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BLOW-UP OF SOLUTIONS FOR VISCOELASTIC EQUATIONS
OF KIRCHHOFF TYPE WITH ARBITRARY POSITIVE

INITIAL ENERGY

ZHIFENG YANG, ZHAOGANG GONG

Abstract. We consider the viscoelastic equation

utt(x, t)−M(‖∇u‖22)∆u(x, t) +

Z t

0
g(t− s)∆u(x, s)ds + ut = |u|p−1u

with suitable initial data and boundary conditions. Under certain assumptions
on the kernel g and the initial data, we establish a new blow-up result for

arbitrary positive initial energy, by using simple analysis techniques.

1. Introduction

The wave equation
utt −∆u+ h(ut) = f(u) (1.1)

with suitable initial data and boundary conditions has been extensively studied and
several results concerning existence and blow-up have been established (see [1, 2,
10, 16]). Here h represents the friction or damping, and f the source. To describe
the nonlinear vibrations of an elastic string, the so-called Kirchhoff equation

utt −M(‖∇u‖22)∆u+ h(ut) = f(u) (1.2)

was introduced [8], where M(s) = m0 + bsγ is a positive C1-function (m0 > 0,
b ≥ 0, γ > 0, s ≥ 0). In this case the existence and blow-up of solutions have been
discussed by many authors (see [5, 6, 14, 15, 21] and the references cited therein).

When we take the viscoelastic materials into consideration, the models (1.1) and
(1.2) become

utt −∆u+
∫ t

0

g(t− s)∆u(s)ds+ h(ut) = f(u) (1.3)

and

utt −M(‖∇u‖22)∆u+
∫ t

0

g(t− s)∆u(s)ds+ h(ut) = f(u) (1.4)

respectively, where g represents the kernel of the memory.
For (1.3), many existence and blow-up results have been proved. See in this

regard [7, 11, 12, 17, 18, 20]. For example, Messaoudi [11] studied (1.3) with
h(ut) = |ut|m−2ut and f(u) = |u|p−2u and proved a blow-up result for solutions
with negative initial energy if p > m ≥ 2 and a global existence result for 2 ≤ p ≤ m.
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This result has been improved by the same author in [12] to the case of positive
initial energy. In [17], Song and Zhang consider (1.3) with h(ut) = −∆ut and
f(u) = |u|p−2u and prove a blow-up result for solutions with positive initial energy
by using potential well theory introduced by Payne and Sattinger[16]. Later, Song
[18] obtained the blow-up result of (1.3) in the case of h(ut) = |ut|m−2ut.

The model (1.4) states that the dynamic equilibrium of a body depends not
only on the present state of deformation, but also on the previous history of the
deformation[13]. This model was first studied by Torrejón and Young [19], who
proved the existence of weakly asymptotic stable solution for a large analytical
datum. Later, Munoz Rivera [13] showed the global existence for small datum
and the total energy decays to zero exponentially under some restrictions. In [21]
and [22], Wu and Tsai studied the model (1.4) with strong damping and nonlinear
damping respectively and proved the existence and blow-up of solutions. In [22], a
blow-up result of the model (1.4) with m0 = 1, h(ut) = a|ut|ν−2ut+a|ut|m−2ut and
f(u) = |u|p−2u is obtained under some assumptions on the kernel g, the exponential
p and the initial data. But this result holds only in the case 0 ≤ E(0) < E1,
where E(0) is the initial energy of the solution and E1 is some a positive constant.
Recently, by using concavity method, Liu and Liang [9] improved the results of
[22] to the case of arbitrary positive initial energy. They considered the following
initial-boundary value problem

utt −M(‖∇u‖22)∆u+
∫ t

0

g(t− s)∆u(s)ds+ ut = f(u),

(x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.5)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω. u0 and u1 are
given initial data. M and g are two functions which stated as in (1.2) and (1.3). For
this model, they obtained a blow-up result under some basic assumptions on f, g,M
and the initial data u0, u1. (Readers can see [9, Conditions A1–A4, (2.3) and (2.4)].)
However, we find that [9, conditions (A4) and (2.4)] are inessential. Moreover, it
is difficult to construct a concrete model according to all the assumptions in [9],
especially for (A4) and (2.4). So, motivated by [18, 22, 9], we try to consider the
blow-up properties of the model (1.5) with m0 = 1 and f(u) = |u|p−2u. That is,
we study the following problem

utt −M(‖∇u‖22)∆u+
∫ t

0

g(t− s)∆u(s)ds+ ut = |u|p−2u,

(x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.6)

where M(s) = 1 + bsγ(b ≥ 0, γ > 0, s ≥ 0) is a positive C1 -function. We hope to
get some more concise sufficient conditions.
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2. Preliminaries and statement of main result

In this article, C denotes a generic positive constant. It may be different from
line to line. And we use the standard Lebesgue space Lp(Ω) with their usual norms
‖ · ‖p. Moreover, we denote by (·, ·) the usual L2(Ω) inner product.

We first state the general assumptions on g and p as follows:

(A1) g ∈ C1([0,∞)) is a non-negative and non-increasing function satisfying

0 < k :=
∫ ∞

0

g(s)ds < 1. (2.1)

(A2) If the space dimension n = 1, 2, then 2(γ + 1) < p <∞; If n ≥ 3, then

2(γ + 1) < p ≤ 2(n− 1)
n− 2

.

To simplify the notation, we set

(φ ◦ ψ)(t) :=
∫ t

0

φ(t− s)
∫

Ω

|ψ(t)− ψ(s)|2dxds,

where ψ may be a scalar, or a vector valued function. A direct computation shows
that, for any g ∈ C1(R) and u ∈ H2(0, T, L2(Ω)), the following identity holds:∫ t

0

g(t− s)
(
∇u(s),∇ut(t)

)
ds

=
1
2

(g′ ◦ ∇u)(t)− 1
2
g(t)‖∇u(t)‖22

− 1
2
d

dt

{
(g ◦ ∇u)(t)−

(∫ t

0

g(s)ds
)
‖∇u(t)‖22

}
.

(2.2)

Now, we state a local existence theorem that can be established by adopting the
arguments of [22].

Theorem 2.1 (Local solution). Assume that (A1) and (A2) hold. Let u0 ∈ H2
0 (Ω)

and u1 ∈ H1
0 (Ω) be given. Then, there exists a unique weak solution u(t) of (1.5)

such that

u ∈ C([0, T ];H2
0 (Ω)) ∩ C1([0, T ];L2(Ω)), ut ∈ L2([0, T ];H1

0 (Ω)). (2.3)

for a small enough T > 0.

The energy functional of the solution u of (1.5) is defined as

E(t) :=
1
2
‖ut‖22 +

1
2

(
1−

∫ t

0

g(s)ds
)
‖∇u‖22 +

b

2(γ + 1)
‖∇u‖2(γ+1)

2

+
1
2

(g ◦ ∇u)(t)− 1
p
‖u‖pp.

(2.4)

By (2.2) and assumption (A1), direct computations yield

E′(t) =
1
2

(g′ ◦ ∇u)(t)− 1
2
g(t)‖∇u‖22 − ‖ut‖22 ≤ −‖ut‖22 ≤ 0. (2.5)

According to [22], we can obtain the following blow-up with negative initial
energy:
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Theorem 2.2. Assume that (A1), (A2) and k < 2(p−2)
2p−3 hold. if E(0) < 0, then for

all the initial data u0 ∈ H2
0 (Ω) and u1 ∈ H1

0 (Ω), the corresponding solution u(x, t)
of the problem (1.5) blows up in finite time.

Our main result is a blow-up with positive initial energy that reads as follows.

Theorem 2.3. Assume that (A1), (A2) and k < p(p−2)
(p−1)2 hold. Moreover, E(0) > 0

(maybe large enough) is a given initial energy state. If we choose initial data u0 ∈
H2

0 (Ω) and u1 ∈ H1
0 (Ω) satisfying∫

Ω

u0u1dx > βE(0), (2.6)

where β = 1
2ε0
, ε0 ∈ (0, 1) is a positive constant, then the corresponding solution

u(x, t) of the problem (1.5) blows up in finite time.

In [9], the kernel g must be the so-called positive type function. But, we do not
need that assumption. Moreover, our kernel function space is bigger than the one
in [22] since p(p−2)

(p−1)2 >
2(p−2)
2p−3 .

3. Proof of main result

Assume u is a global solution of problem (1.6). Let

Q(t) =
∫

Ω

uutdx.

Multiplying the first equation of (1.6) by u and integrating over Ω, we get∫
Ω

uuttdx+M(‖∇u‖22)‖∇u‖22 −
∫

Ω

(∫ t

0

g(t− s)∆u(s)ds
)
udx+

∫
Ω

uutdx = ‖u‖pp.

Then, we easily obtain

Q′(t) = ‖ut‖22 −M(‖∇u‖22)‖∇u‖22 + ‖u‖pp

−
∫

Ω

(∫ t

0

g(t− s)∆u(s)ds
)
udx−

∫
Ω

uutdx.
(3.1)

For the last term on the right side of (3.1), using Cauchy inequality, we deduce
that

−
∫

Ω

(∫ t

0

g(t− s)∆u(s)ds
)
udx

=
∫ t

0

g(t− s)
∫

Ω

∇u(s)∇u(t)dxds

=
∫ t

0

g(t− s)
∫

Ω

∇u(t)(∇u(s)−∇u(t))dxds+
∫ t

0

g(s)ds‖∇u‖22

≥ −p(1− ε)
2

(g ◦ ∇u)(t) +
(
1− 1

2p(1− ε)
) ∫ t

0

g(s)ds‖∇u‖22

(3.2)
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for all ε ∈ (0, 1). By (3.2) and (2.4), we have

Q′(t) ≥ ‖ut‖22 −
(
1−

∫ t

0

g(s)ds
)
‖∇u‖22 − b‖∇u‖

2(γ+1)
2 + ‖u‖pp −

∫
Ω

uutdx

− p(1− ε)
2

(g ◦ ∇u)(t)− 1
2p(1− ε)

∫ t

0

g(s)ds‖∇u‖22

=
(p(1− ε)

2
+ 1
)
‖ut‖22 +

(p(1− ε)
2

− 1
)(

1−
∫ t

0

g(s)ds
)
‖∇u‖22

− 1
2p(1− ε)

∫ t

0

g(s)ds‖∇u‖22 − p(1− ε)E(t) + ε‖u‖pp −
∫

Ω

uutdx

+
(bp(1− ε)

2(γ + 1)
− b
)
‖∇u‖2(γ+1)

2 .

(3.3)

Now, by assumption (A2), we select ε small enough to ensure that

bp(1− ε)
2(γ + 1)

− b > 0.

Moreover, using Hölder inequality and Young inequality, we can get∣∣ ∫
Ω

uutdx
∣∣ ≤ ‖u‖2‖ut‖2 ≤ ε

2
‖u‖22 +

1
2ε
‖ut‖22.

Then, by assumption (A1), (2.5) and Poincaré’s inequality, we have(
Q(t)− E(t)

2ε

)′
≥ Q′(t) +

1
2ε
‖ut‖22

≥
(p(1− ε)

2
+ 1
)
‖ut‖22 − p(1− ε)E(t)− ε

2
‖u‖22

+
((p(1− ε)

2
− 1
)

(1− k)− k

2p(1− ε)

)
‖∇u‖22

≥
(p(1− ε)

2
+ 1
)
‖ut‖22 − p(1− ε)E(t)

+
(
f(ε)λ1 −

ε

2
)
‖u‖22.

(3.4)

where λ1 is the first eigenvalue of −∆ and

f(ε) =
(p(1− ε)

2
− 1
)
(1− k)− k

2p(1− ε)
. (3.5)

Since k < p(p−2)
(p−1)2 and p > 2, we deduce that 1− k > 1

(p−1)2 and

θ := (p− 2)(1− k)− k

p
> 0.

Moreover, we note that f(ε)→ θ
2 as ε→ 0+. So, we can select ε small enough such

that f(ε)λ1 − ε
2 > 0. Then, using Cauchy inequality to (3.4), we have(

Q(t)− E(t)
2ε

)′
≥ h(ε)Q(t)− p(1− ε)E(t)

= h(ε)
(
Q(t)− p(1− ε)

h(ε)
E(t)

)
,

(3.6)
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where

h(ε) = 2

√(p(1− ε)
2

+ 1
)(
f(ε)λ1 −

ε

2
)
.

Denote

ϕ(ε) =
(p(1− ε)

2
+ 1
)(
f(ε)λ1 −

ε

2

)
.

It is easy to see that

f(ε)λ1 −
ε

2
→ θλ1

2
, ϕ(ε)→ θλ1(p+ 2), as ε→ 0+,

f(ε)→ −∞, f(ε)λ1 −
ε

2
→ −∞, ϕ(ε)→ −∞ as ε→ 1−.

Hence, by the continuity of ϕ(ε), there exists ε̃ ∈ (0, 1) such that ϕ(ε̃) = 0 and
ϕ(ε) > 0 for all ε ∈ (0, ε̃). So, we have h(ε̃) = 2

√
ϕ(ε̃) = 0 and h(ε) = 2

√
ϕ(ε) > 0

for all ε ∈ (0, ε̃). And then, we easily deduce that

p(1− ε)
h(ε)

→ p√
θλ1(p+ 2)

,
1
2ε
→ +∞, as ε→ 0+,

p(1− ε)
h(ε)

→ +∞, 1
2ε
→ 1

2ε̃
, as ε→ ε̃−.

Thus, using the continuity in ε of p(1−ε)
h(ε) and 1

2ε , there exists ε0 ∈ (0, ε̃) ⊂ (0, 1)
such that

1
2ε0

=
p(1− ε0)
h(ε0)

.

Now, let

β =
1

2ε0
and H(t) = Q(t)− βE(t). (3.7)

By using (2.6), (2.5) and (3.6), we deduce that

H(0) = Q(0)− βE(0) > 0,

H ′(t) ≥ Q′(t) ≥ h(ε0)H(t).

Then, we have

H(t) ≥ eh(ε0)tH(0).

Since u is global, by (2.5) and Theorem 2.2, the energy E(t) remains nonnegative,
i.e., 0 ≤ E(t) ≤ E(0) for all t ∈ [0,+∞). So, we deduce that Q(t) ≥ eh(ε0)tH(0)
and

‖u(t)‖22 = ‖u(0)‖22 + 2
∫ t

0

Q(s)ds

≥ ‖u(0)‖22 + 2
∫ t

0

eh(ε0)sH(0)ds

= ‖u(0)‖22 +
2H(0)
h(ε0)

(
eh(ε0)t − 1

)
.

(3.8)
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By (2.5), Theorem 2.2, and Hölder inequality, we obtain

‖u(t)‖2 ≤ ‖u(0)‖2 +
∫ t

0

‖us(s)‖2ds

≤ ‖u(0)‖2 + t1/2
(∫ t

0

‖us(s)‖22ds
)1/2

≤ ‖u(0)‖2 + t1/2 (E(0)− E(t))1/2

≤ ‖u(0)‖2 + t1/2(E(0))1/2

(3.9)

which contradicts (3.8). �
As a simple example, we consider a one-dimension model with M(s) = 1+s,Ω =

[0, 2π] and p = 5. Let

u0 = ξ sin(ηx), u1 = ξη2 sin(ηx),

where ξ > 0 and η is a positive integer. Then, we have Q(0) = (u0, u1) = ξ2η2π
and

E(0) =
1
2
‖u1‖22 +

1
2
‖∇u0‖22 +

1
4
‖∇u0‖42 −

1
5
‖u0‖55

=
∫ 2π

0

|ξη2 sin(ηx)|2dx− 1
5

∫ 2π

0

|ξ sin(ηx)|5dx

= ξ2η4π − 32
75
ξ5.

Now, we choose η >
√

1/(2β) and ξ = 3

√
75
32η

2π(η2 − 1
2β ). Then, we can deduce

that
Q(0) = 2βE(0) > βE(0).

According Theorem 2.3, the corresponding solution blows up in finite time.
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