
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 330, pp. 1–16.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

GLOBAL FAST AND SLOW SOLUTIONS OF A SINGLE-SPECIES
BACILLUS SYSTEM WITH FREE BOUNDARY

YOUPENG CHEN, XINGYING LIU, LEI SHI

Abstract. In this article, we consider a free boundary problem for a reaction

diffusion equation which describes the dynamics of single bacillus population
in higher space dimensions and heterogeneous environment. For simplicity,

we assume that the environment and solution are radially symmetric. First,

by using the contraction mapping theorem, we prove that the local solution
exists and is unique. Then, some sufficient conditions are given under which

the solution will blow up in finite time. Our results indicate that the blowup

occurs if the initial data are sufficiently large. Finally, the long time behavior
of the global solution is discussed. It is shown that the global fast solution does

exist if the initial data are sufficiently small, while the global slow solution is

possible if the initial data are suitably large.

1. Introduction

It is well known that mathematical aspects of biological population have been
considered widely. Most authors have studied growth and diffusions of biological
population in a homogeneous or heterogeneous fixed environment (see [7, 27]). They
have also studied the nonlinear differential equations involved such as the Logistic
and Fisher equation.

In this article, we consider the single bacillus population model

ut − d∆u = Kau2 − bu, (1.1)

which was first proposed by Verhulst in [22]. Parameters a, b, d and K are positive
constants. Ecologically, a represents the net birth rate, b is the death rate, d
denotes the diffusion coefficient, and K measures the living resource for bacillus.
Recently, Jin et al [15] considered this model and established a time-dependent
dynamic basis to quantitatively clarify the biological wave behavior of the popular
growth and propagation. And Ling and Lin in [18] investigated equation (1.1) with
a moving boundary in one-dimensional space.

The main purpose of this paper is to show that the results obtained in [18]
continue to hold in higher-dimensional space and heterogeneous environment. For
simplicity, we assume that the environment and the solution are radially symmetric.
So we are primarily interested in the positive solution u(r, t), r = |x|, x ∈ RN
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(N ≥ 2), to the problem

ut − d∆u = Kau2 − bu, 0 < r < h(t), t > 0,

ur(0, t) = u(h(t), t) = 0, t > 0,

h′(t) = −µur(h(t), t), t > 0,

h(0) = h0, u(r, 0) = u0(r), 0 < r ≤ h0,

(1.2)

where ∆u = urr + N−1
r ur, r = h(t) is the moving boundary to be determined

together with the solution u(r, t), and the initial function u0(r) satisfies

u0 ∈ C2([0, h0]), u′0(0) = u0(h0) = 0, u0(r) > 0, r ∈ (0, h0). (1.3)

When Ka = b = 0, the problem is reduced to one phase Stefan problem, which
accounts for phase transitions between solid and fluid states such as the melting of
ice in contact with water [25]. Stefan problems have been studied by many authors.
For example, the weak solution was considered by Olěinik in [23], and the existence
of a classical solution was given by Kinderlehrer and Nirenberg in [16]. For the
two-phase Stefan problem, the local classical solution was obtained in [19, 24] and
the global classical solution was given by Borodin in [2].

The free boundary problems have been investigated in many areas, for exam-
ple, the decrease of oxygen in a muscle in the vicinity of a clotted blood vessel
[5], the etching problem [29], the combustion process [30], the American option
pricing problem [12, 14], chemical vapor deposition in hot wall reactor [20], image
processing [1], wound healing [3], tumor growth [4, 6, 28, 31], and the dynamics of
population [13, 21].

Definition 1.1. Let DT = {(r, t) ∈ R2 : 0 < r < h(t), 0 < t ≤ T}. We say
(u(r, t), h(t)) is a solution of (1.2) if u(r, t) ∈ C1,0(DT )∩C2,1(DT ), h(t) ∈ C1([0, T ])
and u(r, t), h(t) satisfy all the equations in (1.2).

For problem (1.2), we lay great emphasis on the blowup property of the solution
and the long time behaviors of global solutions, especially the existence of global
slow solution. In this paper, we define Tmax as the maximal existence time of the
solution of problem (1.2). We say that the solution exists globally if Tmax = +∞,
whereas if the solution ceases to exist for some finite time, i.e., Tmax < +∞ and
lim supt→Tmax

‖u(·, t)‖L∞([0,h(t)]) = +∞, we say that blowup occurs. If Tmax = ∞
and limt→∞ h(t) <∞, then the solution is called global fast solution since it decays
uniformly to 0 at an exponential rate, while if Tmax =∞ and limt→∞ h(t) =∞, it
is called global slow solution, whose decay rate is at most polynomial (see [10, 11]
for more details).

The outline of this paper is as follows. In Section 2, we first apply the contraction
mapping theorem to prove the local existence and uniqueness of the solution to
(1.2), and then present some fundamental results that will be used later. Section
3 is devoted to the investigation of the blowup result. Our arguments are based
on the comparison principle and the construction of an appropriate lower solution
to (1.2). In Section 4, we deal with the long time behavior of global solutions,
including the existence of global fast solution and slow solution.

2. Local existence and comparison principle

In this section, by using the contraction mapping theorem, we first prove the
following local existence and uniqueness result.
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Theorem 2.1. For any given u0 satisfying (1.3) and any α ∈ (0, 1), there is a
T > 0 such that (1.2) admits a unique solution

(u, h) ∈ C1+α,(1+α)/2(DT )× C1+α/2([0, T ]), (2.1)

where DT = {(r, t) ∈ R2 : 0 < r < h(t), 0 < t ≤ T}. Moreover,

‖u‖C1+α,(1+α)/2(DT ) + ‖h‖C1+α/2([0,T ]) ≤ C, (2.2)

where C and T depend only on α, h0 and ‖u0‖C2[0,h0].

Proof. We first make a change of variable to straighten the free boundary by the
transformations

ξ =
h0r

h(t)
, u(r, t) = v(ξ, t). (2.3)

Direct computations yield

ut = vt −
h′(t)
h(t)

ξvξ, ur =
h0

h(t)
vξ, urr =

h2
0

h2(t)
vξξ.

Then problem (1.2) can be reduced to

vt −
h′(t)
h(t)

ξvξ −
dh2

0

h2(t)
(vξξ +

N − 1
ξ

vξ) = Kav2 − bv, 0 < ξ < h0, t > 0,

vξ(0, t) = v(h0, t) = 0, t > 0,

h′(t) = −µh0

h(t)
vξ(h0, t), t > 0,

h(0) = h0, v(ξ, 0) = v0(ξ) := u0(ξ), 0 ≤ ξ ≤ h0.

(2.4)

Transformations (2.3) change the free boundary x = h(t) to the fixed line ξ = h0

at the expense of making the equation more complicated, since the coefficients of
the first equation in (2.4) include the unknown function h(t).

Let T < 1 be a positive constant to be determined later, we denote h∗ =
−µh0v

′
0(h0) and set

HT = {h ∈ C1[0, T ] : h(0) = h0, h
′(0)h0 = h∗, 0 ≤ h′(t)h(t) ≤ h∗ + 1},

UT = {v ∈ C([0, h0]× [0, T ]) : v(ξ, 0) = v0(ξ), ‖v − v0‖C([0,h0]×[0,T ]) ≤ 1}.
(2.5)

Then it is easy to see that ΣT := UT × ST is a complete metric space with the
metric

D((v1, h1), (v2, h2)) = ‖v1 − v2‖C([0,h0]×[0,T ]) + ‖h′1h1 − h′2h2‖C([0,T ]) (2.6)

Let us note that although N−1
ξ is singular at ξ = 0, vξξ + N−1

ξ vξ actually repre-
sents an elliptic operator acting on v = v(y, t) (= v(|y|, t)) over the ball |y| ≤ h0 in
view of vξξ + N−1

ξ vξ = ∆v for |y| ≤ h0. Therefore, we can apply the standard Lp

theory (see [17]) and the Sobolev imbedding theorem (see [8, Chaper 5]) to obtain
that for any (v, h) ∈ ΣT , the following initial boundary value problem

ṽt −
h′(t)
h(t)

ξṽξ −
dh2

0

h2(t)
(ṽξξ +

N − 1
ξ

ṽξ) = Kav2 − bv, 0 < ξ < h0, t > 0,

ṽξ(0, t) = ṽ(h0, t) = 0, t > 0,

ṽ(ξ, 0) = v0(ξ) ≥ 0, 0 ≤ ξ ≤ h0.

(2.7)



4 Y. CHEN, X. LIU, L. SHI EJDE-2016/330

admits a unique solution ṽ ∈ C1+α,(1+α)/2([0, h0]× [0, T ]) and

‖ṽ‖C1+α,(1+α)/2([0,h0]×[0,T ])

≤ ‖ṽ − v0‖C1+α,(1+α)/2([0,h0]×[0,T ]) + ‖v0‖C1+α([0,h0])

≤ C0‖ṽ − v0‖W 2,1
p ([0,h0]×[0,T ]) + ‖u0‖C1+α([0,h0])

≤ C0(‖ṽ‖W 2,1
p ([0,h0]×[0,T ]) + ‖v0‖W 2,1

p ([0,h0]×[0,T ])) + ‖u0‖C1+α([0,h0])

≤ C0(‖ṽ‖W 2,1
p ([0,h0]×[0,T ]) + T

1
ph

1
p

0 ‖u0‖C2([0,h0])) + ‖u0‖C1+α([0,h0])

≤ C1,

(2.8)

where p = 3/(1−α), C0 is a Sobolev imbedding constant, C1 is a constant depending
on C0, α, h0 and ‖u0‖C2[0,h0].

From the third equation in (2.4), we can define a function h̃(> 0) as follows

h̃2(t) = h2
0 − 2µh0

∫ t

0

ṽξ(h0, τ)dτ, (2.9)

which implies

h̃′(t)h̃(t) = −µh0ṽξ(h0, t), h̃(0) = h0, h̃′(0)h0 = −µh0ṽξ(h0, 0) = h∗. (2.10)

Hence h̃′h̃ ∈ Cα/2([0, T ]) with

‖h̃′(t)h̃(t)‖Cα/2([0,T ]) ≤ C2 := µh0C1. (2.11)

Now, we define a map F : ΣT → C([0, h0]× [0, T ])× C1([0, T ]) by

F(v(ξ, t), h(t)) = (ṽ(ξ, t), h̃(t)). (2.12)

It is easy to see that (v, h) ∈ ΣT is a fixed point of F if and only if it solves (2.4). So,
we need to prove that F has a unique fixed point, we use the contraction mapping
theorem.

By (2.10) and (2.11), we have

‖h̃′(t)h̃(t)− h̃′(0)h̃(0)‖C([0,T ]) ≤ ‖h̃′(t)h̃(t)‖Cα/2([0,T ])T
α/2 ≤ C2T

α/2,

‖ṽ(ξ, t)− v0(ξ)‖C([0,h0]×[0,T ]) ≤ ‖ṽ‖C0,(1+α)/2([0,h0]×[0,T ])T
(1+α)/2 ≤ C1T

(1+α)/2.

Therefore if we take T ≤ min{1, C−2/α
2 , C

−2/(1+α)
1 }, then F maps ΣT into itself.

To prove that F is a contraction mapping on ΣT for T > 0 sufficiently small,
we take (vi, hi) ∈ ΣT , i = 1, 2 and denote (vi, hi) = F(vi, hi). Then it follows form
(2.8) and (2.11) that

‖vi‖C1+α,(1+α)/2([0,h0]×[0,T ]), ‖h′i(t)hi(t)‖Cα/2([0,T ]) ≤ C2. (2.13)

Set w = v1 − v2, then w(ξ, t) satisfies

wt −
h′1
h1
ξwξ −

dh2
0

h2
1

(wξξ +
N − 1
ξ

wξ)−Ka(v2
1 − v2

2) + b(v1 − v2)

= (
h′1
h1
− h′2
h2

)ξv2ξ + dh2
0(

1
h2

1

− 1
h2

2

)(v2ξξ +
N − 1
ξ

v2ξ), 0 < ξ < h0, 0 < t < T,

wξ(0, t) = 0, w(h0, t) = 0, 0 < t < T,

w(ξ, 0) = 0, 0 ≤ ξ ≤ h0.
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Using the Lp estimates for parabolic equations and Sobolev imbedding theorems,
we obtain

‖v1 − v2‖C1+α,(1+α)/2([0,h0]×[0,T ])

≤ C3(‖v1 − v2‖C([0,h0]×[0,T ]) + ‖h1 − h2‖C1([0,T ])),
(2.14)

where C3 depends on C1 and C2. Taking the difference of the equations for h
′
1h1

and h
′
2h2 results in

‖h′1(t)h1(t)− h′2(t)h2(t)‖Cα/2([0,T ]) ≤ µh0‖v1ξ(h0, t)− v2ξ(h0, t)‖Cα/2([0,T ]). (2.15)

Combining inequalities (2.14) and (2.15), we obtain

‖v1(ξ, t)− v2(ξ, t)‖C1+α,(1+α)/2([0,h0]×[0,T ]) + ‖h′1(t)h1(t)− h′2(t)h2(t)‖Cα/2([0,T ])

≤ C4(‖v1(ξ, t)− v2(ξ, t)‖C([0,h0]×[0,T ]) + ‖h1 − h2‖C1([0,T ])),
(2.16)

where C4 depends on C3. Using a property of C([0, T ]) norm,

‖h′1(t)h1(t)− h′2(t)h2(t)‖C([0,T ]) ≥ ‖h′1(t)− h′2(t)‖C([0,T ])‖h1(t)‖C([0,T ])

− ‖h′2(t)‖C([0,T ])‖h1(t)− h2(t)‖C([0,T ])

(2.17)

and the facts h1(0) = h2(0) = h0, hi(t) ≥ h0 and h′i(t) ≤ (h∗ + 1)/h0, we derive
that if T ≤ h2

0
2(h∗+1) then

‖h′1 − h′2‖C([0,T ]) ≤
1
h0
‖h′1h1 − h′2h2‖C([0,T ]) +

h∗ + 1
h2

0

T‖h′1 − h′2‖C([0,T ])

≤ 2
h0
‖h′1h1 − h′2h2‖C([0,T ]),

(2.18)

which implies that

‖h1−h2‖C1([0,T ]) ≤ (1+T )‖h′1−h′2‖C([0,T ]) ≤
2 + 2T
h0

‖h′1h1−h′2h2‖C([0,T ]). (2.19)

Hence from (2.16) and (2.19), for

T := min
{

1, C−2/α
2 , C

−2/(1+α)
1 ,

h2
0

2h∗ + 2
,
[
2C4(1 +

4
h0

)
]−2/α}

,

we have

‖v1(ξ, t)− v2(ξ, t)‖C([0,h0]×[0,T ]) + ‖h′1h1 − h
′
2h2‖C([0,T ])

≤ T (1+α)/2‖v1 − v2‖C1+α,(1+α)/2([0,h0]×[0,T ]) + Tα/2‖h′1h1 − h
′
2h2‖Cα/2([0,T ])

≤ C4T
α/2(‖v1 − v2‖C([0,h0]×[0,T ]) + ‖h1 − h2‖C1([0,T ]))

≤ C4T
α/2(‖v1 − v2‖C([0,h0]×[0,T ]) +

2 + 2T
h0

‖h′1h1 − h′2h2‖C([0,T ]))

≤ 1
2

(‖v1 − v2‖C([0,h0]×[0,T ]) + ‖h′1h1 − h′2h2‖C([0,T ])).

Thus for this T , F is a contraction mapping. According the contraction mapping
theorem, we can conclude that there exists a unique (v(ξ, t), h(t)) ∈ ΣT such that
F(v(ξ, t), h(t)) = (v(ξ, t), h(t)). In other words, (v(ξ, t), h(t)) is the solution of prob-
lem (2.4) and therefore (u(r, t), h(t)) is the solution of problem (1.2). Moreover, by
using the Schauder estimates, we have additional regularity of the solution, namely,
h(t) ∈ C1+α/2[0, T ] and u ∈ C2+α,1+α/2((0, h(t)) × (0, T ]), that is, (u(r, t), h(t)) is
the classical solution of problem (1.2). �
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Remark 2.2. If the initial function u0 is smooth and satisfies the consistency
condition

−d(u′′0(h0) +
N − 1
r

u′0(h0)) + µu′0(h0)u′0(h0) = u(h0)(Kau0(h0)− b),

then the solution (u, h) ∈ C2+α,1+α/2(DT )× C1+α/2([0, T ]).

Now we give the monotone behavior of the free boundary h(t).

Theorem 2.3. The free boundary h(t) for problem (1.2) is strictly monotone in-
creasing, that is, for any solution in (0, T ], we have

h′(t) > 0 for 0 < t ≤ T.

Proof. Applying the Hopf lemma to problem (1.2), we obtain

ur(h(t), t) < 0 for 0 < t ≤ T.
Thus, combining this inequality with the Stefan condition gives the desired result.

�

Next, we give a comparison principle which can be used to estimate both u(r, t)
and the free boundary r = h(t).

Lemma 2.4. Assume that T ∈ (0,∞), h ∈ C1([0, T ]), u(r, t) ∈ C(D∗T )∩C2,1(D∗T ),
with D∗T = {(r, t) ∈ R2 : 0 < r < h(t), 0 < t ≤ T}, and that

ut − d(urr +
N − 1
r

ur) ≥ u(Kau− b), 0 < r < h(t), 0 < t ≤ T,

ur(0, t) = 0, u(h(t), t) = 0, 0 < t ≤ T,

h
′
(t) ≥ −µur(h(t), t), 0 < t ≤ T.

If h0 ≤ h(0) and u0(r) ≤ u(r, 0) in [0, h0], then the solution (u, h) of the free
boundary problem (1.2) satisfies

h(t) ≤ h(t), t ∈ (0, T ] and u(r, t) ≤ u(r, t), 0 < r < h(t), 0 < t ≤ T.

Proof. For small ε > 0, let (uε, hε) denote the unique solution of (1.2) with h0

replaced by hε0 = h0(1− ε), with µ replaced by µε = µ(1− ε), and with u0 replaced
by some uε0 ∈ C2([0, hε0]) satisfying

0 < uε0(r) ≤ u0(r) in [0, hε0], uε0(0) = uε0(hε0) = 0,

and as ε→ 0,

uε0(
hε0
h0
r)→ u0(r),

in the sense of C2([0, h0]).
We claim that hε(t) < h(t) for all t ∈ (0, T ]. Clearly, this is true for small t > 0.

If this does not hold, then we can find a first t∗ ≤ T such that hε(t) < h(t) for
t ∈ (0, t∗) and hε(t∗) = h(t∗). It follows that h′ε(t

∗) ≥ h
′
(t∗). We now compare uε

and u over the region

Ωt∗ = {(r, t) ∈ R2 : 0 < r < hε(t), 0 < t ≤ t∗}.
It follows from the strong maximum principle that uε(r, t) < u(r, t) in Ωt∗ . Hence
w(r, t) = u(r, t) − uε(r, t) > 0 in Ωt∗ with w(hε(t∗), t∗) = 0. It follows that
wr(hε(t∗), t∗) ≤ 0, from which we deduce, in view of (uε)r(hε(t∗), t∗) < 0 and
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µε < µ, that h′ε(t
∗) < h

′
(t∗). But this contradicts to h′ε(t

∗) ≥ h
′
(t∗), which proves

our claim that hε(t) < h(t) for all t ∈ (0, T ]. We may now apply the usual compar-
ison principle over ΩT to conclude that uε < u in ΩT .

Since the unique solution of (1.2) depends continuously on the parameters in
(1.2) up to the maximal existence time Tmax, which can be proven in the same way
as in [26, Theorem 2.2], it follows that (uε, hε) converges to (u, h) as ε → 0, and
that (u, h) is the unique solution of (1.2). The desired result then follows by letting
ε→ 0 in the inequalities uε < u and hε < h. The proof is complete. �

3. Finite time blow-up

In this section, we study the blowup property. Firstly, we point out that all
solutions that exist for finite time would blow up in the L∞ sense.

Lemma 3.1. The solution u(r, t) to (1.2) exists uniquely, and it can be extended to
[0, Tmax), where Tmax ≤ ∞ is the maximal existence time of u(r, t). Furthermore,
if Tmax <∞, then we have

lim sup
t→Tmax

‖u(·, t)‖L∞([0,h(t)]) =∞. (3.1)

Proof. From the comparison principle Lemma 2.4, we know that the solution u(r, t)
of (1.2) exists and is unique. Then it is not difficult to obtain from the unique-
ness and Zorn’s lemma that there exists a number Tmax such that [0, Tmax) is the
maximal time interval in which the solution exists. To complete the proof of this
lemma, we only have to verify that if Tmax <∞, then

lim sup
t→Tmax

‖u(·, t)‖L∞([0,h(t)]) =∞.

To show this, we use the contradiction argument. Assume that Tmax <∞ and that

lim sup
t→Tmax

‖u(·, t)‖L∞([0,h(t)]) <∞,

then there exist M1,M2 > 0 such that Tmax < M1 < ∞ and ‖u(·, t)‖L∞([0,h(t)]) <
M2 <∞ for all t ∈ [0, Tmax).

Next, we prove that h′(t) is uniformly bounded in (0, Tmax), i.e., h′(t) ≤M3 for
all t ∈ (0, Tmax) with some M3 independent of Tmax. To obtain this, we define

Ω = ΩM := {(r, t) ∈ R2 : h(t)−M−1 < r < h(t), 0 < t < Tmax},
and construct an auxiliary function

w(r, t) := M2[2M(h(t)− r)−M2(h(t)− r)2].

We choose M large so that w(r, t) ≥ u(r, t) holds in Ω. Direct computations yield
that, for (r, t) ∈ Ω, we have

wt = 2M2Mh′(t)(1−M(h(t)− r)) ≥ 0,

wr = −2M2M(1−M(h(t)− r)) ≤ 0,

−∆w = −wrr −
N − 1
r

wr = 2M2M
2 − N − 1

r
wr,

Kau2 − bu ≤ KaM2
2 .

Then we have

wt − d∆w ≥ 2dM2M
2 ≥ Kau2 − bu, (r, t) ∈ Ω,
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if we take M2 ≥ KaM2
2d . On the other hand, we have

w(h(t)−M−1, t) = M2 ≥ u(h(t)−M−1, t), w(h(t), t) = 0 = u(h(t), t).

Thus, if we can choose M large such that u0(r) ≤ w(r, 0) for r ∈ [h0−M−1, h0], then
we can apply the maximum principle to w−u over Ω to deduce that u(r, t) ≤ w(r, t)
for (r, t) ∈ Ω. It would then follow that

ur(h(t), t) ≥ wr(h(t), t) = −2MM2, h
′(t) = −µur(h(t), t) ≤M3 := 2MM2µ.

Now, we aim to finding some M independent of Tmax such that u0(r) ≤ w(r, 0) for
r ∈ [h0 −M−1, h0]. By some calculations, we see

wr(r, 0) = −2M2M [1−M(h0 − r)] ≤ −M2M for r ∈ [h0 − (2M)−1, h0].

Therefore, upon choosing M := max
{√

KaM2
2d ,

4‖u0‖C1([0,h0])

3M2

}
, we have wr(r, 0) ≤

u′0(r) for r ∈ [h0 − (2M)−1, h0], which implies w(r, 0) ≥ u0(r) for r ∈ [h0 −
(2M)−1, h0] because w(h0, 0) = u0(h0) = 0.

Moreover, for r ∈ [h0 −M−1, h0 − (2M)−1], we have

w(r, 0) ≥ 3
4
M2, u0(r) ≤ ‖u0‖C1([0,h0])M

−1 ≤ 3
4
M2.

Hence u0(r) ≤ w(r, 0) for r ∈ [h0−M−1, h0], which tells us h′(t) ≤M3 in [0, Tmax),
with M3 = 2MM2µ independent of Tmax.

Now, we fix δ0 ∈ (0, Tmax). By standard Lp estimates, the Sobolev embedding
theorem and the Hölder estimates for parabolic equations, we can find L∗ > 0
depending only on M1, M2 and M3 such that ‖u(·, t)‖C2([0,h(t)]) ≤ L∗ for all
t ∈ [δ0, Tmax). Using Theorem 2.1 again, we conclude that there exists a τ > 0 de-
pending on M3 and L∗ such that the solution to (1.2) with the initial time Tmax− τ

2
can be extended uniquely to the time Tmax− τ

2 + τ , which is a contradiction to the
hypothesis. Thus the proof is completed. �

Let (φ1(x), λ1) be the first pair of eigenfunction-eigenvalue of the eigenvalue
problem

−d∆φ(x) = λφ(x), x ∈ Bh0 ,

φ(x) = 0, x ∈ ∂Bh0 ,
(3.2)

where Bh0 is the ball with radius h0, then φ1(x) is positive and symmetric in Bh0 ,
that is, φ1(x) = φ1(r)(r = |x|), and we can assume that

∫ h0

0
φ1(r)dr = 1. Now,

by using the convexity argument, we give some sufficient conditions under which
blowup occurs for problem (1.2), which produce a positive effect when establishing
the existence of global slow solution in Section 4.

Theorem 3.2. Let u(r, t) be the solution of problem (1.2), if the initial datum
u0(r) is sufficiently large such that∫ h0

0

u0(r)φ1(r)dr >
λ1 + b

Ka
,

then u(r, t) blows up in finite time.

Proof. First, we consider the auxiliary problem

vt − d∆v = Kav2(r, t)− bv(r, t), 0 < r < h0, t > 0,

vr(0, t) = v(h0, t) = 0, t > 0,

v(r, 0) = u0(r), 0 < r < h0.

(3.3)
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It follows from the comparison principle that u(r, t) ≥ v(r, t) for 0 ≤ r ≤ h0 and
t ≥ 0.

Next, we prove that v(r, t) blows up at a finite time. Observing that φ′1(0) = 0,
we multiply the first equation in (3.3) by φ1(r) and integrate the resulting equation
over (0, h0), then we have

F ′(t) + (λ1 + b)F (t) = Ka

∫ h0

0

v2(r, t)φ1(r)dr,

where F (t) =
∫ h0

0
v(r, t)φ1(r)dr. Since v2 is convex and φ1(r) is positive within

(0, h0) and
∫ h0

0
φ1(r)dr = 1, we have∫ h0

0

v2(r, t)φ1(r)dr ≥ F 2(t).

Hence
F ′(t) + (λ1 + b)F (t) ≥ KaF 2(t).

Since
∫ h0

0
u0(r)φ1(r)dr > λ1+b

Ka , we see that KaF 2(0) > (λ1 +b)F (0), which implies
that v(r, t) would blow up in finite time. Then the desired result holds since v(r, t)
is a lower solution. �

Remark 3.3. From Theorem 3.2, we know that if u0(r) is in the form of δφ1(r),
then the solution u(r, t) to (1.2) will grow to infinity provided that δ is sufficiently
large.

4. Global fast solution and slow solution

In this section, we investigate the long time behavior of the global solution of
(1.2). By constructing an upper solution, we first give the existence of the global
fast solution.

Theorem 4.1 (Global fast solution). Let u be a solution to (1.2). If u0 is small
in the sense that

‖u0(·)‖L∞([0,h0]) ≤
d

16
min

{ 1
2Kah2

0

,
1
µ

}
, (4.1)

then Tmax = ∞. Moreover, h∞ = limt→∞ h(t) < ∞ and there exist two constants
C, β > 0 depending on u0 such that

‖u(·, t)‖L∞([0,h(t)]) ≤ Ce−βt for t ≥ 0.

Proof. It suffices to construct a suitable global supersolution. Let

σ(t) = 2h0(2− e−γt), t ≥ 0,

V (y) = 1− y2, −1 ≤ y ≤ 1,

w(r, t) = εe−βtV (r/σ(t)), 0 ≤ r ≤ σ(t), t ≥ 0,

where γ, β and ε > 0 are to be determined later. Direct calculations yield that for
all t > 0 and 0 < r < σ(t),

wt − d∆w − w(Kaw − b)

= εe−βt
[
− βV − rσ′σ−2V ′ − dσ−2V ′′ − dN − 1

rσ
V ′ − V (Kaεe−βtV − b)

]
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≥ εe−βt[−β +
d

8h2
0

−Kaε].

On the other hand, we can easily obtain that σ′(t) = 2γh0e
−γt > 0, wr(0, t) =

w(σ(t), t) = 0 and −wr(σ(t), t) = 2εe−βt/σ(t).
Setting ε = 2‖u0(r)‖L∞[0,h0], then one can see that u0(r) < w(r, 0) for 0 ≤ r ≤

h0. If we further choose γ = β =
d

16h2
0

, then (w, σ) satisfies

wt − d∆w − w(Kaw − b) ≥ 0, 0 < r < σ(t), t > 0,

σ′(t) > −µwr(σ(t), t), t > 0,

wr(0, t) = w(σ(t), t) = 0, t > 0,

σ(0) = 2h0 > h0,

by (4.1). By applying the comparison principle Lemma 2.4, we deduce that h(t) ≤
σ(t) and u(r, t) ≤ w(r, t) for 0 ≤ r ≤ h(t), as long as u exists. In particular, it
follows from the continuation property (3.1) that u exists globally, which completes
the proof. �

Remark 4.2. It is easy to see that if the initial datum u0(r) is in the form of δφ1(r)
and δ ≤ d

16 maxr∈[0,h0] φ1(r)
min{ 1

2Kah2
0
, 1
µ}, then the above theorem holds. From the

above theorem, we also know that as t tends to infinity, the free boundary h(t)
converges to a finite limit and the solution u(r, t) decays uniformly to 0 at an
exponential rate, so, we call it global fast solution. In a later result (Theorem 4.5),
one can see that the free boundary will grow up to infinity as t goes to infinity, and
hence the latter solution is called global slow solution.

Before giving the existence of the global slow solution, we need the following
lemma, which provides a priori estimate for the global solution.

Lemma 4.3. Let u be a solution to (1.2) with u0(r) in the form of δφ1(r). If
Tmax =∞, then there exists a constant C = C(‖u0‖C2 , h0, 1/h0), such that

sup
t≥0
‖u(·, t)‖L∞([0,h(t)]) ≤ C,

where C remains bounded for ‖u0‖C2 , h0, and 1/h0 bounded.

Proof. First, from the continuous dependence upon the data and coefficients (see
[9, Theorem 2]), we know for each M > 1 that there exists an η > 0 such that,
if ‖u0‖C1+α < M and 1/M < h0 < M , then ‖u(·, t)‖L∞ < 2M on [0, η]. In what
follows, we use the contradiction argument. Suppose that the result is not true,
then there exist an M > 0 and a sequence of global solutions (un, hn) of (1.2) such
that

1/M < hn(0) = h0 < M, ‖un(r, 0)‖C1+α[0,h0] < M,

sup
t≥0
‖un(·, t)‖L∞([0,hn(t)]) →∞ as n→∞.

Then there exists a sequence (rn, tn) with rn ∈ [0, hn(tn)) and tn →∞ as n→∞
such that

sup
t∈[0,tn]

‖un(r, t)‖L∞([0,hn(t)]) = un(rn, tn)→∞ as n→∞.
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We make an assertion that rn = 0. Before showing this result, we first prove
that φ′1(r) ≤ 0. Actually, from φ1(r) being the first eigenvalue of (3.2), with∫ h0

0
φ1(x) dx = 1, we can easily see that φ′1(0) = 0. Since −d[rN−1φ′1(r)]′ =

rN−1λ1φ1(r) > 0 in (0, h0), we have φ′1(r) < 0 in (0, h0). Next, we set v(r, t) =
unr(r, t), then v(r, t) satisfies

vt − d
[N − 1

r
v + vr

]
r

= (2Kaun − b)v, 0 < r < hn(t), t > 0,

v(0, t) = unr(0, t) = 0, v(hn(t), t) = unr(hn(t), t) < 0, t > 0,

v(r, 0) = u′n(r, 0) = δnφ
′
1(r) ≤ 0, 0 ≤ r ≤ h0.

(4.2)

According to the maximum principle, we see that v(r, t) = unr(r, t) ≤ 0. Hence
un(r, t) ≤ un(0, t) over {(r, t) ∈ R2 : 0 ≤ r ≤ hn(t), 0 ≤ t < +∞}. Thus rn = 0,
which implies that

sup
t∈[0,tn]

‖un(r, t)‖L∞(0,hn(t)) = un(0, tn) =: ρn.

Setting λn = ρ
−1/2
n , then it is evident to see that λn → 0 as n→∞. Extend un(·, t)

by 0 on (hn(t),∞) and define the rescaled function

vn(s, τ) = λ2
nun(λns, tn + λ2

nτ) for (s, τ) ∈ D̃n, (4.3)

where D̃n = {(s, τ) ∈ R2 : 0 < s <∞, −λ−2
n tn < τ ≤ 0}. Also, we denote

s1 = 0, s2(τ) = λ−1
n hn(tn + λ2

nτ),

Dn = {(s, τ) ∈ R2 : s1 < s < s2(τ),−λ−2
n tn < τ ≤ 0},

which corresponds to the domain {(r, t) ∈ R2 : 0 < r < hn(t), 0 < t ≤ tn}. Then
the function vn satisfies vn(0, 0) = 1, 0 ≤ vn ≤ 1 and

∂τvn − d(vnss +
N − 1
s

vns) = vn(Kavn − bn), (s, τ) ∈ Dn, (4.4)

with bn = λ2
nb. As in [10, Lemma 2.1], we can derive local L2 estimates for the

derivatives of vn, then according to the compact embeddings H1(Qm) ⊂ Lp(Qm)
and H1([0,m]) ⊂ C([0,m]), where Qm = [0,m]× [−m, 0] and m > 0, it follows that
some subsequence {vnk} of {vn} converges in Lploc([0,+∞)×(−∞, 0]) to some func-
tion w(s, τ) ∈ Lp([0,+∞)×(−∞, 0]) and that {vnk(s, 0)} converges in Cloc([0,+∞))
to some function z(s) ∈ C([0,+∞)) with z(0) = 1. Moreover, similarly to [10, Lem-
mas 2.2 and 2.3], we also have wτ = 0 in D′((0,+∞)×(−∞, 0)). In a word, we have
obtained a function w(s) that is nonnegative, bounded and continuous on [0,∞)
and satisfies −d(wss + N−1

s ws) = Kaw2. Observing that w(0) = z(0) = 1, we see
that w is further governed by

−d(wss +
N − 1
s

ws) = Kaw2, s > 0,

w(0) = 1.
(4.5)

If N = 2, let U(z) = w(s), z = − ln s, if N > 2, let U(z) = w(s), z = 1
N−2s

2−N ,
then problem (4.5) can be reduced to

−dUzz = Kas2N−2U2, z ∈ (0,+∞),

U(+∞) = 1.
(4.6)
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We can easily see from the equation in (4.6) that U ∈ C2([0,+∞)) and that U is
nonnegative, concave and bounded. Therefore U ≡ 0, which leads a contradiction
to the fact that U(+∞) = 1, and the desired result follows. �

The above result indicates that the global solution is uniformly bounded while
the next result shows that such a solution will decay uniformly to 0 as t approaches
infinity.

Lemma 4.4. Assume the conditions in Lemma 4.3 hold, then the solution of prob-
lem (1.2) satisfies

lim
t→+∞

‖u(·, t)‖L∞([0,h(t)]) = 0.

Proof. We first consider the case h∞ =∞. Assume that

l := lim sup
t→+∞

‖u(·, t)‖L∞([0,h(t)]) > 0

by contradiction. From Lemma 4.3, we see that l < +∞. Choose t0 > 0 such
that l/2 ≤ supt∈[t0,∞) ‖u(·, t)‖L∞([0,h(t)]) ≤ 3l/2. Then there exist an ε0 > 0 and a
sequence tn → +∞ such that

σn := ‖u(·, tn)‖L∞([0,h(tn)]) ≥
3
4
l ≥ 1

2
sup

t∈[t0,∞)

‖u(·, t)‖L∞([0,h(t)]) ≥ ε0.

Pick rn ∈ [0, h(tn)) such that σn = u(rn, tn). As in Lemma 4.3, we can prove that
rn = 0, thus σn := ‖u(·, tn)‖L∞([0,h(tn)]) = u(0, tn).

Set λn = σ
−1/2
n ≤ ε−1/2

0 , extend u(·, t) by 0 on (h(t),∞) and define the rescaled
function vn(s, τ) as in Lemma 4.3:

vn(s, τ) = λ2
nu(λns, tn + λ2

nτ), for (s, τ) ∈ D̃n, (4.7)

where D̃n = {(s, τ) ∈ R2 : 0 < s <∞, λ−2
n (t0 − tn) < τ ≤ 0}. Also, we denote

s1 = 0, s2(τ) = λ−1
n h(tn + λ2

nτ),

Dn = {(s, τ) : s1 < s < s2(τ), λ−2
n (t0 − tn) < τ ≤ 0}.

Then vn satisfies

∂τvn − d(vnss +
N − 1
s

vns) = vn(Kavn − bn), (s, τ) ∈ Dn, (4.8)

with bn = λ2
nb, vn(0, 0) = 1, 0 ≤ vn ≤ 2 and lims→+∞ vn(s, τ) = 0. Noticing that

bn ≤ b( 3
4 l)
−1, we know that there exist a sequence {bnk} and b∗ ≤ b( 3

4 l)
−1 such that

bnk → b∗ as k →∞. Also we must be mentioned here that Dn → [0,∞)×(−∞, 0] as
n→∞. Similarly as [10, Lemmas 2.1-2.3], also we can obtain a function w(s) ≥ 0,
which is bounded, continuous on [0,∞) and satisfies that

−d(wss +
N − 1
s

ws) = Kaw2 − b∗w, s > 0,

lim
s→+∞

w(s) = 0.
(4.9)

Similarly as in Lemma 4.3, by introducing a transformation we can show that w ≡ 0
or w ≡ b∗

Ka . If w ≡ 0, there is a contradiction to the fact that w(0) = 1. If w ≡ b∗

Ka ,
there is also a contradiction to the fact that lims→+∞ w(s) = 0. So in the case
h∞ =∞, the conclusion in this lemma holds.

Now, we consider the case that h∞ < ∞. Arguing indirectly, we suppose that
δ := lim supt→+∞ ‖u(·, t)‖L∞([0,h(t)]) > 0. Then there exists a sequence {(rk, tk)} ⊂
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{(r, t) ∈ R2 : 0 < r < h(t)), 0 < t < ∞} with tk → ∞ such that u(rk, tk) ≥ δ/2
for all k ∈ N. Since 0 < rk < h∞ < +∞, we then have a subsequence of {rk}
converging to r0 ∈ [0, h∞). Without loss of generality, we assume that rk → r0 as
k →∞.

Define

uk(r, t) = u(r, t+ tk) for r ∈ [0, h(t+ tk)], t ∈ (−tk,∞).

According to the above lemma, we know that uk is bounded, hence from the para-
bolic regularity it follows that {uk} has a subsequence {uki} such that uki → u as
i→∞ and u satisfies

ut − d(urr +
N − 1
r

ur) = u(Kau− b) for r ∈ (0, h∞), t ∈ (−∞,+∞).

Note that u(r0, 0) ≥ δ/2 > 0, hence u > 0 in (0, h∞) × (−∞,+∞). Applying the
Hopf lemma to the above equation of u at the point (h∞, 0) yields ur(h∞, 0) ≤
−σ < 0 for some σ > 0.

On the other hand, noticing that h(t) is increasing and bounded, for any α ∈
(0, 1), there exists a constant C̃ depending on α, h0, ‖u0‖C2[0,h0] and h∞ such that

‖u‖C1+α,(1+α)/2(D∞) + ‖h‖C1+α/2([0,∞)) ≤ C̃, (4.10)

where D∞ = {(r, t) ∈ R2 : 0 < r < h(t), t > 0}. In fact, we let

y =
h0r

h(t)
, v(y, t) = u(r, t). (4.11)

Then v(y, t) satisfies

vt −Avy −Bvyy = v(Kav − b), 0 < y < h0, t > 0,

vy(0, t) = v(h0, t) = 0, t > 0,

v(y, 0) = v0(y) := u0(y) ≥ 0, 0 ≤ y ≤ h0,

(4.12)

where A = h′(t)
h(t) y+ d

h2
0

h2(t)
N−1
y and B = d

h2
0

h2(t) . Also transformation (4.11) changes
the free boundary r = h(t) to the fixed line y = h0, but at the expense of making
the equation more complex. Next, we can use exactly the same arguments as in
Lemma 3.1 to deduce that h′(t) is uniformly bounded for all t > 0. Observe that
v is bounded in the sense of L∞, hence by standard Lp theory and the Sobolev
imbedding theorem we can find C̃∗ depending on α, h0, ‖u0‖C2[0,h0], h∞ such that

‖v‖C1+α,(1+α)/2([0,h0]×[0,∞)) ≤ C̃∗,

which immediately leads to (4.10). Combining ‖h‖C1+α/2[0,+∞) ≤ C̃ with the fact
that h(t) is bounded, then we have h′(t) → 0 as k → ∞; i.e., ur(h(tk), tk) → 0 as
k →∞, in view of the Stefan condition. Furthermore,

‖u‖C1+α,(1+α)/2([0,h(t)]×[0,∞)) ≤ C̃

implies ur(h(tk), 0 + tk) = (uk)r(h(tk), 0) → ur(h∞, 0) as k → ∞, which produces
a contradiction to the fact that ur(h∞, 0) ≤ −σ < 0. Thus the desired result
follows. �

Theorem 4.5 (Global slow solution). Let φ1(r) be the first eigenfunction of prob-
lem (3.2) with

∫ h0

0
φ1(r)dr = 1. Then there exists a λ > 0 such that the solution to
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problem (1.2) with initial datum u0 = λφ1 is a global slow solution, which satisfies
that h∞ =∞.

Proof. To emphasize the dependence of u on the initial data when necessary, we
denote the solution to (1.2) by u(u0; ·). So do h(t), h∞ and the maximal existence
time Tmax. Motivated by [10], we define

Σ = {λ > 0 : Tmax(λφ1) =∞ and h∞(λφ1) <∞}.

According to Theorem 4.1, when λ is small we know that λ ∈ Σ, so Σ is not empty.
Conversely, when λ is large enough, from Theorem 3.2 and Remark 3.3 we know
that the corresponding solution will blow up, i.e., Tmax(λφ1) < ∞, hence Σ is
bounded.

Now, we prove that Σ = (0, λ∗), where λ∗ := sup Σ ∈ (0,∞). From the defi-
nition of λ∗, we know that Σ ⊆ (0, λ∗]. Let v = u(λ∗φ1; ·), σ = h(λ∗φ1; ·), and
τ = Tmax(λ∗φ1), then we can show that τ = ∞. In fact, by continuous depen-
dence, we know that for each fixed t ∈ [0, τ), u(λφ1; ·, t) converges to v(·, t) in
L∞(0,∞) and h(λφ1; t) → σ(t) as λ → λ∗(note u(r, t) = 0 on (h(t),∞)). It
follows from Lemma 4.3 that ‖v(·, t)‖L∞([0,σ(t)]) ≤ C for all t ∈ [0, τ) because
Tmax(λφ1) = ∞ for all λ ∈ (0, λ∗). Thus τ = ∞ since nonglobal solutions should
satisfy lim supt→Tmax

‖u(·, t)‖L∞(0,h(t)) =∞.
Next we show that σ = ∞. We assume for contradiction that σ < ∞, from

Lemma 4.4, we see that ‖v(·, t)‖L∞([0,h(t)]) → 0 as t →∞, hence we can choose t0
sufficiently large such that ‖v(r, t0)‖L∞([0,h(t0)]) <

d
16 min{ 1

2Kah2
0
, 1
µ}. By continu-

ous dependence, we can deduce that

‖u(λφ1; ·, t0)‖L∞([0,h(t0)]) ≤
d

16
min

{ 1
2Kah2

0

,
1
µ

}
for λ > λ∗ sufficiently close to λ∗. But this implies that Tmax(λφ1) = ∞ and
h∞(λφ1) < ∞ by Theorem 4.1, which is a contradiction to the definition of λ∗.
So σ∞ = ∞ and λ∗ /∈ Σ, we can further find that Σ = (0, λ∗). Suppose that
Σ ⊂ (0, λ∗) for a contradiction, i.e., there exists a number λ0 ∈ (0, λ∗) with λ0 /∈ Σ.
Then there must be some number λ1 ∈ (λ0, λ

∗) such that λ1 ∈ Σ, otherwise we
can deduce a contradiction that λ∗ := sup Σ ≤ λ0 < λ∗. On the other hand,
according to the comparison principle, the fact that λ0 < λ1 ∈ Σ indicates that
λ0 ∈ Σ, a contradiction to the assumption. Thus Σ = (0, λ∗) holds. The proof is
complete. �
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