it yields

I3 =
∫

Ω

ηp|u− ūR||g(x)|dx

≤
(∫

BR

|u− ūR|γdx
)1/γ(∫

BR

|g(x)|
γ
γ−1 dx

) γ−1
γ

≤ CR1+Q( 1
γ−

1
p )
(∫

BR

|Xu|pdx
)1/p(∫

BR

|g(x)|
γ
γ−1 dx

) γ−1
γ

≤ ε2

∫
BR

|Xu|pdx+ C(ε2)R
p
p−1 (1+Q( 1

γ−
1
p ))
(∫

BR

|g(x)|
γ
γ−1 dx

) γ−1
γ ·

p
p−1

.
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Now let us put the estimates of I1, I2, I3 together into (2.6), we obtain∫
BR

|ηXu|pdx

≤ C(L, p, ε1)
Rp

(∫
BR

|Xu|
Qp
Q+p dx

)Q+p
Q

+ C(µ, ε2)R
p
p−1

(
1+Q( 1

γ−
1
p )
)( ∫

BR

|g(x)|
γ
γ−1 dx

) γ−1
γ ·

p
p−1

+
{
µε2 + pLp/2ε1 + µCR1+Q( 1

γ−
1
p )
(∫

BR

|Xu|pdx
) 1
p−

1
γ
}(∫

BR

|Xu|pdx
)
.

Let us write

ϑ = µε2 + pLp/2ε1 + µCR1+Q( 1
γ−

1
p )
(∫

BR

|Xu|pdx
) 1
p−

1
γ

.

Notice that from the absolute continuity of the Lebesgue integral, we have that
R1+Q( 1

γ−
1
p )
∫
BR
|Xu|p → 0 as R → 0. Consequently we can take small R > 0 such

that 0 < ϑ < 1, and∫
BR

2

|Xu|pdx ≤ C

Rp

(∫
BR

|Xu|
Qp
Q+p dx

)Q+p
Q

+ CR
p
p−1 (1+Q( 1

γ−
1
p ))
(∫

BR

|g(x)|
γ
γ−1 dx

) γ−1
γ ·

p
p−1

+ ϑ

∫
BR

|Xu|pdx,

which implies

–
∫
BR

2

|Xu|pdx ≤ C
(

–
∫
BR

|Xu|
Qp
Q+p dx

)Q+p
Q

+ C
(

–
∫
BR

|Rg(x)|γ
′
dx
) p′
γ′ + ϑ–

∫
BR

|Xu|pdx,

with p′ = p
p−1 and γ′ = γ

γ−1 . Therefore, we obtain(
–
∫
BR

2

|Xu|pdx
)1/p

≤ C
(

–
∫
BR

|Xu|
Qp
Q+p dx

)Q+p
pQ

+ C
(

–
∫
BR

(|Rg(x)|γ
′/p)pdx

) 1
p
p′
γ′

+ ϑ1/p
(

–
∫
BR

|Xu|pdx
)1/p

.

Using the reverse Hölder inequality of Lemma 2.2, it yields(
–
∫
BR

2

|Xu|rdx
)1/r

≤ C
(

–
∫
BR

|Xu|pdx
)1/p

+ C
(

–
∫
BR

(|Rg(x)|γ
′/p)rdx

) 1
r
p′
γ′
, (2.9)

for some p < r ≤ pq(γ−1)
γ due to q > γ

γ−1 . Note that(
–
∫
BR

(|Rg(x)|γ
′/p)rdx

) 1
r
p′
γ′ = R

1
p−1

(
–
∫
BR

|g(x)|
γ
γ−1 ·

r
p dx

) p
r ·
γ−1
γ ·

1
p−1

≤ R
1
p−1

(
–
∫
BR

|g(x)|qdx
) 1
q ·

1
p−1

,

because r ≤ pq(γ−1)
γ , then we obtain (2.5) which completes the proof. �
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The following elementary inequalities concerning A(x) are useful to our main
proof, see [20].

Lemma 2.4. Suppose that A = (Aij) is a symmetric matrix and satisfies uniform
ellipticity (H1). Then there exists a positive constant C = C(p, ν, L) such that for
1 < p <∞ we have〈

〈Aξ, ξ〉
p−2
2 Aξ − 〈Aη, η〉

p−2
2 Aη, ξ − η

〉
≥ C(|ξ|2 + |η|2)

p−2
2 |ξ − η|2. (2.10)

In addition, for p ≥ 2 there holds〈
〈Aξ, ξ〉

p−2
2 Aξ − 〈Aη, η〉

p−2
2 Aη, ξ − η

〉
≥ νp/2|ξ − η|p; (2.11)

and for 1 < p < 2, there exists C = C(p, ν, L) such that for every 0 < ε < 1 we
have

|ξ − η|p ≤ Cε
p−2
p
〈
〈Aξ, ξ〉

p−2
2 Aξ − 〈Aη, η〉

p−2
2 Aη, ξ − η

〉
+ ε|η|p. (2.12)

To use Campanato’s freezing argument, we obverse the following local Dirichlet
problems of homogeneous elliptic systems with constant coefficients.

−X∗(〈ARXv,Xv〉
p−2
2 ARXv) = 0, x ∈ BR

v = u, x ∈ ∂BR,
(2.13)

where AR = 1
|BR|

∫
BR

A(x)dx is the integral average of A(x). Now we recall [30,
Lemma 3.4] while p is close to 2, and have the following perturbation estimates.

Lemma 2.5. Let v ∈ HW 1,p(Ω) be a weak solution to the Dirichlet problems (2.13)
with p close to 2. Then for any u ∈ HW 1,p(Ω), there exists C > 0 such that for
any x0 ∈ Ω we have∫

Bρ(x0)

|Xu|pdx ≤ C
( ρ
R

)Q ∫
BR(x0)

|Xu|pdx+ C

∫
BR(x0)

|Xu−Xv|pdx, (2.14)

for all 0 < ρ < R ≤ R0.

Moreover, by a direct calculation we obtain the following conclusion, see [30,
Lemma 6].

Lemma 2.6. Let v ∈ HW 1,p(Ω) be any weak solution to the Dirichlet problem
(2.13) with any x0 ∈ Ω and 0 < R ≤ R0. Then we have∫

BR(x0)

|Xv|pdx ≤ C
∫
BR(x0)

|Xu|pdx.

In addition, we need the following iteration lemma from [17] in the proof of our
main theorem.

Lemma 2.7. Let Φ(ρ) be a non-negative and non-decreasing function on (0, R).
Suppose that

Φ(ρ) ≤ A
{( ρ
R

)α
+ ε
}

Φ(R) +BRβ , ∀ 0 < ρ < R ≤ R0 = dist(x0, ∂Ω),

with non-negative constants A,B, α and β, and α > β. Then there exist two con-
stants ε0 = ε0(A,α, β) and C = C(A,α, β) such that for any 0 < ε < ε0 we have

Φ(ρ) ≤ C
{( ρ
R

)β
Φ(R) +Bρβ

}
,

for any 0 < ρ < R ≤ R0 = dist(x0, ∂Ω).
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Finally, the following equivalence of spaces is useful to prove a local Hölder
continuity of the weak solutions based on the main Theorem, see [9, 8].

Lemma 2.8. If 0 < λ < Q, the Campanato space Lp,λX (Ω) is isomorphic to the
Morrey space Lp,λX (Ω). If −p < λ < 0, then the Campanato space Lp,λX (Ω) is
isomorphic to the Hölder space Γ0,α

X (Ω) with α = −λ/p.

3. Proof of the main results

Proof of theorem 1.6. Let u(x) ∈ HW 1,p(Ω) be any weak solution of (1.2). To
obtain an interior estimate for the horizontal gradients to the solutions, for any
fixed point x0 ∈ Ω let us take a ball BR(x0) b Ω, and write BR =: BR(x0) in the
context. Suppose that v(x) is a weak solution of the local Dirichlet problem (2.13).
Computing the difference between (1.2) and (2.13) yields

−X∗
(
〈A(x)Xu,Xu〉

p−2
2 A(x)Xu− 〈ARXu,Xu〉

p−2
2 ARXu

)
−X∗

(
〈ARXu,Xu〉

p−2
2 ARXu− 〈ARXv,Xv〉

p−2
2 ARXv

)
= −B(x, u,Xu).

Let us take ϕ = u− v as a test function in the weak sense to the equations above,
then we have∫

BR

〈
〈ARXu,Xu〉

p−2
2 ARXu− 〈ARXv,Xv〉

p−2
2 ARXv,Xu−Xv

〉
dx

=
∫
BR

〈
〈ARXu,Xu〉

p−2
2 ARXu− 〈A(x)Xu,Xu〉

p−2
2 A(x)Xu,Xu−Xv

〉
dx

+
∫
BR

〈B(x, u,Xu), u− v〉dx.

(3.1)

Note that (2.14) implies that if p is close to 2, for any 0 < ρ < R there holds∫
Bρ(x0)

|Xu|pdx ≤ C
( ρ
R

)Q ∫
BR(x0)

|Xu|pdx+ C

∫
BR(x0)

|Xu−Xv|pdx. (3.2)

Next, we focus on the estimate of
∫
BR(x0)

|Xu − Xv|pdx. To that end, we will
estimate it by dividing into two cases.
Case 1: p ≥ 2. Let us put an elementary inequality (2.11) and (H3) into the
equation (3.1) above it follows that

νp/2
∫
BR

|Xu−Xv|pdx

≤
∫
BR

〈
〈ARXu,Xu〉

p−2
2 ARXu− 〈ARXv,Xv〉

p−2
2 ARXv,Xu−Xv

〉
dx

=
∫
BR

〈
〈ARXu,Xu〉

p−2
2 ARXu− 〈A(x)Xu,Xu〉

p−2
2 A(x)Xu,Xu−Xv

〉
dx

+
∫
BR

〈B(x, u,Xu), u− v〉dx

≤ C
∫
BR

|AR −A(x)||Xu|p−1|Xu−Xv|dx+ µ

∫
BR

|Xu|p(1−
1
γ ) · |u− v|dx
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+ µ

∫
BR

|g| · |u− v|dx

:= J1 + J2 + J3. (3.3)

For estimating J1, the Hölder inequality and Young inequalities with any ε > 0
yield ∫

BR

|AR −A(x)||Xu|p−1|Xu−Xv|dx

≤
(∫

BR

|AR −A(x)|
p
p−1 |Xu|pdx

)1− 1
p
(∫

BR

|Xu−Xv|pdx
)1/p

≤ C(ε4)
∫
BR

|AR −A(x)|
p
p−1 |Xu|pdx+ ε4

∫
BR

|Xu−Xv|pdx

≤ C(ε4)|BR|
(

–
∫
BR

|AR −A(x)|
p
p−1 ·

r
r−p dx

)1− pr (
–
∫
BR

|Xu|rdx
)p/r

+ ε4

∫
BR

|Xu−Xv|pdx,

where an r > p is the same integrable index as that in Lemma 2.3. Setting t =
pr

(p−1)(r−p) , and by a higher integrability from Lemma 2.3 we obtain

J1 ≤ C(ε4)|BR|
(

–
∫
BR

|AR −A(x)|tdx
)1− pr (

–
∫
BR

|Xu|pdx+R
p
p−1

(
–
∫
BR

|g|qdx
) 1
q ·

p
p−1
)

+ ε4

∫
BR

|Xu−Xv|pdx

≤ C(ε4)MA(R)1− pr
∫
BR

|Xu|pdx+ CRQ+ p
p−1 ·

q−Q
q ‖g‖

p
p−1
Lq

+ ε4

∫
BR

|Xu−Xv|pdx.

To estimate J2, we employ Höder inequality and Young inequality again, and obtain

J2 ≤ µ
(∫

BR

|Xu|pdx
)1− 1

γ
(∫

BR

|u− v|γdx
)1/γ

≤ ε5

∫
BR

|Xu|pdx+ C(µ,Q, p, ε5)
∫
BR

|u− v|γdx

≤ ε5

∫
BR

|Xu|pdx+ CRγ+Q(1− γp )
(∫

BR

|Xu−Xv|pdx
) γ−p

p

∫
BR

|Xu−Xv|pdx.

Observing δ(R) := Rγ+Q(1− γp )
( ∫

BR
|Xu−Xv|pdx

) γ−p
p → 0 as R → 0, then there

holds

J2 ≤ Cδ(R)
∫
BR

|Xu−Xv|pdx+ ε5

∫
BR

|Xu|pdx. (3.4)

To estimate J3, by using Hölder inequality, Sobolev embedding inequality and
Young inequality it follows that

J3 ≤ µ
(∫

BR

|g|
γ
γ−1 dx

) γ−1
γ
(∫

BR

|u− v|γdx
)1/γ
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≤
(∫

BR

|g|
γ
γ−1 dx

) γ−1
γ

R1+Q( 1
γ−

1
p )
(∫

BR

|Xu−Xv|pdx
)1/p

≤ ε6

∫
BR

|Xu−Xv|pdx+ C(ε6)R
p
p−1 [1+Q( 1

γ−
1
p )]
(∫

BR

|g|
γ
γ−1 dx

) γ−1
γ ·

p
p−1

≤ ε6

∫
BR

|Xu−Xv|pdx+ CRQ+ p
p−1 ·

q−Q
q ‖g‖

p
p−1
Lq .

Putting estimates of J1, J2 and J3 together in (3.3), one deduces

νp/2
∫
BR

|Xu−Xv|pdx

≤ C
(
δ(R) + ε4 + ε6

) ∫
BR

|Xu−Xv|pdx+
(
C(ε4)MA(R)1− pr + ε5

)∫
BR

|Xu|pdx

+ CRQ+ p
p−1 ·

q−Q
q ‖g‖

p
p−1
Lq .

Therefore, by choosing arbitrary positive constants ε4, ε6 and 0 < R < R0 small
enough that C(δ(R) + ε4 + ε6) < νp/2 we obtain∫

BR

|Xu−Xv|pdx

≤
(
C(ε4)MA(R)1− pr + ε5

)∫
BR

|Xu|pdx+ CRQ+ p
p−1 ·

q−Q
q ‖g‖

p
p−1
Lq

≤
(
C(ε4)MA(R)1− pr + ε5

)∫
BR

|Xu|pdx+ CRQ+ p
p−1 ·

q−µ
q ‖g‖

p
p−1

Lq,µX
.

(3.5)

Let us set $ = C(ε4)MA(R)1− pr +ε5 in (3.5), and put the estimate (3.5) into (3.2),
then for any 0 < ρ < R we have∫

Bρ

|Xu|pdx ≤ C
[( ρ
R

)Q +$
] ∫

BR

|Xu|pdx+ CRQ+ p
p−1 ·

q−µ
q ‖g‖

p
p−1

Lq,µX
. (3.6)

While q ≥ µ such that Q+ p
p−1 ·

q−µ
q ≥ Q, it follows from Lemma 2.7 that∫

Bρ

|Xu|pdx ≤ C
( ρ
R

)Q−λ ∫
BR

|Xu|pdx+ CρQ−λ‖g‖
p
p−1

Lq,µX (BR)
, (3.7)

for any 0 < λ < Q. This implies Xu ∈ Lp,λX,loc(Ω′) for Ω′ b Ω with the estimate

‖Xu‖Lp,λX (Ω′) ≤ C
(
‖Xu‖Lp(Ω) + ‖g‖

1
p−1

Lq,µX (Ω)

)
.

While γ
γ−1 < q < µ such that Q+ p

p−1 ·
q−µ
q < Q, then we deduce from Lemma 2.7

that ∫
Bρ

|Xu|pdx ≤ C
( ρ
R

)Q− p
p−1

µ−q
q

∫
BR

|Xu|pdx+ CρQ−
p
p−1 ·

µ−q
q ‖g‖

p
p−1

Lq,µX
, (3.8)

which implies Xu ∈ Lp,
p
p−1

µ−q
q

X,loc (Ω′) with the estimate

‖Xu‖
L
p,

p
p−1

µ−q
q

X (Ω′)
≤ C

(
‖Xu‖Lp(Ω) + ‖g‖

1
p−1

Lq,µX (Ω)

)
.
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Case 2: 1 < p < 2. Using inequality (2.12) yields∫
Bρ

|Xu−Xv|pdx

≤ Cε
p−2
2

∫
Bρ

〈
〈ARXu,Xu〉

p−2
2 ARXu− 〈ARXv,Xv〉

p−2
2 ARXv,Xu−Xv

〉
dx

+ ε

∫
Bρ

|Xu|pdx

= C(ε)
∫
Bρ

〈
〈ARXu,Xu〉

p−2
2 ARXu− 〈A(x)Xu,Xu〉

p−2
2 A(x)Xu,Xu−Xv

〉
dx

+B(x, u,Xu) + ε

∫
Bρ

|Xu|pdx

≤ C(p, ν, L)
∫
BR

|AR −A(x)||Xu|p−1|Xu−Xv|dx+ µ

∫
BR

|Xu|p(1−
1
γ ) · |u− v|dx

+ µ

∫
BR

|g| · |u− v|dx+ ε

∫
BR

|Xu|pdx

:= J1 + J2 + J3 + ε

∫
BR

|Xu|pdx.

Considering the estimates of J1, J2, J3 in Case 1, and for any ε > 0 we obtain∫
Bρ

|Xu|pdx ≤ C
[( ρ
R

)Q +$′
] ∫

BR

|Xu|pdx+ CRQ+ p
p−1 ·

q−µ
q ‖g‖

p
p−1

Lq,µX
, (3.9)

with $′ = C(ε4)MA(R)1− pr + ε5 + ε. While q ≥ µ, it follows form Lemma 2.7 as
the same as Case 1 that∫

Bρ

|Xu|pdx ≤ C
( ρ
R

)Q−λ ∫
BR

|Xu|pdx+ CρQ−λ‖g‖
p
p−1

Lq(BR),

for any 0 < λ < Q. It yields Xu ∈ Lp,λX,loc(Ω′) for any Ω′ b Ω with the estimate

‖Xu‖Lp,λX (Ω′) ≤ C
(
‖Xu‖Lp(Ω) + ‖g‖

1
p−1

Lq,µX (Ω)

)
.

While γ
γ−1 < q < µ, by Lemma 2.7 we obtain∫
Bρ

|Xu|pdx ≤ C
( ρ
R

)Q− p
p−1

µ−q
q

∫
BR

|Xu|pdx+ CρQ−
p
p−1 ·

µ−q
q ‖g‖

p
p−1

Lq,µX
.

which implies Xu ∈ Lp,
p
p−1

µ−q
q

X,loc (Ω′) with the estimate

‖Xu‖
L
p,

p
p−1

µ−q
q

X (Ω′)
≤ C

(
‖Xu‖Lp(Ω) + ‖g‖

1
p−1

Lq,µX (Ω)

)
.

This completes the proof. �

Proof of Theorem 1.8. For any 0 < ρ < R with BR(x0) b Ω, by Poincare inequality
we have∫

Bρ

|u− uρ|pdx ≤ Cρp
∫
Bρ

|Xu|pdx ≤ CρpρQ−λ‖Xu‖p
Lp,λX (Bρ)

. (3.10)
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Note that by Theorem 1.6,

‖Xu‖p
Lp,λX

(Bρ) ≤ C
( 1
R

)Q−λ ∫
BR

|Xu|pdx+ C‖g‖
p
p−1

Lq,µX (BR)
. (3.11)

Therefore, combining (3.10) and (3.11) yields

ρλ−p

|Bρ|

∫
Bρ

|u− uρ|pdx ≤ C
( 1
R

)Q−λ ∫
BR

|Xu|pdx+ C‖g‖
p
p−1

Lq,µX (BR)
, (3.12)

which implies
u ∈ Lp,λ−pX,loc (Ω).

Note that Q − n < λ < p implies −p < Q − n − p < λ − p < 0, it follows from
Lemma 2.8 that

u ∈ Γ0,α
X,loc(Ω),

with α = −λ−pp = 1− λ
p . �

Remark 3.1. We would like to point out that Theorems 1.6 and 1.8 are valid
only under the assumption of p close to 2 when we consider subelliptic (1.2) in
Carnot group. Indeed, we employ the perturbation inequality (2.14) in our main
proof, which is attained by a local Lipschitz boundedness of subelliptic p-harmonic
only if p close to 2. However, it is not necessary to limit p close to 2 if X =(
∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

)
is a classical usual gradient in the Euclidian spaces Rn.
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