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DECAY ESTIMATES FOR SOLUTIONS OF ABSTRACT WAVE
EQUATIONS WITH GENERAL DAMPING FUNCTION

TOMÁŠ BÁRTA

Abstract. In this article we prove convergence to equilibrium and decay esti-

mates for a class of damped abstract wave equations. We focus on the damping
term to be as general as possible, including functions that oscillate between two

positive functions in a neighborhood of the origin and/or behave differently in

each direction.

1. Introduction

In this article, we prove convergence to equilibrium and show decay estimates
for solutions of the second-order equation

ü+ g(u̇) +M(u) = 0 (1.1)

on a Hilbert space H for a broad class of damping functions g and (unbounded)
nonlinear operators M = E′ satisfying Kurdyka- Lojasiewicz-Simon estimates.

There are many convergence results for second-order equations with linear damp-
ing and various operators M , see [10, 14, 11] for M in the form −∆u + f(x, u)
and [9] for a more general theory. Some decay estimates were shown in [12] for
−∆u + f(x, u), and in [8] for a general nonlinear operator M = E′ satisfying
the  Lojasiewicz gradient inequality. Convergence and decay estimates for nonlinear
damping and a linear operator M = −∆u and the right-hand side h(x, t) was shown
in [13]. An example, where bounded solutions do not converge to equilibrium, can
be found in [15] (a nonlinear wave equation on a bounded domain with Dirichlet
boundary conditions and linear damping).

Concerning nonlinear damping and a nonlinear operator M , the equation

utt + |ut|αut −∆u = f(x, u) (1.2)

was studied by Chergui [6], where convergence to equilibrium was proved. Later,
Ben Hassen and Haraux [5] proved convergence to equilibrium and decay estimates
in the abstract setting (1.1) with M = E′ ∈ C1(V, V ∗) where V ↪→ H ↪→ V ∗ are
Hilbert spaces, and for damping functions g : V → V ∗ satisfying

c1‖v‖α+2 ≤ 〈g(v), v〉V ∗,V and ‖g(v)‖∗ ≤ c2‖v‖α+1,
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which implies

c1‖v‖α+1 ‖v‖
‖v‖V

≤ ‖g(v)‖∗ ≤ c2‖v‖α+1. (1.3)

In [3], Fašangová and the author of this paper showed that the upper and lower es-
timates for g can be independent, they proved convergence to equilibrium (without
decay estimates) for pointwise damping operators g(v)(x) = G(v(x)) on V = H1

0 (Ω)
with G estimated from below and above by two independent functions.

In this article we combine ideas from [5] and [3] to prove convergence and decay
estimates for g : V → V ∗ where V is an arbitrary Hilbert space, g satisfying

h(‖v‖)‖v‖ ≤ 〈g(v), v〉V ∗,V and ‖g(v)‖∗ ≤ c2‖v‖,
where h is a positive function (not necessarily a power sα+1). We also show that
the upper estimate for g can be replaced by γ(‖g(v)‖∗) ≤ 〈g(v), v〉V ∗,V , which is
satisfied by a wide class of poinwise damping operators. Moreover, we assume that
M = E′ satisfies Kurdyka- Lojasiewicz-Simon inequality (see Kurdyka [16])

Θ(E(u)) ≤ ‖M(u)‖∗,
which is a generalization of the  Lojasiewicz gradient inequality (see  Lojasiewicz
[17]) considered in [5, 6].

This conditions on g allow much more general damping functions than the pre-
vious results. In particular, if we focus on the special case g(v)(x) = G(v(x)), then
the following cases are covered in this article and not in [5]:

• growth of G near zero and near infinity are different, e.g. G(s) = |s|as for
small s and G(s) = |s|bs for large s,

• steeper growth of G in infinity than in [5, Example 3.1], e.g. G(s) = |s|bs
for b ≤ 4

N−2 ,
• G with different behavior in every direction around zero, e.g. for a scalar

valued v one allows G(s) = |s|as for s > 0 and G(s) = |s|bs for s < 0, a 6= b,
• G with non-power-like behavior, e.g. G(s) = |s|a lnb(1/|s|) lnc(ln(1/|s|))s

for small s.
Moreover, our results

• show that the decay estimates depend on the growth of G near zero only
(this is not obvious since ‖v‖ < ε does not imply that |v(x)| is small for
every x ∈ Ω),
• yield more delicate decay estimates, e.g. in the logarithmic scales ‖u(t) −
ϕ‖ ≤ C|t|a lnb(1/|t|) lnc(ln(1/|t|)).

In fact, similar decay estimates (based on Kurdyka- Lojasiewicz-Simon inequality)
were shown in [4, 2] for second order ordinary differential equations, and in [7] for
first-order partial differential equations.

We present two kinds of results. The first kind (Theorems 2.1 and 2.3) applies
if we know a-priori that the whole solution (for all t ≥ t0) lies in a ball where the
Kurdyka- Lojasiewicz-Simon estimates are satisfied. In the second kind (Theorems
2.2 and 2.3) we have Kurdyka- Lojasiewicz-Simon estimates only in a small neigh-
borhood U of an omega-limit point of the solution and we assume that the solution
is relatively compact, but we do not know a-priory that it is contained in U for all
t ≥ t0.

This article is organized as follows. In Section 2 we introduce our settings and
assumptions and formulate the main results. Sections 3 and 4 are devoted to proofs
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of the two main Theorems. In Section 5, the results are applied to some semilinear
wave equations. Section 6 is an appendix where we prove some technical lemmas.

2. Assumptions and statement of main results

Let V ↪→ H ↪→ V ∗ be Hilbert spaces with the embedding being dense, we identify
〈v, u〉V ∗,V = 〈v, u〉H for u ∈ V ⊂ H, v ∈ H ⊂ V ∗. The norm and the scalar product
on V ∗ (resp. on H, V ) are denoted by ‖ · ‖∗ and 〈·, ·〉∗ (resp. ‖ · ‖ and 〈·, ·〉, ‖ · ‖V
and 〈·, ·〉V ). By B(0, R) we denote the ball in H of radius R centered in 0, while
BV (0, R) is the corresponding ball in V . In the whole paper, C denotes a generic
constant which may change from line to line or from expression to expression.

Now, we define several properties of real functions. We say that a differentiable
function f : R+ → R+

• is admissible if f is nondecreasing and there exists cA ≥ 1 such that f(s) > 0
and sf ′(s) ≤ cAf(s) for all s > 0.

• has property (K) if for every K > 0 there exists C(K) > 0 such that
f(Ks) ≤ C(K)f(s) holds for all s > 0.

• is C-sublinear if there exists C > 0 such that f(t + s) ≤ C(f(t) + f(s))
holds for all t, s > 0.

It is shown in the Appendix that the first property implies the other two. It is
easy to see that any nonnegative increasing concave function is admissible with
cA = 1 provided it is everywhere differentiable (otherwise sf ′±(s) ≤ f(s) holds,
which would be also sufficient for our purpose).

Let us introduce our assumptions on the operator E.
(A1) Let E ∈ C2(V ), M = E′ ∈ C1(V, V ∗) and let B be a fixed ball in V .

Assume that:
(e1) E is nonnegative on B and there exists an admissible function Θ such

that Θ(s) ≤ CΘ
√
s for all s ≥ 0 and some CΘ > 0, 1

Θ is integrable in
a neighbourhood of zero and

‖M(u)‖∗ ≥ Θ(E(u)), for all u ∈ B, (2.1)

i.e., E satisfies the Kurdyka- Lojasiewicz-Simon gradient inequality
with function Θ on B.

(e2) There exists CM ≥ 0 such that

|〈M ′(u)v, v〉∗| ≤ CM‖v‖2 for all u ∈ B, v ∈ V ,

(e3) There exists a nondecreasing function G : R+ → R+ such that

‖M(u)‖∗ ≤ G(E(u)), for all u ∈ B. (2.2)

Let us comment on the above assumptions. Chergui [6] worked with H = L2(Ω),
V = H1

0 (Ω), E′(u) = ∆u + f(x, u) which corresponds to E(u) =
∫

Ω
1
2 |∇u(x)|2

+F (x, u) dx, where F (x, u) :=
∫ u

0
f(x, s) ds. By [6, Corollary 1.2], this function E

satisfies the  Lojasiewicz gradient inequality

‖E′(u)‖∗ ≥ C|E(u)− E(ϕ)|1−θ (2.3)

with some θ ∈ [0, 1/2) in a neighbourhood of stationary points, provided f satis-
fies certain assumptions. The  Lojasiewicz inequality (2.3) is a special case of the
Kurdyka- Lojasiewicz-Simon inequality (2.1) with the function Θ(s) = s1−θ, θ being
the  Lojasiewicz exponent. It is easy to see that Chergui’s operator satisfies (e2) as
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well. The conditions (e1) and (e2) (with (2.3) instead of (2.1)) appear also in [8],
where linear damping is considered.

Concerning assumption (e3), there is one more condition (g4) below, which con-
nects functions G and Θ with a function h defined below. Let us mention that
(e3) is often satisfied with G(s) = C

√
s, in particular in all applications in [5] and

in finite-dimensional case for any E ∈ C1,1
loc (Rn) satisfying that E(u) = 0 for all

critical points u (see [4, Lemma 2.7]).
We now formulate the assumptions on the damping function.
(A2) The function g : V → V ∗ is continuous and there exists an admissible

function h such that
(g1) there exists C2 > 0 such that ‖g(v)‖∗ ≤ C2‖v‖ on V ∩B(0, R) for any

R > 0 with C2 depending on R,
(g2) 〈g(v), v〉V ∗,V ≥ h(‖v‖)‖v‖2 on V ,
(g3) the function s 7→ 1

Θ(s)h(Θ(s)) belongs to L1((0, 1)),

(g4) there exists CG > 0 such that G(s) ≤ CG
√
s

h(Θ(s)) on (0,K] for any
K > 0 with CG depending on K,

(g5) the function ψ : s 7→ sh(
√
s) is convex for all s > 0.

Let us comment on these assumptions. If we take (g(v))(x) = |v(x)|α, we obtain
equation (1.2) studied by Chergui [6], and (g2) holds with h(s) = sα. Chergui’s
condition α < 4

N−2 (and also condition (g3) in [3]) implies g(v) ∈ V ∗. Moreover,
taking Θ(s) = s1−θ (e.g. the  Lojasiewicz inequality instead of (2.1)), then (g3)
corresponds to condition 0 < α < θ

1−θ in [6] and [5]. Condition (g3) is a condition
coupling the damping function g with the operator E. Another condition coupling
g and E is (g4). But (as was said above) in many applications G(s) = C

√
s, and

in this case (g4) holds for any h and Θ since h(Θ(s)) is bounded on (0, 1).
In [5] the authors work with (g2) for h(s) = sα and (g1) replaced by ‖g(v)‖∗ ≤

C2‖v‖1+α. It is easy to modify the proof in [5] in such a way that the upper
bound for ‖g(v)‖∗ can be relaxed to (g1) (it is easy to show that ‖v‖ → 0, so
‖v‖1+α < ‖v‖). After doing this, one can apply the result in [5] e.g. to

g(v)(x) = |v(x)|α ln(1/|v(x)|)v(x)

with h(s) = s1+α. However, applying Theorem 2.1 below one can take h(s) =
s1+α ln(1/s) in (g2) and get better convergence rates.

One can show (by differentiating), that functions

h(s) = sa lnr1(1/s) lnr2(ln(1/s)) · · · lnrk(ln · · · ln(1/s))

are positive increasing and concave on (0, ε) for a ∈ (0, 1), ri ∈ R. So, they become
admissible with cA = 1 after redefining them appropriately on (ε,+∞). In Section
5 we give some examples of decay estimates in these scales of functions.

Our main results are formulated for solutions in the following sense. We say that
u ∈W 1,1

loc ([0,+∞), V )∩W 2,1
loc ([0,+∞), H) is a strong solution to (1.1) if (1.1) holds

in V ∗ for almost every t > 0.

Theorem 2.1. Let E and G satisfy (A1) and (A2). Let u be a strong solution to
(1.1) and there exists t1 > 0 such that u(t) ∈ B for all t ≥ t1. Then there exist
ϕ ∈ B and t0 ≥ 0 such that

E(u(t)) ≤ 2Ψ−1(t− t0), (2.4)

‖u(t)− ϕ‖ ≤ Φ(Ψ−1(t− t0)), (2.5)
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‖u̇(t)‖ ≤
√

Ψ−1(t− t0)) (2.6)

hold for all t > t0, some CΦ, CΨ > 0 and

Φ(t) = CΦ

∫ t

0

1
Θ(s)h(Θ(s))

ds and Ψ(t) = CΨ

∫ 1/2

t

1
Θ2(s)h(Θ(s))

ds. (2.7)

If we take Θ(s) = s1−θ and h(s) = sα in Theorem 2.1, we obtain the same
convergence rate as in [5, Theorem 2.2].

The next result combines the method from [6] (resp. [3]) and [5] to obtain
decay estimates for relatively compact solutions with (2.1) satisfied only on a small
neighborhood of some ϕ ∈ ωV (u), where

ωV (u) = {ϕ ∈ V : ∃ tn ↗ +∞, s.t. ‖u(tn)− ϕ‖V → 0}.

Theorem 2.2. Let u be a strong solution to (1.1) with UT := {(u(t), u̇(t)), t ≥ T}
relatively compact in V × H and ϕ ∈ ωV (u) with E(ϕ) = 0. Let (A1) and (A2)
hold with the following changes:

• (2.1) and (2.2) hold with B replaced by BV (ϕ, δ) for some δ > 0,
• (e2) holds with B replaced by ‘any compact subset of V with CM depending

on the subset’,
• h is admissible with cA = 1,

Then limt→+∞ ‖u(t)−ϕ‖V = 0 and there exists t0 ≥ 0 such that the decay estimates
(2.4), (2.5) and (2.6) hold for all t > t0, some CΦ, CΨ > 0 and Φ, Ψ defined in
(2.7).

Theorem 2.3. Theorems 2.1 and 2.2 remain valid if we replace (g1) by

(g1’) for every R > 0 there exists a convex function γ : R+ → R+ with property
(K) and such that γ(0) = 0, lims→+∞ γ(s) = +∞, γ(s) ≥ cs2 for some c >
0 and all s small enough, and γ(‖g(v)‖∗) ≤ 〈g(v), v〉V ∗,V on V ∩B(0, R).

Let us mention, that condition (g1) implies boundedness of ‖g(v(t))‖∗, while
condition (g1’) does not. We show in Section 5 that (g1’) is useful in many examples.

It was mentioned in [2] and also in [5] that estimating ‖u(t)− ϕ‖ by the lenght
of the trajectory

∫ +∞
t
‖u̇(s)‖ds often does not yield an optimal result. In fact, the

trajectory can be much longer than the distance ‖u(t) − ϕ‖ if it has a shape of a
spiral (which is typically the case for second order equations with weak damping).
In many applications, one can obtain a better estimate by estimating ‖u − ϕ‖ by
E(u) directly.

Corollary 2.4. Let the assumptions of Theorems 2.1, 2.2 or 2.3 are satisfied and
α : R+ → R+ be a nondecreasing function such that α(E(u)−E(ϕ)) ≥ ‖u− ϕ‖ on
a neighborhood of ϕ. Then

‖u(t)− ϕ‖ ≤ α(2Ψ−1(t− t0))

holds for some t0 and all t > t0.

The above corollary follows from ‖u(t)−ϕ‖ ≤ α(E(u(t))−E(ϕ)) ≤ α(2Ψ−1(t−
t0)).
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3. Proof of Theorem 2.1

For the strong solution u from the Theorem let us denote v(t) := u̇(t) and

E1(t) :=
1
2
‖v(t)‖2 + E(u(t)).

Then

E′1(t) = 〈v(t), v̇(t)〉V,V ∗ + 〈M(u(t)), u̇(t)〉V ∗,V = −〈v(t), g(v(t))〉V,V ∗ (3.1)

It follows from (g2) that E1 is nonincreasing, so it is either positive for all t ≥ 0 or
v(t) = 0 for all t ≥ t0. In the latter case, u(t) = ϕ for t ≥ t0 and there is nothing
to prove. So, we may assume that E1(t) > 0 for all t ≥ 0. Moreover, it follows that
‖v(t)‖ and E(u(t)) are bounded and by (e3) also ‖M(u)‖∗ is bounded.

Further, for s and t ≥ 0 we define

B(s) := h(Θ(s)), H(t) = E1(t) + εB(E1(t))〈M(u(t)), v(t)〉∗,

where ε > 0 will be specified later. We first show that for all t ≥ t1 the inequality
1
2
E1(t) ≤ H(t) ≤ 2E1(t) (3.2)

holds if ε > 0 is small enough. Both inequalities follow immediately from the
estimate

|εB(E1(t))〈M(u(t)), v(t)〉∗| ≤ εCB(E1(t))G(E1(t))
√

2E1(t) ≤ εCE1(t)

≤ 1
2
E1(t),

(3.3)

where the first inequality is a consequence of definition of E1 and (e3) if applied
the Cauchy-Schwarz inequality and H ↪→ V ∗, the second inequality is due to (g4)
and definition of B(·) and in the third inequality we take ε < 1/(2C).

We now derive some estimates for H ′(t). Let us fix t > t1 and write (u, v) instead
of (u(t), v(t)) and also E, E1 instead of E(t), E1(t). We start with

H ′(t)

= E′1 + εB′(E1)E′1〈M(u), v〉∗ + εB(E1)〈M ′(u)v, v〉∗ + εB(E1)〈M(u), v̇〉∗
= −〈g(v), v〉V ∗,V − εB′(E1)〈g(v), v〉V ∗,V 〈M(u), v〉∗ + εB(E1)〈M ′(u)v, v〉∗
− εB(E1)〈M(u), g(v)〉∗ − εB(E1)〈M(u),M(u)〉∗

= −〈g(v), v〉V ∗,V − εB(E1)‖M(u)‖2∗ + εB(E1)〈M ′(u)v, v〉∗
− εB′(E1)〈v, g(v)〉V,V ∗〈M(u), v〉∗ − εB(E1)〈M(u), g(v)〉∗

(3.4)

In the above expression we keep the first two terms and estimate the other terms
from above. By admissibility of h and Θ we have

B′(s) = h′(Θ(s))Θ′(s) ≤ Ch(Θ(s))
Θ(s)

· Θ(s)
s

= C
B(s)
s

.

So, B(·) is admissible. Then the fourth term on the right-hand side in (3.4) can be
estimated (with help of (3.3)) by

|εB′(E1)〈v, g(v)〉V,V ∗〈M(u), v〉∗| ≤
1
E1
|εB(E1)〈v, g(v)〉V,V ∗〈M(u), v〉∗|

≤ 1
2
〈v, g(v)〉V,V ∗ .
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The third term on the right-hand side in (3.4) is estimated as follows (ψ∗ being the
convex conjugate to the function ψ from condition (g5))

|εB(E1)〈M ′(u)v, v〉∗|
≤ εB(E1)C‖v‖2

≤ εC
( 1
K
ψ∗(B(E1)) + C(K)ψ(‖v‖2)

)
≤ εC

(C
K
ψ(Θ2(E1)) + C(K)ψ(‖v‖2)

)
≤ εC

(C
K
ψ(Θ2(E)) +

C

K
ψ(Θ2(‖v‖2)) + C(K)ψ(‖v‖2)

)
≤ εC

(C
K

Θ2(E)h(Θ(E)) + 2C(K)‖v‖2h(‖v‖)
)

≤ εC
(C
K
‖M(u)‖2∗h(Θ(E1)) + 2C(K)‖v‖2h(‖v‖)

)
≤ 1

4
εB(E1)‖M(u)‖2∗ + εC〈v, g(v)〉∗.

(3.5)

Here we used (e2) (first inequality), Young inequality (second), Lemma 6.4 (third),
C-sublinearity of ψ(Θ2(·)) (fourth), definition of ψ and Θ(s) ≤

√
s (fifth), (2.1)

inequality and E ≤ E1 (sixth) and we have taken K = 1
4C2 and used (g2) in the

last inequality.
The fifth term on the right-hand side of (3.4) is estimated by

ε|B(E1)〈M(u), g(v)〉∗| ≤ εB(E1)(
1
4
‖M(u)‖2∗ + C‖g(v)‖2∗)

≤ 1
4
εB(E1)‖M(u)‖2∗ + εCB(E1)‖v‖2

≤ 2
4
εB(E1)‖M(u)‖2∗ + εC〈v, g(v)〉∗,

where we used the Cauchy-Schwarz and Young inequalities (first step), (g1) (second
step) and (3.5) (last step).

Altogether, we have

H ′(t) ≤ −(1− 1
2
− 2εC)〈v, g(v)〉∗ −

1
4
εB(E1)‖M(u)‖2∗

≤ −c(h(‖v‖))‖v‖2 +B(E1)‖M(u)‖2∗).
(3.6)

Denoting χ(s) := B(s)Θ2(s) we obtain

−H ′(t) ≥ cB(E)‖M(u)‖2∗
≥ cB(E)Θ(E)2

= cχ(E)

= cχ(E1 −
1
2
‖v‖2)

≥ C1χ(E1)− Cχ(1/2‖v‖2))

= C1χ(E1)− CΘ2(1/2‖v‖2)h(Θ(1/2‖v‖2))

≥ C1χ(E1)− C‖v‖2h(‖v‖)
≥ C1χ(E1) + CH ′(t).
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Here we used (3.6) (in the first step), (2.1) inequality (second step), definition of
χ (third), definition of E1 (fourth), C-sublinearity of χ (fifth), definition of χ and
B (sixth), Θ(s) ≤ C

√
s and property (K) for h (seventh) and (3.6) (last step). It

follows that

−(C + 1)H ′(t) ≥ C1χ(E1(t)) ≥ 1
2
C1χ(H(t)).

Take CΨ = 2(C + 1)/C1. Then

d

dt
Ψ(H(t)) = CΨ

−1
χ(H(t))

H ′(t) ≥ 1

and we have

Ψ(H(t))−Ψ(H(t0))) ≥ t− t0.

It follows that limt→+∞Ψ(H(t)) = +∞, so we can take t0 such that Ψ(H(t0)) ≥ 0
and we obtain Ψ(H(t)) ≥ t− t0. Since Ψ is decreasing (by definition) we obtain

H(t) ≤ Ψ−1(t− t0).

Now, (2.4) and (2.6) follow immediately. To show the estimate (2.5), let us
compute

− 1
CΦ

d

dt
Φ(H(t)) ≥ Ch(‖v‖)‖v‖2 +B(E1)‖M(u)‖2∗

Θ(H(t))B(H(t))

≥ Ch(‖v‖)‖v‖2 +B(E1)‖M(u)‖2∗
(Θ(‖v‖2) + ‖M(u)‖∗)B(E1)

≥ C‖v‖ h(‖v‖)‖v‖2 +B(E1)‖M(u)‖2∗
B(E1)‖v‖2 +B(E1)‖v‖‖M(u)‖∗

.

(3.7)

In the first inequality we used the definition of Φ and (3.6). In the second inequality
we used H ≤ 2E1, C-sublinearity of Θ, (2.1) inequality and C-sublinearity of B.
In the last inequality we used Θ(s) ≤ c

√
s only. We estimate the two terms in the

last denominator by the nominator. Using (3.5) we obtain

B(E1)‖v‖2 ≤ C(B(E1)‖M(u)‖2∗ + ‖v‖2h(‖v‖)) (3.8)

and (using Young inequality and (3.8))

B(E1(t))‖v‖‖M(u)‖∗ ≤ B(E1)‖M(u)‖2∗ +B(E1)‖v‖2

≤ (1 + C)B(E1)‖M(u)‖2∗ + C‖v‖2h(‖v‖).
(3.9)

From (3.7), (3.8) and (3.9) we obtain − d
dtΦ(H(t)) ≥ C

CΦ
‖v‖ = ‖v‖ (choosing CΦ =

C) and integrating from t to +∞ we conclude that∫ +∞

t

‖v(s)‖ds ≤ Φ(H(t))− lim
s→+∞

Φ(H(s)) ≤ Φ(Ψ−1(t− t0)).

Hence u̇ ∈ L1([0,+∞)), so u has a limit ϕ and (2.5) holds since ‖u(t) − ϕ‖ ≤∫ +∞
t
‖v(s)‖ds.
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4. Proofs of Theorems 2.2 and 2.3

Proof of Theorem 2.2. We may assume ϕ = 0 and denote v(t) := u̇(t). We show
below that ‖u(t)‖V → 0 by the same method as in [3]. So, we know that there
exists t1 such that u(t) ∈ BV (ϕ, δ) for all t > t1 and the assumptions of Theorem
2.1 are satisfied with B = BV (ϕ, δ). So, we apply Theorem 2.1 and obtain the
desired decay estimates.

So, it only remains to show ‖u(t)‖V → 0. By [1, Theorem 2.6], it is sufficient to
find a function E ∈ C(V ×H,R), such that t 7→ E(u(t), v(t)) is nondecreasing for
t ≥ 0 and satisfies

− d
dt
E(u(t), v(t)) ≥ c‖u̇(t)‖∗ (4.1)

whenever u(t) ∈ BV (0, η) for some fixed η > 0. We show that these conditions are
satisfied by the function

E(u, v) := Φ(H(u, v)),

where

H(u, v) =
1
2
‖v‖2 + E(u) + εh(‖v‖∗)〈M(u), v〉∗, u ∈ V, v ∈ H

with ε small enough.
Let us write for short E(t) (resp. H(t)) for E(u(t), v(t)) (resp. H(u(t), v(t)))

and u, v instead of u(t), v(t). By relative compactness of UT , quantities ‖v‖ and
‖M(u)‖∗ are bounded, so we can use (g1), resp. (g1’). We have (in the following,
if v = 0 then any term containing 1

‖v‖∗ has to be replaced by 0)

H ′(t) = 〈v, v̇〉V,V ∗ + 〈M(u), v〉V ∗,V + εh′(‖v‖∗)
〈v, vt〉∗
‖v‖∗

〈M(u), v〉∗

+ εh(‖v‖∗)〈M ′(u)v, v〉∗ + εh(‖v‖∗)〈M(u), v̇〉∗

= −〈g(v), v〉V ∗,V − εh′(‖v‖∗)
1
‖v‖∗

〈M(u), v〉2∗

− εh′(‖v‖∗)
1
‖v‖∗

〈g(v), v〉∗〈M(u), v〉∗ + εh(‖v‖∗)〈M ′(u)v, v〉∗

− εh(‖v‖∗)〈M(u),M(u)〉∗ − εh(‖v‖∗)〈g(v),M(u)〉∗

and by positivity of the second term on the right

H ′(t) ≤ −〈g(v), v〉V ∗,V − εh(‖v‖∗)‖M(u)‖2∗ − εh(‖v‖∗)〈g(v),M(u)〉∗

− εh′(‖v‖∗)
1
‖v‖∗

〈g(v), v〉∗〈M(u), v〉∗ + εh(‖v‖∗)〈M ′(u)v, v〉∗.
(4.2)

We show that the third, fourth and fifth terms in the last expression are dominated
by the first and second terms.

The last term in (4.2) is estimated (with help of (e2) and (g2)) by

|εh(‖v‖∗)〈M ′(u)v, v〉∗| ≤ εh(‖v‖∗)C‖v‖2 ≤ εC〈g(v), v〉V ∗,V ≤
1
4
〈g(v), v〉V ∗,V

if ε is small enough. The third term on the right-hand side of (4.2) is estimated by

|εh(‖v‖∗)〈g(v),M(u)〉∗| ≤ εh(‖v‖∗)‖M(u)‖∗‖g(v)‖∗.
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and the fourth term (applying the Cauchy-Schwarz inequality and admissibility
of h) by∣∣εh′(‖v‖∗) 1

‖v‖∗
〈g(v), v〉∗〈M(u), v〉∗

∣∣ ≤ εcAh(‖v‖∗)‖M(u)‖∗‖g(v)‖∗.

By Young’s inequality and (g1) we have

‖M(u)‖∗‖g(v)‖∗ ≤
1
K
‖M(u)‖2∗ + C(K)‖g(v)‖2∗ ≤

1
K
‖M(u)‖2∗ + C(K)‖v‖2.

So, the third and fourth terms from (4.2) are estimated by

ε(1 + cA)h(‖v‖∗)
( 1
K
‖M(u)‖2∗ + C(K)‖v‖2

)
≤ 1

2
εh(‖v‖∗)‖M(u)‖2∗ + εCh(‖v‖∗)‖v‖2

≤ 1
2
εh(‖v‖∗)‖M(u)‖2∗ +

1
4
〈g(v), v〉V ∗,V

(we first took K large enough and then ε small enough). Altogether, we have

−H ′(t) ≥ 1
2
〈g(v), v〉V ∗,V + ε

1
2
h(‖v‖∗)‖M(u)‖2∗

≥ ch(‖v‖∗)
(
‖v‖2 + ‖M(u)‖2∗

) (4.3)

where we used (g2) in the second inequality. Now we compute

E ′(t) =
CΦH

′(t)
Θ(H(t))h(Θ(H(t)))

≤ −C
h(‖v‖∗)

(
‖v‖2 + ‖M(u)‖2∗

)
Θ(H(t))h(Θ(H(t)))

(4.4)

and see that E is nonincreasing along solutions for t > 0.
Now, we assume that ‖u‖V is small and apply (e1) to obtain (4.1). We compute

Θ(H(u, v)) ≤ C
(

Θ(
1
2
‖v‖2) + Θ(E(u)) + Θ(‖M(u)‖∗‖v‖∗)

)
≤ C

(
Θ(‖v‖2) + ‖M(u)‖∗ + Θ(‖M(u)‖2∗) + Θ(‖v‖2)

)
≤ C(‖v‖+ ‖M(u)‖∗) ,

where we used C-sublinearity and monotonicity of Θ, boundedness of h on compact
intervals and property (K) for Θ and the Cauchy–Schwarz inequality (first step),
Young’s inequality, (2.1), H ↪→ V ∗ and again C-sublinearity and property (K)
(second step), and Θ(s) ≤ C

√
s (third step). Since h is nondecreasing and has

property (K) we have

Θ(H(u, v))h(Θ(H(u, v))) ≤ C(‖v‖+ ‖M(u)‖∗)h(‖v‖+ ‖M(u)‖∗). (4.5)

Since h is admissible with cA = 1 we have( s

h(s)

)′
=
h(s)− sh′(s)

h2(s)
≥ 0,

i. e., s
h(s) is nondecreasing. From ‖v‖+ ‖M(u)‖∗ ≥ c∗‖v‖∗ we obtain

‖v‖+ ‖M(u)‖∗
h(‖v‖+ ‖M(u)‖∗)

≥ c∗‖v‖∗
h(c∗‖v‖∗)

≥ c∗‖v‖∗
C(c∗)h(‖v‖∗)

. (4.6)

Altogether, inserting the estimates (4.5) and (4.6) into (4.4) we obtain

−E ′(t) ≥ C · h(‖v‖∗)(‖v‖+ ‖M(u)‖∗)2

(‖v‖+ ‖M(u)‖∗)h(‖v‖+ ‖M(u)‖∗)
≥ C‖v(t)‖∗
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for all t where ‖u(t)‖V < η and the proof is complete. �

Proof of Theorem 2.3. The proofs of Theorems 2.1 and 2.2 remain valid except that
we have to be more careful by estimating the term ‖M(u)‖∗‖g(v)‖∗. Take R > 0
such that ‖v(t)‖ ≤ R for all t ≥ 0 and γ corresponding to this R. Let γ∗ be the
convex conjugate to γ. By [3, Lemma 3.2] we have γ∗(s) ≤ Cs2 for all s small
enough. Then using Young’s inequality we obtain

‖M(u)‖∗‖g(v)‖∗ ≤ γ∗
( 1
K
‖M(u)‖∗

)
+ γ(K‖g(v)‖∗). (4.7)

Since we know that ‖M(u)‖∗ is bounded, taking K large enough yields

‖M(u)‖∗‖g(v)‖∗ ≤
C

K2
‖M(u)‖2∗ + C(K)〈g(v), v〉V ∗,V ,

where we also used property (K) for function γ. The rests of the proofs remain
unchanged. �

5. Applications

In this section we show that Theorem 2.3 applies to the damping functions from
[3], i.e., we consider a bounded open set Ω ⊂ Rn, H = L2(Ω,RN ), V = H1

0 (Ω,RN )
(or V = H1(Ω,RN ), Ω with Lipschitz boundary) and a function G : Rn → Rn
satisfying the following conditions

(A3) There exist τ > 0 and an admissible function h : R+ → R+ satisfying (g3),
(g4), (g5) such that

(gg1) there exists C2 > 0 such that |G(z)| ≤ C2|z| for all z ∈ B(0, τ),
(gg2) there exists C3 > 0 such that C3|z| ≤ |G(z)| for all z ∈ Rn \B(0, τ),
(gg3) if n = 2 then there exist C4 > 0, α > 0 such that |G(z)| ≤ C4|z|α+1 for

all z ∈ Rn \B(0, τ); if n > 2 then the inequality holds with α = 4
n−2 ,

(gg4) there exists C5 > 0 such that 〈G(z), z〉 ≥ C5|G(z)||z| for all z ∈ Rn.
(gg5) |G(z)| ≥ h(|z|)|z| for all z ∈ B(0, τ).

Proposition 5.1. Let G : Rn → Rn satisfy (A3) and define (g(v))(x) := G(v(x))
for v ∈ V . Then g(V ) ⊂ V ∗ and g satisfies (A2) with (g1) replaced by (g1’).

Proof. We first show that g(v) ∈ V ∗. Since Lp(Ω,RN ) ↪→ V ∗ for p = α+2
α+1 it is

enough to show that g(v) ∈ Lp(Ω,RN ). We have∫
Ω

|G(v(x))|p =
∫
{|v(x)|≥τ}

|G(v(x))|p +
∫
{|v(x)|<τ}

|G(v(x))|p

≤
∫
{|v(x)|≥τ}

Cp4 |v(x)|p(α+1) +
∫
{|v(x)|<τ}

Cp2 |v(x)|p

≤ Cp4
∫

Ω

|v(x)|α+2 + |Ω|Cp2 τp

≤ C‖v‖α+2
V + |Ω|Cp2 τp,

where the second inequality follows from (gg3) and (gg1) and the last inequality
from V ↪→ Lα+2(Ω).

Now we show (g2). We define

h̃(s) :=

{
h(s)

2 for s ∈ [0, δ)
h(δ)

2 + ( 1
δ −

1
s )h

′(δ)δ2

2 for s ∈ [δ,+∞)
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as in [3, proof of Proposition 3.3]. It is easy to show that h̃ is admissible and
|G(z)| ≥ h̃(|z|)|z| holds for all z ∈ Rn if δ > 0 is small enough and such that
h′(δ) > 0. Moreover, h̃ is bounded and ψ̃ defined by ψ̃(s) = sh̃(

√
s) is convex on

R+ (see [3, proof of Proposition 3.3]). Then we have

〈g(v), v〉V ∗,V =
∫

Ω

〈G(v(x)), v(x)〉

≥
∫

Ω

C5h̃(|v(x)|)|v(x)|2

= C5|Ω|
∫

Ω

ψ̃(|v(x)|2)
dx

|Ω|

≥ C5|Ω|ψ̃
(∫

Ω

|v(x)|2 dx
|Ω|

)
≥ Cψ̃(‖v‖2)

= Ch̃(‖v‖)‖v‖2

≥ Ch(‖v‖)‖v‖2,

where we used Jensen’s inequality in the fourth step, property (K) in the fifth step
and inequality h(s) ≤ Ch̃(s) on compact intervals [0,K] in the sixth step.

We show (g1’). By [3, Proposition 3.3] there exists a function γ : R+ → R+ such
that γ(G(s)) ≤ CG(s)s and s 7→ γ(s1/p) is convex for s ≥ 0 and γ(s) ≥ Cs2 for
small s ≥ 0. Then we have

γ(‖g(v)‖∗) ≤ Cγ
((∫

Ω

|G(v(x))|p
)1/p)

≤ C
∫

Ω

γ(|G(v(x))|)

≤ C
∫

Ω

|G(v(x))||v(x)|

≤ C
∫

Ω

〈G(v(x)), v(x)〉

= C〈g(v), v〉V ∗,V .

The first inequality follows from Lp ↪→ V ∗, monotonicity and property (K) of
γ, the second inequality is Jensen’s inequality applied to s 7→ γ(s1/p) together
with property (K), the third follows from γ(G(s)) ≤ CG(s)s and the fourth from
(gg4). �

Let us consider the following examples taken from [5].
A critical semilinear wave equation. Let Ω ⊂ Rn be bounded open and
connected. We consider the Dirichlet problem

utt + g(ut)−∆u− λ1u+ |u|p−1u = 0 in R+ × Ω,

u(t, x) = 0 on R+ × ∂Ω,
(5.1)

where λ1 is the first eigenvalue of −∆ and p > 1 with (N − 2)p < N + 2. It
corresponds to (1.1) with H = L2(Ω), V = H1

0 (Ω) and

E(u) =
1
2

∫
Ω

(|∇u|2 − λ1|u|2)dx+
1

p+ 1

∫
Ω

|u|p+1dx.
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According to [5], (e1)-(e3) hold with Θ(s) = Cs1−θ, θ = 1
p+1 and G(s) = C

√
s

on any bounded subset of V and any strong solution to (5.1) is bounded in V .
Moreover, E(u) ≥ c‖u‖p+1

V .
A semilinear wave equation with Neumann boundary conditions. Let
Ω ⊂ Rn be bounded open and connected. We consider the Neumann problem{

utt + g(ut)−∆u+ |u|p−1u = 0 in R+ × Ω,
∂
∂nu(t, x) = 0 on R+ × ∂Ω,

(5.2)

where p > 1 with (n− 2)p < n+ 2. We have H = L2(Ω), V = H1(Ω) and

E(u) =
1
2

∫
Ω

|∇u|2dx+
1

p+ 1

∫
Ω

|u|p+1dx.

According to [5], (e1)–(e3) hold with Θ(s) = Cs1−θ, θ = 1
p+1 and G(s) = C

√
s on

any bounded subset of V and any strong solution to (5.1) is bounded in V .
Now, we present some examples of damping functions g and obtain convergence

to equilibrium and decay estimates for solutions of (5.1) and (5.2).

Example 5.2. Let us consider (g(v)) = G(v(x)) with G having different growth/
decay for s < 0, s > 0, |s| large, |s| small, e.g.

G(s) =


|s|b1s, s > 1,
|s|a1s, s ∈ [0, 1],
|s|a2s, s ∈ [−1, 0),
|s|b2s, s < −1,

with 0 ≤ a1 < a2 <
1
p , b1, b2 ≤ 4

n−2 . Then by Theorem 2.3 we have

‖u(t)− ϕ‖ ≤ Ct−
1−a2p

(a2+1)p−1 ,

and for equation (5.1) even

‖u(t)− ϕ‖V ≤ Ct−
1

(a2+1)p−1

by Corollary 2.4.

Example 5.3. In this example we show more delicate decay estimates in the log-
arithmic scale. Let

G(s) =

{
|s|as lnr(1/|s|) |s| ≤ 1,
c|s|bs |s| > 1,

with b < 4
n−2 , 0 < a < 1

p , r ∈ R or a = 1
p , r > 1.

If a > 1
p and r ≥ 0 then one can apply Theorem 2.3 with h(s) = sa to obtain

‖u(t)− ϕ‖ ≤ Ct−
1−ap

(a+1)p−1

as in the previous example. If a < 1
p , r < 0, we can apply Theorem 2.3 with

h(s) = sa+ε (for ε > 0 small enough) to obtain

‖u(t)− ϕ‖ ≤ Ct−
1−(a+ε)p

(a+ε+1)p−1 .

If a = 1/p, we cannot estimate G by any power such that (g3) holds. However,
in all cases, one can take h(s) = sa lnr(1/s) and obtain better decay estimates
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if a < 1
p and obtain some decay estimates even for a = 1

p . In fact, we have
Θ2(s)h(Θ(s)) = s(1−θ)(2+a)(1− θ)r lnr(1/s) and by Lemma 6.5

Ψ(t) = C

∫ 1/2

t

1
s(1−θ)(2+a) lnr(1/s)

ds ∼ t1−(1−θ)(2+a) ln−r(1/t), t→ 0+, (5.3)

where f ∼ g means f = O(g) and g = O(f). Then by Lemma 6.6

Ψ−1(t) ∼ t
1

1−(1−θ)(2+a) ln
r

1−(1−θ)(2+a) (t), t→ +∞. (5.4)

For equation (5.1) by Corollary 2.4 we have

‖u(t)− ϕ‖V ≤ C
(
Ψ−1(t− t0)

) 1
p+1 ≤ Ct−

1
(a+1)p−1 ln−

r
(a+1)p−1 (t).

For equation (5.2) in the case a < 1
p by Lemma 6.5 we have

Φ(t) = C

∫ t

0

1
s(1−θ)(1+a) lnr(1/s)

ds ∼ t1−(1−θ)(1+a) ln−r(1/t), t→ 0+, (5.5)

which for large t yields

‖u(t)− ϕ‖ ≤ Φ(Ψ−1(t− t0)) ≤ Ct−
1−ap

(a+1)p−1 ln−
pr

(a+1)p−1 (t). (5.6)

If a = 1/p, then we have

Φ(t) = C

∫ t

0

1
s(1−θ)(1+a) lnr(1/s)

ds = C

∫ t

0

1
s lnr(1/s)

ds ∼ ln1−r(1/t) (5.7)

for t→ 0+ and therefore for large t,

‖u(t)− ϕ‖ ≤ Φ(Ψ−1(t− t0)) ≤ C ln1−r(t). (5.8)

By similar computations as above with the help of Lemmas 6.5, 6.6, we have: if

G(s) ≥ |s|a lnr1(1/|s|) · · · lnrk(ln · · · ln(1/|s|))
on a neighborhood of zero, then for large t we obtain

‖u(t)−ϕ‖ ≤ Ct−
1−ap

(a+1)p−1 ln−
pr1

(a+1)p−1 (t) ln−
pr2

(a+1)p−1 (ln(t)) · · · ln−
prk

(a+1)p−1 (ln · · · ln(t))

provided a > 1/p and

‖u(t)− ϕ‖ ≤ C ln1−rj (ln · · · ln(t)) ln−rj+1(ln · · · ln(t)) · · · ln−rk(ln · · · ln(t))

provided a = 1
p , r1 = · · · = rj−1 = 1, rj > 1, rj+1, . . . , rk ∈ R.

6. Appendix

Lemma 6.1. If f is admissible, then it has property (K).

Proof. For K ≤ 1 it is sufficient to take C(K) = 1 since f is nondecreasing. Now,
let us fix t ≥ 0. Then for s > t we have f ′(s)

f(s) ≤
cA
s and integrating from t to T > t

we obtain

ln(f(T ))− ln(f(t)) = ln
f(T )
f(t)

≤ cA ln
T

t
,

so f(T ) ≤ f(t)
(
T
t

)cA and taking T = Kt for K > 1 we have property (K) with
C(K) = KcA . �

Lemma 6.2. Let f be nonnegative, nondecreasing and f , g have property (K).
Then the composition f(g(·)) has property (K).

Proof. We have f(g(Kx)) ≤ f(C(K)g(x)) ≤ C(C(K))f(g(x)). �
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Lemma 6.3. Let f be nonnegative, nondecreasing and has property (K). Then it
is C-sublinear, i.e., there exists C > 0 such that

f(x+ y) ≤ C(f(x) + f(y)) for all x, y ≥ 0.

Proof. We have

f(x+ y) ≤ f(2 max{x, y}) ≤ C(2)f(max{x, y})
≤ C max{f(x), f(y)} ≤ C(f(x) + f(y)).

�
Where did you de-
fine (h3)?

Lemma 6.4. Let ψ∗ be convex conjugate to the function ψ from (h3). Then
ψ∗(h(

√
s)) ≤ cψ(s) for all s ≥ 0.

Proof. It holds that

ψ∗(h(
√
s)) = ψ∗(ψ(s)/s) ≤ ψ∗(ψ′(s)) = sψ′(s)− ψ(s).

Further,

ψ(2s)− ψ(s) =
∫ 2s

s

ψ′(r)dr ≥ s · ψ′(s).

So,
ψ∗(h(

√
s)) ≤ ψ(2s)− 2ψ(s) ≤ (K − 2)ψ(s)

since ψ has property (K). �

Lemma 6.5. Let F be a primitive function to

f(t) = ta lnr1(1/t) lnr2(ln(1/t)) · · · lnrk(ln · · · ln(1/t))

on (0, ε), a 6= −1. Moreover, if a > −1, we assume limt→0+ F (t) = 0. Then

|F (t)| ∼ t1+a lnr1(1/t) lnr2(ln(1/t)) · · · lnrk(ln · · · ln(1/t)) as t→ 0+, (6.1)

where F ∼ g means F = O(g) and g = O(F ). If a = −1, r1 = · · · = rj−1 = −1,
rj < −1, then

|F (t)| ∼ lnrj+1(ln · · · ln(1/t)) lnrj+1(ln · · · ln(1/t)) · · · lnrk(ln · · · ln(1/t)) (6.2)

as t→ 0+.

Proof. Let us denote the right-hand side of (6.1) by G(t) and differentiate

G′(t) = (a+ 1)f(t) +
k∑
i=1

tf(t)
ri

ln(· · · ln(1/t)) · · · ln(1/t) 1
t

· −1
t2

= f(t)(1 + a+ o(1)).

If a > −1, then 1
CG
′(s) ≤ f(s) ≤ CG′(s) on (0, ε) for some C > 1 and

F (t) =
∫ t

0

f(s) ≤ C
∫ t

0

G′(s)ds = CG(t)

and similarly F (t) ≥ 1
CG(t). If a < −1, then 1

CG
′(s) ≤ f(s) ≤ CG′(s) on (0, ε) for

some C < −1.

|F (t)| =
∫ c

t

f(s)ds+ d ≤ C
∫ c

t

G′(s)ds+ d = CG(c)− CG(t) + d ≤ C̃G(t),

where the last inequality holds since G(t) → +∞ as t → 0+ and C < 0. Anal-
ogously we can estimate |F (t)| from below. So, (6.1) is proven and (6.2) can be
proven by the same method. �
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Lemma 6.6. Let

f(t) = ta lnr1(1/t) lnr2(ln(1/t)) · · · lnrk(ln · · · ln(1/t))

on (0, ε), a < 0. Then

f−1(t) ∼ t1/a ln−r1/a(t) ln−r2/a(ln(t)) · · · ln−
rk
a (ln · · · ln(t)) as t→ +∞. (6.3)

Proof. Let us denote by g(t) the right-hand side of (6.3) and let us assume that
ri ≥ 0 for all i = 1, 2, . . . , k. We show that f(g(t)) ≤ Ct for large t. Since

1
g(t)

= t−1/ao(t−1/a), as t→ +∞,

for t large enough we have

ln
( 1
g(t)

)
≤ ln

(
t−

2
a

)
= −2

a
ln(t).

Further, if h(t) → +∞, then for c > 0 and large t it holds that ln(ch(t)) =
ln c+ lnh(t) ≤ 2 lnh(t). Therefore,

lnri
(

ln · · · ln
( 1
g(t)

))
≤ lnri

(
ln . . .

−2
a

ln(t)
)
≤ 2ri lnri

(
ln · · · ln(t)

)
.

Now, we can compute

f(g(t)) = g(t)a
k∏
i=1

lnri
(

ln · · · ln
( 1
g(t)

))
= t ln−r1(t) · · · ln−rk(ln · · · ln(t)) ·

k∏
i=1

lnri
(

ln · · · ln
( 1
g(t)

))
≤ t ln−r1(t) · · · ln−rk(ln · · · ln(t)) ·

(
− 2
a

)r1 k∏
i=2

2ri lnri (ln · · · ln(t))

≤ t ·
(
− 1
a

)r1 k∏
i=1

2ri .

We can easily modify the estimates above to obtain f(g(t)) ≥ t(− 1
a )r1

∏k
i=1 2−ri

and similarly if we omit the assumption that ri are positive, we obtain

t

K
≤ f(g(t)) ≤ Kt with K := Cr1

k∏
i=1

2|ri|, C := max{−1
a
,−a}.

Applying f−1 (which is decreasing for large t) to these inequalities with s = t/K,
we obtain

f−1(s) ≥ f−1(f(g(Ks))) = g(sK) ≥ K1/a

C
g(s),

resp. with s = Kt

f−1(s) ≤ f−1(f(g(s/K))) = g(s/K) ≤ C

K1/a
g(s).
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