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INFINITELY MANY SOLUTIONS FOR
SCHRÖDINGER-KIRCHHOFF TYPE EQUATIONS INVOLVING

THE FRACTIONAL p-LAPLACIAN AND CRITICAL EXPONENT

LI WANG, BINLIN ZHANG

Abstract. In this article, we show the existence of infinitely many solutions
for the fractional p-Laplacian equations of Schrödinger-Kirchhoff type equation

M([u]ps,p)(−∆)s
pu+ V (x)|u|p−2u = α|u|p

∗
s−2u+ βk(x)|u|q−2u x ∈ RN ,

where (−∆)s
p is the fractional p-Laplacian operator, [u]s,p is the Gagliardo

p-seminorm, 0 < s < 1 < p < ∞, N > sp, 1 < q < p, M is a continuous and
positive function, V is a continuous and positive potential function and k(x)

is a non-negative function in an appropriate Lebesgue space. By means of the

concentration-compactness principle in fractional Sobolev space and Kajikiya’s
new version of the symmetric mountain pass lemma, we obtain the existence

of infinitely many solutions which tend to zero for suitable positive parameters
α and β.

1. Introduction and statement of main result

In this article, we consider the following fractional p-Laplacian equations of
Schrödinger-Kirchhoff type:

M([u]ps,p)(−∆)spu+ V (x)|u|p−2u = α|u|p
∗
s−2u+ βk(x)|u|q−2u in RN ,

[u]ps,p :=
∫∫

R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy,

(1.1)

where 0 < s < 1 < p <∞, 1 < q < p, N > sp, p∗s = Np
N−ps is the fractional critical

Sobolev exponent, M,V and k are functions satisfying some suitable conditions
which will be given later, (−∆)sp is the fractional p-Laplace operator which, up to
normalization factors, by the Riesz potential as

(−∆)spu(x) := 2 lim
ε→0

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+ps

dy, x ∈ RN ,

where Bε(x) := {y ∈ RN : |x − y| < ε}. Consistent, up to some normalization
constant depending upon n and s, with the linear fractional Laplacian (−∆)s in
the case p = 2. As for some recent results on the fractional p-Laplacian, we refer
to for example [15, 37, 38] and the references therein.
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Recently, a great deal of attention has been focused on studying of problems in-
volving fractional Sobolev spaces and corresponding nonlocal equations, both from
a pure mathematical point of view and for concrete applications, since they natu-
rally arise in many different contexts, such as, among the others, the thin obstacle
problem, optimization, finance, phase transitions, stratified materials, anomalous
diffusion, crystal dislocation, soft thin films, semipermeable membranes, flame prop-
agation, conservation laws, ultra relativistic limits of quantum mechanics, quasi-
geostrophic flows, multiple scattering, minimal surfaces, materials science and water
waves. For more details, we can see [9, 10, 25] and the references therein.

Problem (1.1) is related to the stationary analogue of the Kirchhoff model

ρ
∂2u

∂t2
−
(p0

λ
+

E

2L

∫ L

0

|∂u
∂x
|2dx

)∂2u

∂x2
= 0

which was proposed by Kirchhoff in 1883 as a generalization of the well-known
D’Alembert wave equation for free vibrations of elastic strings, where ρ, p0, λ,
E, L are constants which represent some physical meanings respectively. Indeed,
Kirchhoff’s model takes into account the changes in length of the string produced
by transverse vibrations. In particular, Kirchhoff’s equation models several physi-
cal and biological systems, we refer to [2] for more details. Recently, Fiscella and
Valdinoci [13] proposed a stationary Kirchhoff model involving the fractional Lapla-
cian by taking into account the nonlocal aspect of the tension arising from nonlocal
measurements of the fractional length of the string, see [13, Appendix A] for further
details.

When p = 2 and M ≡ 1, problem (1.1) becomes the fractional Schrödinger
equation with a critical nonlinearity

(−∆)su+ V (x)u = α|u|p
∗
s−2u+ βk(x)|u|q−2u in RN , (1.2)

which was first proposed by Laskin in [17, 18] as a result of expanding the Feynman
path integral, from the Brownian-like to the Lévy-like quantum mechanical paths.
In recent years, a lot of interesting results about problem (1.2) have been obtained,
here we just quote a few, see for example [23, 41, 40].

For our problem, we first assume that the Kirchhoff function M : R+
0 → R+, the

potential function V (x) and the weight function k(x) satisfy the following assump-
tions:

(A1) M ∈ C(R+
0 ,R+) satisfies inft∈R+

0
M(t) ≥ m0 > 0, where m0 is a constant.

(A2) There exists θ ∈ [1, N
N−ps ) such that θM(t) := θ

∫ t
0
M(τ)dτ ≥ M(t)t for

any t ∈ R+
0 .

(A3) V ∈ C(RN ) satisfies infx∈RN V (x) ≥ V0 > 0, where V0 > 0 is a constant.
(A4) 0 ≤ k(x) ∈ Lr(RN ), where r = p∗s

p∗s−q
.

A typical example for M is M(t) = m0 + b1t
θ−1 with θ ≥ 1, m0 ∈ R+ and b1 ∈ R+

0 .
When M is of this type, the Kirchhoff problem is said to be non-degenerate if
m0 > 0, while it is called degenerate if m0 = 0.

Next we state some recent advance related with our problem. First of all, we
consider the case that M satisfies (A1) and (A2). Xiang, Zhang and Ferrara [35]
studied the existence of solutions for the following Kirchhoff type problem driven
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by the fractional p-Laplacian operator with homogeneous Dirichlet boundary con-
ditions:

M([u]ps,p)(−∆)spu = f(x, u) in Ω,

u = 0 in RN \ Ω,
(1.3)

where Ω is an open bounded subset of RN with smooth boundary ∂Ω. By using
variational methods, they gave some existence results with respect to f(x, u) =
a(x)|u|q−2u with 1 < q < p and p < q < p∗s. In [36], Xiang, Zhang and Guo
obtained the existence of infinitely many solutions for problem (1.3) with p = 2 by
applying the fountain theorem and the dual fountain theorem. More precisely, they
considered mainly two cases: for any λ ∈ R, the above result holds as f(x, u) =
|u|q−2u + λu with q ∈ (2, 2∗s); there exists Λ∗ > 0 such that for any for λ ∈
(0,Λ∗), the above result holds when f(x, u) = α|u|ξ−2u + β|u|η−2u + λu for any
α ∈ R, β > 0 or for any α > 0, β ∈ R, where 1 < ξ < 2 ≤ 2θ < η < 2∗s, see also [6]
for similar applications of the fountain theorem. By appealing to Krasnoselskii’s
genus theory, Fiscella in [12] obtained the existence of infinitely many solutions for
problem (1.3) with p = 2 and f(x, u) = λg(x, u)[

∫
Ω
G(x, u)dx]r + |u|2∗s−2u, where

G(x, u) =
∫ u

0
g(x, µ)dµ, r and λ are positive parameters, see also [11, 24, 21, 30] for

similar results involving variational methods. By using a truncation argument and
the mountain pass theorem, Autuori, Fiscella and Pucci [3] considered the existence
of solutions for problem (1.3) with f(x, u) = λg(x, u) + |u|2∗s−2u in the degenerate
and non-degenerate cases.

On the other hand, Pucci, Xiang and Zhang [29] were concerned with the
nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-
Laplacian

M([u]ps,p)(−∆)spu+ V (x)|u|p−2u = f(x, u) + g(x) in RN , (1.4)

where M satisfies (A1) and (A2), f(x, u) satisfied the subcritical growth. with
the help of the Ekeland variational principle and the mountain pass theorem, the
authors obtained the existence of at least two solutions for problem (1.4), see also
[4] for related results. Subsequently, in [30] they considered the existence and
multiplicity of solutions for the equation

M([u]ps,p)(−∆)spu+ V (x)|u|p−2u = λω(x)|u|q−2u− h(x)|u|r−2u in RN , (1.5)

where h(x) is a non-negative function satisfying some ratio of integration with ω(x),
1 < q < r < ∞, see also [28, 37] for related results. In this case, the existence of
infinitely many solutions for problem (1.5) was obtained by genus theory in the
degenerate case.

In [32], with the help of classical variational techniques, Servadei consider the ex-
istence of infinite solutions for problem (1.3), in which M ≡ 1 and f(x, t) = |u|q−2u
with 2 < q < (2N − 2s)/(N − 2s), but in presence of a perturbation h ∈ L2(Ω).
In [22], by means of the symmetric mountain pass theorem, Molica Bisci obtained
the existence of infinite solutions for(1.3) with M ≡ 1. Concerning the study of
elliptic equations with critical Sobolev exponent, we refer to the seminal works of
Brézis and Nirenberg in [8]. In order to overcome the lack of compactness, Lions in
[19, 20] developed the concentrate-compactness principle. Based on the principle
of concentration compactness in the fractional Sobolev space in [27], Zhang, Zhang
and Xiang [41] obtained the existence of ground state solution for problem (1.2)
with α = 1, see also [40] for extensive discussions for this kind of problem. Xiang,
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Zhang and Zhang [39] studied the multiplicity of solutions for problem (1.1) in some
special cases. For this, they extended the concentrate-compactness principle in [27]
to the setting of fractional p-Laplacian. In the context of fractional Laplacian, the
discussions about the existence of infinitely many solutions, we also refer to [14].

Motivated by the above works, in the present paper we are interested in the
existence of infinitely many solutions for problem (1.1) by means of Kajikiya’s new
version of the symmetric mountain pass lemma. To our best knowledge, there is
no result in the literature on problem (1.1). There is no doubt that we encounter
serious difficulties because of the lack of compactness and of the nonlocal nature of
the fractional p-Laplacian. To this end, we will use the concentrate-compactness
principle in [39] to conquer the difficulty due to the lack of compactness.

Now we first give the definition of weak solutions for problem (1.1).

Definition 1.1. We say that u ∈W is a weak solution of problem (1.1), if u ∈W
and

M([u]ps,p)
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+ps

dxdy

+
∫

RN
V (x)|u|p−2uϕdx

= α

∫
RN
|u|p

∗
s−2uϕdx+ β

∫
RN

k(x)|u|q−2uϕdx

for all ϕ ∈W .

In the sequel we will omit the term weak when referring to solutions that satisfy
the conditions of Definition 1.1. Our main result of this paper is stated as follows.

Theorem 1.2. Let (A1)–(A4) and 1 < q < p hold. Then

(i) for all α > 0 there exists β0 > 0 such that if 0 < β < β0, then (1.1) has a
sequence of solutions {un}n with I(un) < 0, I(un)→ 0 and limn→∞ un →
0.

(ii) for all β > 0 there exists α0 > 0 such that if 0 < α < α0, then (1.1) has a
sequence of solutions {un}n with I(un) < 0, I(un)→ 0 and limn→∞ un →
0.

Remark 1.3. From Theorem 1.2 it is natural to raise the following open problems:
(i) What if θp < q < p∗s? (ii) Are our result still valid in the degenerate case? These
problems would be investigated by the authors in future works.

The rest of this paper is organized as follows. The functional framework and
some preliminaries are given in Section 2. In Section 3, behavior of (PS) sequences
are established. The proof of the main result Theorem 1.2 is given in Section 4.
Lt(RN ) is the usual Lebesgue space with the norm ‖u‖pp =

∫
RN |u|

pdx, 1 ≤ p <
+∞. Various positive constants are denoted by C and Ci.

2. Preliminaries

In this section, we first give some basic results of fractional Sobolev space and
then provide some useful technical lemmas, which will be used in the sequel.
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Let 0 < s < 1 < p <∞ be real numbers. The Gagliardo seminorm is defined for
all measurable function u : RN → R by

[u]s,p =
(∫∫

R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)1/p

. (2.1)

The fractional Sobolev space is defined as

W s,p(RN ) =
{
u ∈ Lp(RN ) :

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy <∞

}
,

equipped with the norm

‖u‖W s,p(RN ) =
(
‖u‖pp + [u]ps,p

)1/p

. (2.2)

As it is well-known that this space is a uniformly convex Banach space. For a
detailed account on the properties of W s,p(RN ), we refer to [10].

Let W denote the completion of C∞0 (RN ), with respect to the norm

‖u‖W :=
(

[u]ps,p + ‖u‖pp,V
)1/p

, ‖u‖pp,V =
∫

RN
V (x)|u|pdx. (2.3)

Clearly the definition makes sense since every ϕ ∈ C∞0 (RN ) has finite Gagliardo
norm as well finite norm ‖ϕ‖p,V . Indeed, Lp(RN , V ) = (Lp(RN , V ), ‖ · ‖p,V ) is a
uniformly convex Banach space thanks to (V 1). By standard arguments, it is clear
that W is a uniformly convex Banach space, see [29, Lemma 10] for details. The
embedding W ↪→ Lt(RN ) is continuous for any t ∈ [p, p∗s] by [10, Theorem 6.7];
that is, there exists a positive constant C∗ such that

‖u‖Lt(RN ) ≤ C∗‖u‖W for all u ∈W. (2.4)

In our context, the Sobolev constant is given by

S := inf
u∈Ds,p(RN )\{0}

∫∫
R2N

|u(x)−u(y)|p
|x−y|N+ps dxdy

(
∫

RN |u|p
∗
sdx)p/p∗s

(2.5)

is the associated Rayleigh quotient. The constant S is well defined, as can be seen
in [1, Theorem 7.58].

Next we recall the the concentration-compactness principle in the setting of the
fractional p-Laplacian, see [39, Definition 2.1,Theorem 2.1 and Theorem 2.2].

Definition 2.1. Let M̃(R) denote the finite nonnegative Borel measure space on
RN . For any µ ∈ M̃(RN ), µ(RN ) = ‖µ‖ holds. We say that µ ⇀ µ weakly ∗ in
M̃(RN ), if (µn, η)→ (µ, η) holds for all η ∈ C0(RN ) as n→∞.

Proposition 2.2. Let {un}n ⊂ Ds,p(RN ) with upper bound C > 0 for all n ≥ 1
and

un ⇀ u weakly in Ds,p(RN ),∫
RN

|un(x)− un(y)|p

|x− y|N+ps
dy ⇀ µ weak ∗ in M̃(RN ),

|un(x)|p
∗
s ⇀ ν weak ∗ in M̃(RN ).

Then

µ =
∫

RN

|u(x)− u(y)|p

|x− y|N+ps
dy +

∑
j∈J

µjδxj + µ̃, µ(RN ) ≤ Cp,
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ν = |u|p
∗
s +

∑
j∈J

νjδxj , ν(RN ) ≤ Sp
∗
sCp,

where J is at most countable, sequences {µj}j , {νj}j ⊂ R+
0 , {xj}j ⊂ RN , δxj is the

Dirac mass centered at xj, µ̃ is a non-atomic measure,

ν(RN ) ≤ S−
p∗s
p µ(RN )

p∗s
p ,

νj ≤ S−
p∗s
p µ

p∗s
p

j , ∀j ∈ J,

and S > 0 is the best constant of Ds,p(RN ) ↪→ Lp
∗
s (RN )

Proposition 2.3. Let {un}n ⊂ Ds,p(RN ) be a bounded sequence such that∫
RN

|un(x)− un(y)|p

|x− y|N+ps
dy ⇀ µ weak ∗ in M̃(RN ),

|un(x)|p
∗
s ⇀ ν weak ∗ in M̃(RN ),

and define

µ∞ := lim
R→∞

lim sup
n→∞

∫
{x∈RN :|x|>R}

∫
RN

|un(x)− un(y)|p

|x− y|N+ps
dydx,

ν∞ := lim
R→∞

lim sup
n→∞

∫
{x∈RN :|x|>R}

|un|p
∗
sdx.

Then the quantities µ∞ and ν∞ are well defined and satisfy

lim sup
n→∞

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dydx =

∫
RN

dµ+ µ∞,

lim sup
n→∞

∫
RN
|un|p

∗
sdx =

∫
RN

dν + ν∞.

Moreover,

Sν
p
p∗s∞ ≤ µ∞.

Lemma 2.4 ([39, Lemma 2.3]). Assume {un}n ⊂ Ds,p(RN ) is the sequence given
by Lemma 3.1 and for ε > 0, let φj(x) be a smooth cut-off function centered at xj
such that 0 ≤ φj(x) ≤ 1, φj(x) ≡ 0 on |x− xj | ≥ 2, φj(x) ≡ 1 on |x− xj | ≤ 1, and
|∇φj(x)| ≤ 2 for all x ∈ RN . Set φεj(x) = φj(x/ε) for all x ∈ RN . Then

lim
ε→0

lim sup
n→∞

∫∫
R2N

|φεj(x)− φεj(y)|p|un(y)|p

|x− y|N+ps
dxdy = 0.

Lemma 2.5 ([29, Lemma 2]). Let (M1) and (V1) hold. Then J : W → R is of
class C1(W ) and

〈J ′(u), v〉 = M([u]ps,p)
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))
|x− y|N+ps

dxdy

+
∫

RN
V (x)|u(x)|p−2u(x)v(x)dx,

for all u, v ∈W . Moreover, J is weakly lower semi-continuous in W .
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Lemma 2.6 ([33, Lemma 2.1]). For each k in Lr(RN ), the functional F(u) =∫
RN k(x)|u|qdx is well defined and weakly continuous on W . Moreover, F(u) is

continuously differentiable, its derivative F ′ : W →W ∗ is given by

〈F ′(u), ϕ〉 = q

∫
RN

k(x)|u|q−2uϕdx, ∀ϕ ∈W.

Lemma 2.7 ([29, Theorem2.1]). Let (V1) hold. Let ϑ ∈ [p, p∗s) be a fixed exponent
and let {vj}j be a bounded sequence in W . Then there exists v ∈W ∩Lϑ(RN ) such
that up to a subsequence, vj → v strongly in Lϑ(RN ) as j →∞.

3. Behavior of (PS) sequences

In this section, we perform a careful analysis of the behavior of minimizing
sequences with the aid of the concentration–compactness principle in fractional
Sobolev space stated above, which allows to recover compactness below some critical
threshold.

Let E be a real Banach space and I : E → R be a function of class C1. We say
that {un}n ⊂ E is a (PS)c sequence if I(un) → c and I ′(un) → 0. I is said to
satisfy the Palais-Smale condition at level c ((PS)c in short) if any (PS)c sequence
contains a convergent subsequence.

Lemma 3.1. Let (A1)–(A4), 1 < q ≤ p and c < 0 hold. Then
(i) there exists C > 0 such that, for all n ∈ N, ‖un‖W ≤ C;

(ii) for each α > 0 there exists β∗ > 0 such that if 0 < β < β∗, then I satisfies
(PS)c;

(iii) for each β > 0 there exists α∗ > 0 such that if 0 < α < α∗, then I satisfies
(PS)c.

Proof. We first prove that {un}n is bounded in W . Let {un}n be a (PS)c sequence
in W such that for all ϕ ∈ C∞0 (RN ),

c+ on(‖un‖W ) = I(un)

=
1
p

[
M([un]ps,p) + ‖un‖pp,V

]
− α

p∗s

∫
RN
|un|p

∗
sdx− β

q

∫
RN

k(x)|un|qdx.
(3.1)

on(‖un‖W ) = 〈I ′(un), un〉

= M([un]ps,p)
∫∫

R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy +

∫
RN

V (x)|un|pdx

− α
∫

RN
|un|p

∗
sdx− β

∫
RN

k(x)|un|qdx.

(3.2)

Therefore,

0 > c+ on(‖un‖W ) = I(un)− 1
p∗s
〈I ′(un), un〉

=
1
p
M([un]ps,p)−

1
p∗s
M([un]ps,p)[un]ps,p +

(1
p
− 1
p∗s

)
‖un‖pp,V

− β
(1
q
− 1
p∗s

)∫
RN

k(x)|un|qdx

≥
( 1
pθ
− 1
p∗s

)
M([un]ps,p)[un]ps,p +

(1
p
− 1
p∗s

)
‖un‖pp,V
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− β
(1
q
− 1
p∗s

)
‖k(x)‖r

(∫
RN
|un|p

∗
sdx

) q
p∗s

≥
( 1
pθ
− 1
p∗s

)
m0[un]ps,p +

(1
p
− 1
p∗s

)
‖un‖pp,V

− β
(1
q
− 1
p∗s

)
‖k(x)‖rS−

q
p [un]qs,p

≥ min
{( 1

pθ
− 1
p∗s

)
m0,

(1
p
− 1
p∗s

)}
‖un‖pW

− β
(1
q
− 1
p∗s

)
‖k(x)‖rS−

q
p ‖un‖qW .

Since θ ∈ [1, N
N−ps ) and q < p, it follows that {un}n is bounded in W . Then, there

exist u0 and a subsequence, still denoted by {un}n ⊂W , such that

un ⇀ u0 weakly in W,

un → u0 strongly in Ltloc(RN ) for all t ∈ [1, p∗s),

un → u0 a.e. in RN .

From Proposition 2.2, we have

un ⇀ u0 weakly in Ds,p(RN ),∫
RN

|un(x)− un(y)|p

|x− y|N+ps
dy ⇀ µ weakly ∗ in M̃(RN ),

|un(x)|p
∗
s ⇀ ν weak ∗ in M̃(RN ).

Then

µ =
∫

RN

|u(x)− u(y)|p

|x− y|N+ps
dy +

∑
j∈J

µjδxj + µ̃, µ(RN ) ≤ Cp,

ν = |u|p
∗
s +

∑
j∈J

νjδxj , ν(RN ) ≤ Sp
∗
sCp,

where J is at most countable, sequences {µj}j , {νj}j ⊂ R+
0 , {xj}j ⊂ RN , δxj is the

Dirac mass centered at xj , µ̃ is a non-atomic measure,

ν(RN ) ≤ S−
p∗s
p µ(RN )

p∗s
p , (3.3)

νj ≤ S−
p∗s
p µ

p∗s
p

j , ∀j ∈ J, (3.4)

Concentration at infinity of the sequence {un}n is described by the following quan-
tities:

µ∞ := lim
R→∞

lim sup
n→∞

∫
{x∈RN :|x|>R}

∫
RN

un(x)− un(y)|p

|x− y|N+ps
dydx,

ν∞ := lim
R→∞

lim sup
n→∞

∫
{x∈RN :|x|>R}

|un|p
∗
sdx,

We claim that J is finite and, for j ∈ J , either νj = 0 or νj ≥ (m0α
−1S)N/ps.

In fact, for ε > 0, let φεj(x) be a smooth cut-off function centered at xj , such
that 0 ≤ φεj(x) ≤ 1, φεj(x) ≡ 0 on |x − xj | ≥ 2ε, φεj(x) ≡ 1 on |x − xj | ≤ ε, and



EJDE-2016/339 SCHRÖDINGER-KIRCHHOFF TYPE EQUATIONS 9

|∇φεj(x)| ≤ 2
ε for all x ∈ RN . Then, it is seen that {unφεj} is bounded in W . Testing

I ′(un) with unφ
ε
j , we obtain limn→∞〈I ′(un), unφεj〉 = 0; that is,

M([un]ps,p)
∫∫

R2N

(
|un(x)− un(y)|p−2(un(x)− un(y))

× (un(x)φεj(x)− un(y)φεj(y))/|x− y|N+ps
)

dxdy +
∫

RN
V (x)|un|pφεjdx

− α
∫

RN
|un|p

∗
sφεjdx− β

∫
RN

k(x)|un|qφεj(x)dx = 0.

(3.5)

Next we estimate each term in (3.5).∫∫
R2N

|un(x)− un(y)|p−2(un(x)− un(y))(un(x)φεj(x)− un(y)φεj(y))
|x− y|N+ps

dxdy

=
∫∫

R2N

|un(x)− un(y)|pφεj(x)
|x− y|N+ps

dxdy

+
∫∫

R2N

|un(x)− un(y)|p−2(un(x)− un(y))(φεj(x)− φεj(y))un(y)
|x− y|N+ps

dxdy.

(3.6)

In fact, in the first double integral of the right-hand side of (3.5), we can use a
compactness result (see Proposition 2.2),

lim
n→∞

∫∫
R2N

|un(x)− un(y)|pφεj(x)
|x− y|N+ps

dxdy

=
∫

RN
φεjdµ =

∫∫
R2N

|u0(x)− u0(y)|p

|x− y|N+ps
φεj(x)dxdy + µj .

(3.7)

For the second double integral of the right-hand side of (3.6), we obtain∣∣∣ ∫∫
R2N

|un(x)− un(y)|p−2(un(x)− un(y))(φεj(x)− φεj(y))un(y)
|x− y|N+ps

dxdy
∣∣∣

≤
(∫∫

R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy

) p−1
p

×
(∫∫

R2N

|φεj(x)− φεj(y)|p|un(y)|p

|x− y|N+ps
dxdy

)1/p

≤ C
(∫∫

R2N

|φεj(x)− φεj(y)|p|un(y)|p

|x− y|N+ps
dxdy

) p−1
p

.

(3.8)

By Lemma 2.4, we obtain

lim
ε→0

lim
n→∞

∫∫
R2N

|φεj(x)− φεj(y)|p|un(y)|p

|x− y|N+ps
dxdy = 0. (3.9)

So from (3.6), (3.7) and (3.9), we deduce

lim
ε→0

lim
n→∞

M [un]ps,p

∫∫
R2N

(
|un(x)− un(y)|p−2(un(x)− un(y))

×
(
un(x)φεj(x)− un(y)φεj(y)

)
/|x− y|N+ps

)
dxdy

≥ m0µj .

(3.10)
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Also we have

lim
ε→0

lim
n→∞

∫
RN

V (x)|un|pφεjdx = lim
ε→0

lim
n→∞

∫
B2ε(xj)

V (x)|un|pφεjdx = 0, (3.11)

lim
n→∞

∫
RN
|un|p

∗
sφεjdx =

∫
RN

φεjdν =
∫

RN
|u0|p

∗
sφεjdx+ νj . (3.12)

By assumption (A4), we arrive at

lim
ε→0

lim
n→∞

∫
RN

k(x)|un|qφεjdx = lim
ε→0

lim
n→∞

∫
B2ε(xj)

k(x)|un|qφεjdx

≤ lim
ε→0

lim
n→∞

‖k(x)‖Lr(B2ε(xj))‖un‖
q

Lp
∗
s (B2ε(xj))

= 0.

(3.13)

Therefore, from (3.5) and the aforementioned arguments we obtain

0 ≥ m0µj − ανj . (3.14)

Combining this with (3.4), we obtain either (i) νj = 0 or (ii) νj ≥ (m0α
−1S)

N
ps ,

which implies that J is finite. The claim is thereby proved.
To analyze the concentration at ∞, by choosing a suitable cut-off function ϕ ∈

C∞0 (RN , [0, 1]) such that ϕ(x) ≡ 0 on |x| ≤ 1 and ϕ(x) ≡ 1 on |x| ≥ 2. We set
ϕR(x) = ϕ( xR ), then {unϕR}n is bounded in W , and limn→∞〈I ′(un), unϕR〉 = 0;
that is,

M([un]ps,p)
∫∫

R2N

(
|un(x)− un(y)|p−2(un(x)− un(y))

× (un(x)ϕR(x)− un(y)ϕR(y))/|x− y|N+ps
)

dxdy

+
∫

RN
V (x)|un|pϕRdx− α

∫
RN
|un|p

∗
sϕRdx− β

∫
RN

k(x)|un|qϕRdx = 0.

(3.15)

Next we estimate each term in (3.15).∫∫
R2N

|un(x)− un(y)|p−2(un(x)− un(y))(un(x)ϕR(x)− un(y)ϕR(y))
|x− y|N+ps

dxdy

=
∫∫

R2N

|un(x)− un(y)|pϕR(x)
|x− y|N+ps

dxdy

+
∫∫

R2N

|un(x)− un(y)|p−2(un(x)− un(y))(ϕR(x)− ϕR(y))un(y)
|x− y|N+ps

dxdy.

(3.16)
Indeed, in the first double integral of the right-hand side of (3.16), we can use a
compactness result (see Proposition 2.3),

lim
n→∞

∫∫
R2N

|un(x)− un(y)|pϕR(x)
|x− y|N+ps

dxdy

=
∫

RN
ϕRdµ

=
∫∫

R2N

|u0(x)− u0(y)|p

|x− y|N+ps
ϕR(x)dxdy + µ∞.

(3.17)
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For the second double integral of the right-hand side of (3.16), it follows from the
Hölder inequality that∣∣∣ ∫∫

R2N

|un(x)− un(y)|p−2(un(x)− un(y))(ϕR(x)− ϕR(y))un(y)
|x− y|N+ps

dxdy
∣∣∣

≤ C
(∫∫

R2N

|ϕR(x)− ϕR(y)|p|un(y)|p

|x− y|N+ps
dxdy

) p−1
p

.

(3.18)

then, as in the proof of (3.9) we obtain

lim
R→∞

lim sup
n→∞

∫∫
R2N

|ϕR(x)− ϕR(y)|p|un(y)|p

|x− y|N+ps
dxdy = 0.

So we have

lim
R→∞

lim
n→∞

M [un]ps,p

∫∫
R2N

(
|un(x)− un(y)|p−2(un(x)− un(y))

× (un(x)ϕR(x)− un(y)ϕR(y))/|x− y|N+ps
)

dxdy

≥ m0µ∞.

(3.19)

We also obtain

lim
R→∞

lim
n→∞

∫
RN

V (x)|un|pϕRdx = lim
R→∞

lim
n→∞

∫
{|x|>2R}

V (x)|un|pϕRdx = 0, (3.20)

lim
n→∞

∫
RN
|un|p

∗
sϕRdx =

∫
RN

ϕRdν =
∫

RN
|u0|p

∗
sϕRdx+ ν∞. (3.21)

By the weak continuity of k(x), Hölder inequality and the definition of S,∫
RN

k(x)|un|qϕRdx ≤
(∫
{|x|>2R}

|un|p
∗
sdx

) q
p∗s
(∫
{|x|>2R}

|k(x)|
p∗s
p∗s−q dx

) p∗s−q
p∗s

≤ S−
q
p∗s [un]qs,p

(∫
{|x|>2R}

|k(x)|
p∗s
p∗s−q dx

) p∗s−q
p∗s

≤ S−
q
p∗s ‖un‖qW

(∫
{|x|>2R}

|k(x)|
p∗s
p∗s−q dx

) p∗s−q
p∗s ,

which implies

lim
R→∞

lim sup
n→∞

∫
RN

k(x)|un|qϕRdx ≤ C lim
R→∞

(∫
{|x|>2R}

|k(x)|
p∗s
p∗s−q dx

) p∗s−q
p∗s = 0.

Therefore, by letting R→∞ and n→∞ in (3.15), we have

m0µ∞ ≤ αν∞. (3.22)

By Proposition 2.3 and (3.22), we conclude that either

(iii) ν∞ = 0, or
(iv) ν∞ ≥ (m0α

−1S)
N
ps .
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Next, we claim that (ii) and (iv) cannot occur if α and β are chosen properly.
To this, from the Hölder inequality and the weak continuity of F , we have

0 > c = lim
n→∞

[
I(un)− 1

p∗s
〈I ′(un), un〉

]
− β

(1
q
− 1
p∗s

)∫
RN

k(x)|un|qdx
]

≥
( 1
pθ
− 1
p∗s

)
M([u0]ps,p)[u0]ps,p +

(1
p
− 1
p∗s

)
‖u0‖pp,V

− β
(1
q
− 1
p∗s

)
‖k(x)‖r

(∫
RN
|u0|p

∗
sdx

) q
p∗s

≥
( 1
pθ
− 1
p∗s

)
m0[u0]ps,p +

(1
p
− 1
p∗s

)
‖u0‖pp,V

− β
(1
q
− 1
p∗s

)
‖k(x)‖rS−

q
p [u0]

q
p
s,p

≥
( 1
pθ
− 1
p∗s

)
m0S‖u0‖pp∗s − β

(1
q
− 1
p∗s

)
‖k(x)‖r‖u0‖qp∗s .

(3.23)

Thus, it follows that

‖u0‖p∗s ≤ Cβ
1
p−q . (3.24)

If (iv) occurs, we obtain by (3.24) that

0 > c = lim
R→∞

lim
n→∞

[
I(un)− 1

p∗s
〈I ′(un), ϕR〉

]
≥
( 1
pθ
− 1
p∗s

)
m0µ∞ +

(1
p
− 1
p∗s

)
‖u0‖pp,V − β

(1
q
− 1
p∗s

)
‖k(x)‖r‖u0‖qp∗s

≥
( 1
pθ
− 1
p∗s

)
m0µ∞ − β

(1
q
− 1
p∗s

)
‖k(x)‖rCβ

q
p−q

≥
( 1
pθ
− 1
p∗s

)
m0α

− N
psS

N
ps − Cβ

p
p−q .

However, since θ ∈ [1, N
N−ps ), q < p, if α > 0 is given, we can take small β∗ such

that for every 0 < β < β∗, the term on the right-hand side above is greater than
zero, which is a contradiction. Similarly, if β > 0 is given, we can choose small α∗
such that for every 0 < α < α∗, the term on the right-hand side above is greater
than zero. Similarly, we can prove that (ii) cannot occur. Hence∫

RN
|un|p

∗
sdx→

∫
RN
|u0|p

∗
sdx as n→∞.

In view of un ⇀ u0 in W s,p(RN ) and the Brézis-Lieb lemma, we have∫
RN
|un − u0|p

∗
sdx→ 0 as n→∞. (3.25)

We are now in a position to show that {un}n converges strongly to u0 in W . Firstly,
we have

〈I ′(un)− I ′(u0), un − u0〉 → 0 as n→∞.
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By the boundedness of {un}n in W and (3.25), it follows that∫
RN

(|un|p
∗
s−2|un| − |u0|p

∗
s−2u0)(un − u0)dx

≤
∫

RN
|un|p

∗
s−1(un − u0)dx+

∫
RN
|u0|p

∗
s−1(un − u0)dx

≤
(∫

RN
|un|p

∗
sdx

) p∗s−1
p∗s
(∫

RN
|un − u0|p

∗
sdx

)1/p∗s

+
(∫

RN
|u0|p

∗
sdx

) p∗s−1
p∗s
(∫

RN
|un − u0|p

∗
sdx

)1/p∗s
→ 0,

(3.26)

as n→∞. Since k ∈ Lr(RN ), by the weak lower continuity of F , we have∫
RN

k(x)|un|q−2un(un − u0)dx ≤ ‖k(x)‖Lr(RN )‖un‖q−1
p∗s
‖un − u0‖p∗s → 0,

as n→∞. Therefore, as n→∞, we have

[un − u0]s,p → 0,

thanks to I ′(u0) = 0. By Lemma 2.7, as n→∞, we have∫
RN

V (x)|un|p−2un(un − u0)dx→ 0.

Thus we prove that {un}n strongly converges to u0 in W . �

4. Proof of Theorem 1.2

In this section, we use minimax procedure (see [31]) to prove the existence of
infinitely many solutions. Let X be a Banach space and Σ be the class of subsets
of X \ {0} which are closed and symmetric with respect to the origin. For A ∈ Σ,
we define the genus γ(A) by

γ(A) = inf{n ∈ N : ∃φ ∈ C(A,Rn \ {0}), φ(z) = −φ(−z)},
Nδ(A) = {x ∈ X : dist(x−A) ≤ δ}, dist(x−A) = inf{‖x−A‖ : y ∈ A}.

If there is no mapping as above for any n ∈ N, then γ(A) = +∞. Let Σn denote
the family of closed symmetric subsets A of X such that 0 6∈ A and γ(A) ≥ n. We
summarize the property of genus, which will be used in the proof of Theorem 1.2.
We refer the readers to [31] for the proof of the next result.

Proposition 4.1. Let A and B be closed symmetric subsets of X which do not
contain the origin. Then the following hold.

(1) If there exists an odd continuous mapping from A to B, then γ(A) ≤ γ(B);
(2) If there is an odd homeomorphism from A to B, then γ(A) = γ(B);
(3) If γ(B) <∞, then γ(A\B) ≥ γ(A)− γ(B);
(4) n-dimensional sphere Sn has a genus of n+1 by the Borsuk-Ulam Theorem;
(5) If A is compact, then γ(A) < +∞ and there exists δ > 0 such that Nδ(A) ⊂

Σ and γ(Nδ(A)) = γ(A).

The following version of the symmetric mountain-pass lemma is due to Kajikiya
[16].

Proposition 4.2. Let E be an infinite-dimensional space and I ∈ C1(E,R) and
suppose the following conditions hold.
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(A5) I(u) is even, bounded from below, I(0) = 0 and I(u) satisfies the local
Palais-Smale condition (PS for short).

(A6) For each n ∈ N, there exists an An ∈ Σn such that supu∈An I(u) < 0.
Then either

(i) There exists a sequence {un} such that I ′(un) = 0, I(un) < 0 and {un}
converges to zero, or

(ii) There exist two sequences {un} and {vn} such that I ′(un) = 0, I(un) = 0,
un 6= 0, limn→∞ un = 0; I ′(vn) = 0, I(vn) < 0, limn→∞ I(vn) = 0, and
{vn} converges to a non-zero limit.

Remark 4.3. From Proposition 4.2 we have a sequence {un}n of critical points
such that I(un) ≤ 0, un 6= 0 and limn→∞ un = 0.

To obtain infinitely many solutions, we need some technical lemmas. Let I(u)
be the functional defined as above, 1 < q < p, α > 0 and β > 0. Then

I(u) =
1
p

[
M([u]ps,p) + ‖u‖pp,V

]
− α

p∗s

∫
RN
|u|p

∗
sdx− β

q

∫
RN

k(x)|u|qdx

≥ 1
pθ
M([u]ps,p)[u]ps,p +

1
p
‖u‖pp,V −

α

p∗s

∫
RN
|u|p

∗
sdx− β

q

∫
RN

k(x)|u|qdx

≥ 1
pθ
m0[u]ps,p −

α

p∗s

∫
RN
|u|p

∗
sdx− β

q
‖k(x)‖r‖u‖qp∗s

≥ 1
pθ
m0[u]ps,p −

α

p∗s

(
S−1[u]ps,p

) p∗s
p − β

q
‖k(x)‖r

(
S−1[u]ps,p

) q
p

≥ C1[u]ps,p − αC2[u]p
∗
s
s,p − βC3[u]qs,p.

Define
g(t) = C1t

p − αC2t
p∗s − βC3t

q.

Then, it is easy to see that, for the given α > 0, we can choose β∗ > 0 so small that
if 0 < β < β∗, there exists 0 < t0 < t1 such that g(t) < 0 for 0 < t < t0; g(t) > 0
for t0 < t < t1; g(t) < 0 for t > t1.

Similarly, for the given β > 0, we can choose α∗ > 0 so small that if 0 < α < α∗,
there exists 0 < t∗0 < t∗1 such that g(t) < 0 for 0 < t < t∗0; g(t) > 0 for t∗0 < t < t∗1;
g(t) < 0 for t > t∗1.

Clearly, g(t0) = 0 = g(t1). Following the same idea as in [5], we consider the
truncated functional

Ĩ(u) =
1
p

[
M([u]ps,p) + ‖u‖pp,V

]
− α

p∗s
ψ(u)

∫
RN
|u|p

∗
sdx− β

q

∫
RN

k(x)|u|qdx.

where ψ(u) = τ(‖u‖W ) and τ : R+ → [0, 1] is a non-increasing C∞ function such
that τ(t) = 1 if t ≤ t0 and τ(t) = 0 if t ≥ t1. Obviously, Ĩ(u) is even. Thus, from
Lemma 3.1, we obtain the following lemma.

Lemma 4.4. Let c < 0 and 1 < q < p. Then

(1) Ĩ ∈ C1 and Ĩ is bounded from below.
(2) If Ĩ(u) < 0, then ‖u‖W < t0 and Ĩ(u) = I(u).
(3) for each α > 0 there exists β̃∗ = min{β∗, β∗} > 0 such that if 0 < β < β̃∗,

then Ĩ satisfies (PS)c;



EJDE-2016/339 SCHRÖDINGER-KIRCHHOFF TYPE EQUATIONS 15

(4) for each β > 0 there exists α̃∗ = min{α∗, α∗} > 0 such that if 0 < α < α̃∗,
then Ĩ satisfies (PS)c.

Proof. Obviously, (1) and (2) are immediate. To prove (3) and (4), observe that all
(PS)c sequences for Ĩ with c < 0 must be bounded, similar to the proof of Lemma
3.1, there exists a strong convergent subsequence in W s,p(RN ). �

Remark 4.5. Denote Kc = {u ∈ W : Ĩ ′(u) = 0, Ĩ(u) = c} If α, β are as in (3) or
(4) above, then, it follows from (PS)c that Kc(c < 0) is compact.

Lemma 4.6. Denote Ĩc := {u ∈ W : Ĩ ′(u) = 0, Ĩ(u) ≤ c}. Given n ∈ N, there
exists εn < 0, such that

γ(Ĩεn) := γ({u ∈W : Ĩ(u) ≤ εn}) ≥ n.

Proof. Let Xn be a n-dimensional subspace of W . For any u ∈ Xn, u 6= 0, write
u = rnw with w ∈ Xn, ‖w‖W = 1 and then rn = ‖u‖W . From the assumptions
k(x), it is easy to see that, for every w ∈ Xn with ‖w‖W = 1, there exists dn > 0
such that

∫
RN k(x)|w|qdx ≥ dn. Thus for 0 < rn < t0, by the continuity of M , we

have

Ĩ(u) =
1
p

[
M([u]ps,p) + ‖u‖pp,V

]
− α

p∗s
ψ(u)

∫
RN
|u|p

∗
sdx− β

q

∫
RN

k(x)|u|qdx

≤ 1
p
rpn

[
M([w]ps,p) + ‖w‖pp,V

]
− α

p∗s
r
p∗s
n

∫
RN
|w|p

∗
sdx− β

p
rqn

∫
RN

k(x)|w|qdx

≤ C1

p
rpn −

α

p∗s
r
p∗s
n

∫
RN
|w|p

∗
sdx− β

p
dnr

q
n

= εn.

Therefore, we can choose rn ∈ (0, t0) so small that Ĩ(u) ≤ εn < 0. Let

Srn = {u ∈ Xn : ‖u‖W = rn}. (4.1)

Then Srn ∩Xn ⊂ Ĩεn . Hence by Proposition 4.1,

γ(Ĩεn) ≥ γ(Srn ∩Xn) = n.

As desired. �

According to Lemma 4.4 we denote Σn = {A ∈ Σ : γ(A) ≥ n} and let

cn = inf
A∈Σn

sup
u∈A

Ĩ(u). (4.2)

Then
−∞ < cn ≤ εn < 0 (4.3)

because Ĩεn ∈ Σn and Ĩ is bounded from below.

Lemma 4.7. Let α, β be as in (3) or (4) of Lemma 4.4. Then all cn (given by
(4.2)) are critical values of Ĩ and cn → 0.

Proof. Since Σn+1 ⊂ Σn, it is clear that cn ≤ cn+1. By (4.3), we have cn < 0.
Hence there is a c̄ ≤ 0 such that cn → c̄ ≤ 0. Moreover, since that all cn are critical
values of Ĩ (see [31]), we claim that c̄ = 0. If c̄ < 0, then by Remark 4.5, Kc̄ =
{u ∈W : Ĩ ′(u) = 0, Ĩ(u) = c̄} is compact and Kc̄ ∈ Σ, then γ(Kc̄) = n0 < +∞ and
there exists δ > 0 such that γ(Kc̄) = γ(Nδ(Kc̄)) = n0, here Nδ(Kc̄) = {x ∈ X :
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‖x−Kc̄‖ ≤ δ}. By the deformation lemma (see [34]), there exist ε > 0 (c̄+ ε < 0)
and an odd homeomorphism η : W →W such that

η(Ĩ c̄+ε \Nδ(Kc̄)) ⊂ Ĩ c̄−ε.
Since cn is increasing and converges to c̄, there exists n ∈ N such that cn > c̄ − ε
and cn+n0 ≤ c̄. Choose A ∈ Σn+n0 such that supu∈A Ĩ(u) < c̄+ ε, that is A ⊂ Ĩ c̄+ε.
By the properties of γ, we have

γ(A \Nδ(Kc̄)) ≥ γ(A)− γ(Nδ(Kc̄))) ≥ n, γ(η(A \Nδ(Kc̄))) ≥ n.

Hence, we have η(A \Nδ(Kc̄)) ∈ Σn. Consequently,

sup
u∈η(A\Nδ(Kc̄))

Ĩ(u) ≥ cn > c̄− ε,

a contradiction, hence cn → 0. �

Proof of Theorem 1.2. By Lemma 4.4(2), Ĩ(u) = I(u) if Ĩ(u) < 0. Then, by Lem-
mas 4.4–4.7, one can see that all the assumptions of Proposition 4.2 are satisfied.
This completes the proof. �
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[7] H. Brézis, S. Kamin; Sublinear elliptic equations in RN , Manuscripta Math. 74 (1992), 87–
106.
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