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BOUNDARY VALUE PROBLEMS FOR FOURTH-ORDER MIXED
TYPE EQUATION WITH FRACTIONAL DERIVATIVE

ABDUMAUVLEN S. BERDYSHEV, BAKHODIR E. ESHMATOV,
BAKHTIYOR J. KADIRKULOV

ABSTRACT. In this work we study direct and inverse problems for fourth-order
mixed type equations with the Caputo fractional derivative. Applying method
of separation of variables we prove unique solvability of these problems.

1. INTRODUCTION AND FORMULATION OF PROBLEMS

It is known that the theory of boundary value problems for fractional order
differential equations is one of the rapidly developing branches of the general theory
of differential equations. Detailed information related with fractional calculus can
be found in [6].

Many problems in diffusion and dynamical processes, electrochemistry, biosciences,
signal processing, system control theory lead to differential equations of fractional
order. More information can be found in [4],[8].

Mathematical modeling of many real life processes lead to problems of identifying
coefficients or right-hand sides of differential equations, based on some known data
of their solutions. These kinds of problems are called inverse problems.

Inverse problems appear also in various fields such physics (inverse problems
of quantum scattering theory), geophysics (inverse problems of magneto metrics,
seismology, theory of potentials), biology, medicine, quality control of industrial
products and etc. (see [B, [@]). Similar problems studied in [2] [7]. In this work we
investigate direct and inverse problems for fourth-order mixed type equations.

Let Q={(z,t): 0<a <1, —p<t<q}, QT =QN{>0),Q2  =Qn(t <0),
where p, ¢ > 0 are real numbers. In 2 we consider the equations
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and |
0*u o
@ + CDOtu = f(x), t> O,
0t 0%u (12)
@+ﬁ:f(l‘)7 t <0,

where ¢ D§, is the Caputo fractional operator of the order o € (0, 1] with respect
to variable ¢ [6, p. 92],

1 ¢ —_aOu(x,T)
Dg, t) = ———— t— —2d t .
oDfutant) = e [, =" an ¢>0
We study the following problems.
Direct problem. Find a function u(z,t) such that:

(1) wis continuous in ©, together with its derivatives appearing in the boundary
conditions,

(2) u satisfies equation in QtuQ-,

(3) u satisfies the boundary conditions

w(0,t) = u(1,t) = Uz (0,8) = uze(1,8) =0, —p<t<g, (1.3)
u(z,—p) =0, 0<z<1, (1.4)
(4) wu satisfies the matching condition
Ou(x,—0
cDgu(x,4+0) = %, 0<z<l (1.5)

Inverse problem. Find a pair of functions {u(z,t), f(z)} with the following prop-
erties:

(1) w is continuous in Q, with its derivatives appearing in the boundary condi-
tions, f(x) € C(0,1),

(2) w satisfies equation in QtuUQ~,

(3) u satisfies the boundary conditions and

u(z, —p) = (), u(z,q) = p(2),0 <z <1,
where ¢(x),1(z) are given functions,
(4) u satisfies the matching condition (L5).
2. UNIQUENESS AND EXISTENCE OF A SOLUTION FOR THE DIRECT PROBLEM
Theorem 2.1. Let p be a number such that
A, = (7n)?sin((7n)?p) + cos((7n)?p) # 0.
Then, if there exists a reqular solution of the direct problem, it is unique.

Proof. Let f(x,t) = 0. We will show that the homogeneous problem has only the
trivial solution. Let u(z,t) be a solution of the homogeneous problem. Consider
the ortho-normal system of functions, which is complete in Ls(0, 1),

X, (z) =V2sin(A\,z), A, =mn, neN. (2.1)

Let )
cn(t) = / u(z, t) X, (x)dz, t>0, neN. (2.2)
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Acting with operator ¢D§;, to both sides of (2.2)) and considering equation (1.1)),
boundary conditions (1.3]), we have that ci(t) satisfies the equation

cDfyen(t) + Xnen(t) =0,
whose solution can be represented as [0, p. 231]
cn(t) = ApEo(—XAt%), ¢ >0, (2.3)
where E,(z) is the Mittag-Leffler function [6] p. 40], defined as

o0 Zn
E,(z) = _, C, R 0.
(2) nz::O Tantl) °© e(a) >
For negative values of t, —p <t < 0, we set

dy,(t)

1
/ u(z, t) X, (z)dx. (2.4)
0
Differentiating twice with respect to ¢ and considering (1.1]), (1.3]), we obtain
d",(t) + Atd,(t) =0,
whose solution is
dn(t) = By sin(A2t) + L, cos(\2t), t<0. (2.5)

For determining the unknown coefficients of (2.3)) and (2.5)) we use the continuity
property of the function in € as well as the matching condition (|1.5)). We obtain

A, =L, B,+)A,=0B,sin(A\2p)— L, cos(A\2p) = 0.

This system has only the trivial solution, since its determinant A,, is not equal to
zero because of condition (2.1). Hence, ¢, (t) = d,(t) = 0. Then from (2.2) and

(2.4)) it follows that
1
/ u(z,t) Xy (x)de =0, te€[-pq], neN.
0

Based on the completeness of system (2.1)) we conclude that u(x,t) = 0 in Q. The
proof is complete. [l

Remark 2.2. The set of numbers p satisfying condition (2.1} is not empty. For
instance, if p = %, then A, = +1 # 0.

Now we prove the existence of a solution for the direct problem.
0y (=,
Theorem 2.3. Let f(x,t) € C’;{?(Q), % € Ly(Q),
and A, # 0 at n € N. Then the solution of direct problem exists.

Proof. We use the method of separation of variables for f = 0 in Q, we set u(z,t) =
X (x)T(t) # 0. Substituting this into (L.1)), taking boundary conditions (1.3)) into
account with respect to X (x) we get the spectral problem

XWV(z) = MX(2) =0, X(0)=X(1)=X"(0)=X"(1)=0. (2.6)
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This problem is selfadjoint and has complete system of eigenfunctions represented

by (2.1)). Let us set
T(x,t t ot
u(x,t) _ u ($, )7 (.’1?, )E ;
u (x,t), (z,t)€Q .

For the solution of the non-homogeneous equation (1.1)) we set

ut(z,t) = Z uwl ()X, (z), inQF, (2.7)
n=1
o
u” (z,t) = Z u, (£)Xpn(z), inQ7, (2.8)
n=1
where u () and wu,, () are unknown functions.

Solutions of (2.7) and (2.8) satisfy conditions (|1.3]). Let us expand f(z,t) into

the series
fla,t) = falt) Xn(), (2.9)
n=1

where

1
f%@):té (s t) Xo(2)da.

Substiting (2.7)—(2.9)) in (L.1]) lead to the equations
o Diyuy () + Xyt (t) = fa(t), >0,
2

%u;(t) + A u (1) = fo(t), t<0,

whose solutions are [6 p. 231]

u:;(t) = AnEa(*)‘itQ) + /t (t - T)ailEa,a(f)‘i(t - T)a)fn(T)dTv (21())
0

uy, (t) = By, sin(A\2t) + L,, cos(A\2t) + )\% /0 fn(T)sin(\2 (1 — t))dr, (2.11)

where A,,, By, L,, are unknown constants, E, g(z) is the Mittag-Leffler type func-
tion [6, p. 42],

oo Zn
E,p(z) = —, z,8€C, Re(a) >0, Ep1(2) = Eq(2).
S0 =3 gy 20 C Rel) > 0 Fa(2) = Bal2)
To determine the unknown constants of (2.10)) and (2.11]) we use the continuity of

the looked for function in © and condition (1.5) of direct problem. We obtain

£0) = (0), eDgat () = 22O un ) <o

Then concerning the unknowns A,,, B, L,, we obtain the system of equations
An = an
fu(0) = AEA, = \2B,,

u

1 /0
B, sin(A\2p) — L,, cos(A\2p) = Z / Jn(7) sin(AZ (7 + p))dr.
nJ-p
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Since A,, # 0 the coefficients A,,, By, L, can be uniquely determined. Substi-

tuting A,,, By, Ly, in (2.10) and (2.11)) we find that

7(0) si A2 ! a— «a
() = PO B tey ¢ [ = B (A= 1)) (e
AbEe)
- T/ fn bln( (T +p))d
(2.12)
_ fn(0)sin(AZ(t + p))
() = PO K (t,7) TV (213)
where
(A2 sin(A2t)—cos(A2 1)) sin(\2 (7+p)) p< <t
_ AZA, ’ >~ 4,
Kn(t’T) - ()\3, sin()\f,"r)fcos()\ir)) sin(Af’/(ter)) t< T <0. (214)

AZA,

Thus we find a formal solution of direct problem in QT and Q~, given by formulas

2.7) and (2.8), respectively, where ub(t), u, (t) are defined by formulas (2.12)),
2.13)).

We need to prove that this formal solution is a true solution. For this aim, we
prove the convergence of series (2.7)), (2.8) and

>Nt ()X (), Z Ay, (8) X (), (2.15)
n=1
n=1
— 4 d*u,, (t)
> Ay () X (), Z i3 Xn (). (2.17)

First we prove convergence of series (2.16) and (2.17). Convergence of other
series can be done similarly.
Let us prove convergence of the first series of (2.16). It can be majorized by

i Anlut (B)]. (2.18)
n=1

We have A,, # 0, hence there exists 6 > 0 such that |A,| > > 0.
Further, we use the following properties of the Mittag-Leffler function E, g(z):
(1) at u>0, a, B € (0,1], a < B, t*"LE, g(—ut®) is completely monotone [7],
ie. (—1)" [P By p(—ut)™ > 0, n € NU{0};
(2) at @« €(0,2), v < |argz| <, B € R, v € (ma/2; min{r; ra}) we have for

E <
1Eos(D) < 75T

where M is constant which does not depend on argument z [Il p. 136];

(3) the following formulas are valid [I pp. 118, 120],

1 z
E,.(z) = m + 2Eq atu(2), /0 t”flanu()\ta)dt =2MEq u1(A2%). (2.19)
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Set,
Il(t) _ fn(oz\slz(A%p) Ea(*/\ita),
b@%=£(ﬂwf“%@d—ﬁ@—ffﬁ4ﬂm
_ Y41«
10 = B0 [ ) im0 4 i

We estimate the function I (t):
fn(o) Sin(/\% ) ( /\4 ta)

()] = [#50R < S350

Based on the condition imposed on f(x,t) in the theorem, from we have

=5 3 O Bsin() do = < fua(),

| (2.20)
|fa()] < )\4N N = max|fn4( -
Then MN o
4 JR—

Here and further, C is a positive that may change from line to line. Considering
(2.20]), we have the estimate

|I5(2) / |(t— wal=An(t —7)%)|dr.

From here, applying formula (27) we obtain

N o C

|12(t)|g/\—4}1— a(—Ant)] < e (2.22)
Further, taking (2.20)) into account we have the estimate
C

mxﬂsvé/\n4nm<A2 (2.23)

From f it follows the convergence of series . Then based on Weier-
strass’ theorem [3 p. 20], first series of converges absolutely and uniformly.

Since

eDGyut (1) = fult) = Aqust (2),

the absolute and uniform convergence of the second series of can be proved
similarly.

Now we prove the absolute and uniform convergence of the first series of .
Let

0) sin(\2 0
ey = OIOCED) = iy [ ket fulr)ir
A2A, .
Considering ([2.20)), which is valid as well in the case ¢ < 0, we obtain
fa(0)sin(AZ(t+p))| _ A% c

Al 1 ()] = X5

< < —. .
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Note that the function K, (t,7) defined by (2.14) is bounded, i.e., |K,(t,7)| <
C, —p <t,7 <0. From (2) it follows that

5
fult) = — )\5 i gﬁx/icos()\ z)dr = %fm(t)-

Further, applying the inequality 2ab < a? + b2, and the Cauchy-Schwarz inequality,
we have the estimate

Anl2(t)] = Ay

0
/,, Kn(t,f)fn(T)dT]

C 0
< — fn d
n/g5vn7
2

<[z + ([ 1hatoiar) |

<Clm+ /|M<Wﬁ

1
C[)\g + 1 fas T, (—p0y) -

Since
o0

1 o°f(z,t
> - ENn5mMpmJ|( T

n=1
from this and - , it follows the absolute and uniform convergence of the series
for t < 0. The convergence of the second series can be obtained similarly. The
proof is complete. O

3. INVERSE PROBLEM

For solving the inverse problem, we set

ulx — E:Lozl u'r-‘t_(t)Xn(fEL (.’Ii,t) e Q+
(x,t) {EZO_I us ()X, (z), (2,1)€Q, (3.1)
F@) = faXn(x), (32)

where u (1), u,; (t) are unknown functions, f, is unknown coefficient.

’ U 'n

Substitution (3.1]) and (| . in . leads to equations

eDgyut (t) + Xyut (8) = fo, >0, (3.3)
2
dt2 n( )+)‘4uk( ):fm t <0, (3.4)

whose solutions are and (2.11). From here, considering f, constant, we
obtain

uf (t) = ApEo(=XAY) + fut® By as1(—AEtY), (3.5)
u, (t) = By sin(A2t) 4+ L, cos(\2t) + icz (1 — cosA2t), (3.6)

where A,,, B,,, L, f, are unknown coeflicients.
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To determine the unknown coefficients we use the continuity of the unkown
function in  and conditions (L.5)) and (I)). We obtain

du., (0)

UZ(O) = u;(0)7 CDOtu ( ) = #7 uf{(q) = Pn, u;(—p) = Yn,
where
1 1
on= [ e@Xa@)de. = [ V(@)X (0)d (3.7)
0 0
Then concerning the unknowns A,,, By, L, f, we obtain system of equations
Ln = An7
AnAn + N0 B = fo =0,
AnEo(=Mhq") + fng® Eaas1(=Xnq") = on, (3.8)
. 1
COS(/\ip) “Ap — SIH()‘?L ) B, + <1 N\ (1 - COS( ?Lp))fn = n,
whose solutions are
1 — Eqo(=Atg®) A2
An: n _— n — ¥n) Bn: & n — ¥n),
Pn + AL (¥n = ¢n) An*(so Un)
Nt Eo (=M g™
L, :Any fn = %(@nfqpn)‘}’)\?ﬁany
where
AN 81n(/\2p) +Cos()\np) Eo(=Xtg®). (3.9)
Substituting of A,,, By, L,, into and (| -7 we find
i () = Bn = ¥n) (aniqa) CEL M) b (310)
_ A2 sin(A2t) — cos(A\2t) + Eu(—Aiq®
) = 2D 2SR E BT () g, 310)

Further, from (3.1)), (3.2)), (3.10)), (3.11]) we obtain formal solution of the inverse

problem, which is given by formulas

u(e,t) =Y (“’”A;z/’” (Ba(=X10") = Ba(=A3t%)) + 00 ) Xa(@), 120, (3.12)
n=1 n*
20 /A2 sin(A2E) — cos(A2t) 4 Eo(—Aig®
u(e,ty = Y (P S E BT () 4, ), ),
n=1 n*
for t <0,
(3.13)
A EL (Mg
= (—)(cpn —n) + Aiﬁson)Xn(:c)- (3.14)
n=1
Theorem 3.1. Let (x) € C°[0,1], (7 (x) € Ly(0,1),
k d2k
dx2k ) =0 d;’;(kx) |x:1 =0, k=03,
¥(z) € C00,1], v (x) € La(0,1),
@), de(r), 0. k=03

dx2k |m:07 dx2k |a;:1
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and An. # 0 at n € N. Then there exists the unique solution for the inverse
problem.

Proof. Since A, # 0, the uniqueness of the solution follows from (3.12)—(3.14]),
and from the completeness of (2.1). Therefore, we prove only the existence of the
solution.

Solutions (3.12)—(3.14) satisfy (L.2) and conditions (L.3), (L5), (I). We need

to prove that this formal solution is a true solution. For this aim we prove the

convergence of series ((3.12)—(3.14) and
IREICEABIED SEURAES (3.15)

ZXI n (t ZcDmu Xu(), (3.16)
> N (0, Y el )Xnm. (3.17)
n=1 n=1

Let us prove convergence of the series of (3.17). We have A, . # 0, hence there
exists § > 0 such that |A,.| > 6 > 0. From here, taking properties of Mittag-Leffler
function we get

A2 sin(A2¢t) — cos(A2t) + Eq(—Aiq®)

Based on the conditions imposed on ¢(z) and ¥ (z) in theorem from (3.7) we
obtain

1

o = / "~ <P\/§COS)\ rdr = — 37 Pt (3.18)
7w 1

¥y = )\7 B \/ﬁcos Aprdr = —/\—7¢n7. (3.19)

From here it follows that given series can be majorized by

=1
Z . (len7| + [Yn7l)-

Since

1 1/1 , >
x (“Pn7| + W}n7|) ()\2 + 2|Q0n7| + 2‘1/)n7| ) g )\721 = 6’

Y lear® < e @)1 40,) Z [Vt < 1 @)I1Z, 0,15
n=1 n=1
it follows the absolute and uniform convergence of the first series of (3.17]).
Now we consider the second series of (3.17)). Since
Py (t) _ oo = Pn

FER A (A8 sin(A2t) — A2 cos(A\2t)),

d?u;, (t
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from this (3.18)) and (3.19), it follows the absolute and uniform convergence of the
second series of (3.17)). This completes the proof. O

Remark 3.2. Set of numbers p, satisfying condition A, # 0 is not empty. For
instance, if p = 2/m, then A, = 1 — E,(=Mi¢%). Since A\, # 0, n € N, 0 <
Eo(=Xtq¥) < 1, it follows that A,,. # 0.

Remark 3.3. If condition A, # 0 is not valid for n = k£ and for some p and g,
ie.

A = A sin(Afp) + cos(Aip) — Ea(=Apg®) =0,
homogeneous system ([3.8]) has nontrivial solution (¢, = 1, = 0). Then homoge-
neous inverse problem also has nontrivial solution. For instance, when

22 ME (_)\4qa)
Ay=Ly=1 Bpy=——F = ko) Tkd
T R R AR N s v
, the functions
(Bl Pl Bl ) G sin (A, £>0,

Eo(=A%q%)-1
)\4Ea _)\4qo¢
f(x) _ k (4 ak )
Eoc(_Akq ) -1

form a solution of the homogeneous problem.

U(Jf,t) = ()\i sin()\it)—cos()\it)—Ea(—)\iqo‘))ﬁsin(Aim) t<0

V2sin(A2z)
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